Marine metabolomics: a method for the non-targeted measurement of
metabolites in seawater by gas-chromatography mass spectrometry.
Emilia M Sogin ^{1*} , Erik Puskas ¹ , Nicole Dubilier ¹ , Manuel Liebeke ^{1*}
1-Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, Germany
*Corresponding authors
Maggie Sogin, email: esogin@mpi-bremen.de, tel: +49 421 2028-823

8 Manuel Liebeke email: <u>mliebeke@mpi-bremen.de</u>, tel: +49 421 2028-822

9 Abstract

10 Microbial communities exchange molecules with their environment that play a major role in global biogeochemical cycles and climate. While extracellular metabolites are commonly 11 12 measured in terrestrial and limnic ecosystems, the presence of salt in marine habitats has 13 hampered non-targeted analyses of the ocean exo-metabolome. To overcome these limitations, 14 we developed SeaMet, a gas chromatography-mass spectrometry (GC-MS) method that detects 15 at minimum 107 metabolites down to nano-molar concentrations in less than one milliliter of seawater, and improves signal detection by 324 fold compared to standard methods for marine 16 samples. To showcase the strengths of SeaMet, we used it to explore marine metabolomes in 17 vitro and in vivo. For the former, we measured the production and consumption of metabolites 18 19 during culture of a heterotrophic bacterium that is widespread in the North Sea. Our approach 20 revealed successional uptake of amino acids, while sugars were not consumed, and highlight the 21 power of exocellular metabolomics in providing insights into nutrient uptake and energy

conservation in marine microorganisms. For *in vivo* analyses, we applied SeaMet to explore the *in situ* metabolome of coral reef and mangrove sediment porewaters. Despite the fact that these
ecosystems occur in nutrient-poor waters, we uncovered high concentrations of many different
sugars and fatty acids, compounds predicted to play a key role for the abundant and diverse
microbial communities in coral-reef and mangrove sediments. Our data demonstrate that SeaMet
advances marine metabolomics by enabling a non-targeted and quantitative analysis of marine
metabolites, thus providing new insights into nutrient cycles in the oceans.

29

30 Importance

31 The non-targeted, hypothesis-free approach using metabolomics to analyzing metabolites that 32 occur in the oceans is less developed than for terrestrial and limnic ecosystems. The central 33 challenge in marine metabolomics is that salt prevents the comprehensive analysis of metabolites 34 in seawater. Building on previous sample preparation methods for metabolomics, we developed 35 SeaMet, which overcomes the limitations of salt on metabolite detection. Considering the oceans 36 contain the largest organic carbon pool on Earth, describing the marine metabolome using non-37 targeted approaches is critical for understanding the drivers behind element cycles, biotic 38 interactions, ecosystem function, and atmospheric CO₂ storage. Our method complements both 39 targeted marine metabolomic investigations as well as other 'omics' (e.g., genomics, transcriptomics and proteomics) level approaches by providing an avenue for studying the 40 41 chemical interaction between marine microbes and their habitats.

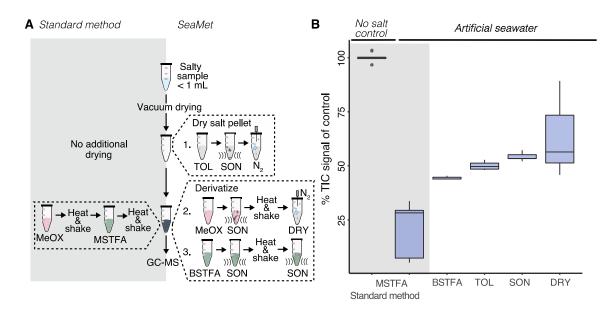
42 Introduction

Marine microorganisms produce and stabilize the largest pool of organic carbon on Earth 43 by exchanging molecules with their environment (1, 2). Marine microbes are also the basis for 44 45 maintaining the long term storage of carbon dioxide (CO₂) in the oceans, which plays a complex 46 role in biogeochemical cycles with uncertain implications for global climate (3). While 47 metagenomic and metatranscriptomic studies of the ocean, driven by low sequencing costs and 48 projects like Tara Oceans (4), have deepened our knowledge of the identity and activity of 49 marine microbes, these studies are limited in their ability to determine the molecules that 50 contribute to the chemical complexity of marine habitats. New approaches are needed to permit 51 equivalent surveys of the extracellular metabolome, or exometabolome of the ocean. 52 Exometabolomics provides an opportunity to directly characterize the molecular interaction

53 between microbes and their environment by profiling the types of molecules cellular organisms secrete (5). In terrestrial and limnic systems, these studies have advanced our understanding of 54 microbial communities in soil organic matter cycling (6, 7), overflow metabolism of cultivable 55 56 microorganisms (8, 9) and chemical ecology of the environment (10, 11). While intracellular 57 metabolomic analyses of tissues from marine microbial cells to invertebrates is becoming 58 increasingly more common (12-14), the defining characteristic of marine habitats - high salt 59 concentration - limits exometabolomic analyses of the oceans to studies that require salt removal 60 prior to metabolite extraction (10, 15, 16).

Our knowledge of the metabolite composition of ocean habitats is restricted to methods that
require sample preparation techniques that alter their molecular composition, or targeted
approaches that measure a defined group of metabolites (17-19). The most common
environmental profiling strategies in marine ecosystems rely on solid phase extraction (SPE)

65 techniques to remove salt prior to mass-spectrometry (MS) analyses (20, 21). These studies have 66 demonstrated the role of microbial communites in producing recalcitrant dissolved organic matter (DOM) and provided insights into their role in long term carbon storage (22). However, 67 68 the removal of salt from marine samples using SPE is accompanied by the co-removal of small polar compounds, which are the primary components of the liable organic matter pool (17). 69 70 Consequently, SPE-based studies can only detect about 50% of the compounds that make up the 71 DOM pool from the ocean, and fail to detect the majority of compounds involved in the central 72 metabolism of cells. Furthermore, current DOM analytical approaches remain largely 73 inaccessible for the majority of research institutions and projects. This is largely due to high instrumentation costs for high-resolution MS (coupled to liquid-chromatography or with direct-74 75 infusion), large sample volume requirements, and the relatively low-throughput in data 76 acquisition.


77 Gas chromatography (GC)- MS analysis, on the other hand, is a high-throughput and 78 widely available analytical method that allows for the detection of primary metabolites, small 79 molecules that occur in central metabolic pathways across biological systems (23, 24). High 80 reproducibility coupled to the widespread availability of annotation resources make GC-MS the 81 "workhorse" of analytical chemistry facilities. GC-MS has allowed the identification of 82 metabolites associated with human disease (25), detection of compounds that serve as 83 environmental cues in foraging (26), description of metabolic fluxes within and between cells 84 (27), and is used for environmental profiling of soils and microbial activity on land (6, 28). 85 Despite its the power of detecting metabolites involved in central metabolism, exometabolomic 86 studies using GC-MS from marine habitats are absent due to the inhibitory effects of salt on 87 sample analysis.

88 The ocean metabolome remains largely undefined, despite a growing field of research 89 exploring the molecular composition of DOM (1, 2, 20, 21). To more efficiently decipher ocean 90 metabolism, cost-effective, high-throughput, and untargeted workflows that can readily identify 91 and quantify molecules from high salinity environments are critical. Here, we present SeaMet, a 92 marine metabolomics method that builds on previous GC-MS sample derivatization methods to 93 enable metabolite detection in seawater. Using SeaMet, we demonstrate how our method can 94 enhance our understanding of microbial metabolism in culture experiments and profiling of 95 marine habitats.

96

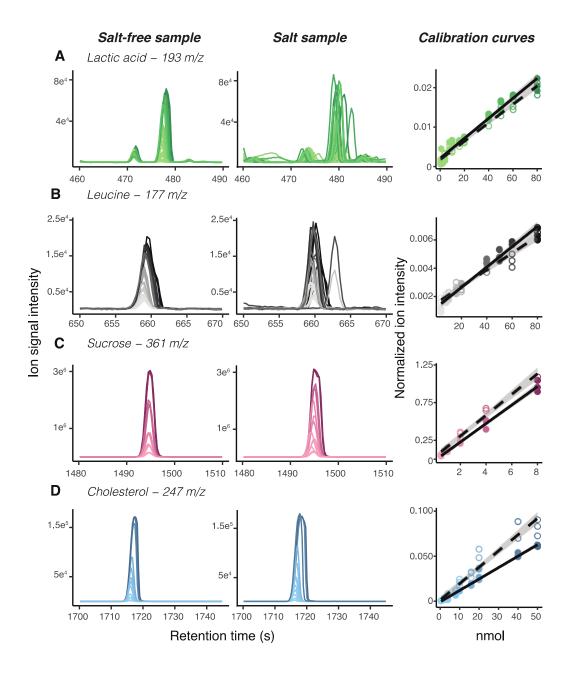
97 **Results and Discussion**

98 SeaMet modifies the well-established two-step derivatization procedure, which permits the detection of non-volatile primary metabolites using GC-MS, and involves methoximation 99 followed by trimethylsilylation (29). Like other GC-MS sample preparation techniques (30, 31), 100 101 SeaMet removes liquid through vacuum drying prior to derivatization - a process that results in a 102 salt pellet when working with marine samples, which restricts MS analysis. Our preliminary tests 103 suggested that water locked within the dried salt crystals hindered the chemical reactions needed 104 for GC-MS (Fig. S1). Our method overcomes this limitation by first eliminating residual water 105 within the salt crystals and then extracting metabolites into the derivatization reagents (Fig. 1A).

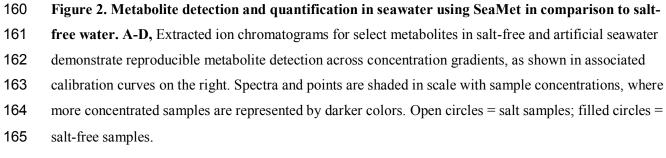
106

107 Figure 1. How SeaMet works. A. Modifications to the standard two-step methoximation (MeOX)-108 trimethylsilylation (TMS) derivatization protocol include key steps that enhance metabolite signal 109 detection in seawater as shown in **B**. Steps modified from the standard method include a switch in 110 derivatization reagents from MSTFA to BSTFA, further drying of the salt pellet using toluene (TOL) to 111 remove water azeotropically, ultrasonication (SON) after the addition of TOL, MeOX, BSTFA, and after 112 BSTFA derivatization, and drying (DRY) of the pyridine after the MeOX derivatization prior to BSTFA 113 addition. **B**, Box plots showing changes in total ion chromatogram (TIC) signals after GC-MS data 114 acquisition. Results are from a synthetic mixture of 45 metabolites representing a broad scope of 115 metabolite classes (Table S1) dissolved in 0.5 mL of seawater (n = 5) relative to average of the no salt 116 control.

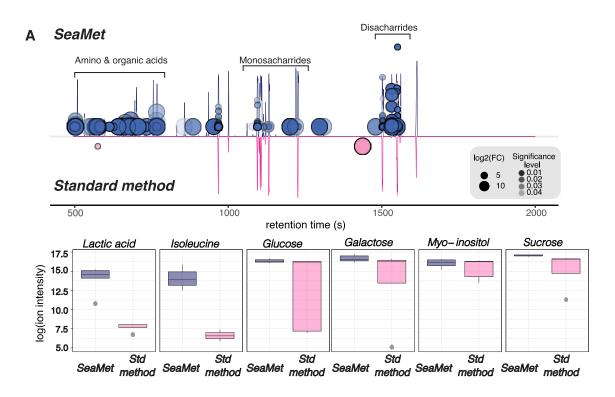
117

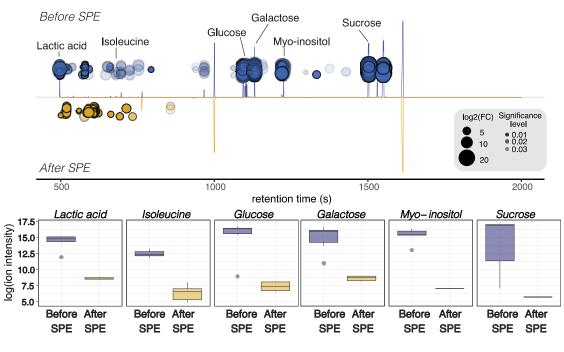

We used a mixture of 45 different metabolites (**Table S1**) dissolved in artificial seawater to 0.4 mM to document the performance in metabolite detection of our method. Overall, SeaMet increased total signal intensity on average by 42% and up to 89% for high salinity samples in comparison to the standard GC-MS sample preparation (**Fig. 1B**). We first replaced the most commonly used trimethylsilylation reagent, N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA)(31), with one that is less susceptible to inhibition by water, N, O-

124 Bistrifluoroacetamide (BSTFA), which resulted in higher metabolite signals (Fig. S1B). To


125 eliminate water from the samples, we increased the speed-vacuum drying time from four to eight 126 hours, and integrated a toluene drying step that is used in urine-based metabolomic analyses (30). 127 We further enhanced metabolite signals by treating the salt pellet to a combination of 128 ultrasonication and vortexing after the addition of toluene and both derivatization reagents, and 129 following completion of the trimethylsilvlation reaction. These steps break apart the salt crystals 130 and release water into the toluene to enhance salt drying and metabolite extraction. Finally, 131 following a recently described method for improving GC-MS metabolite detection regardless of 132 sample type (32), we included an additional step between the methoximation and 133 trimethylsilylation derivatization reactions and evaporated the first derivatization reagent under 134 N₂ gas (see Fig. 1B for total signal improvements of each step). 135 Overall, SeaMet allowed us to detect significant increases in metabolite abundances 136 across molecular classes when compared to the standard method (adjusted p-value < 0.05; mean 137 fold change across all ions = 323; Fig. 2A; Fig. S2). This included measurement of organic 138 acids, amino acids, and fatty acids, as well as sugars (and their stereoisomers), sugar alcohols, 139 and sterols (Table S1). 140 To determine the quantitative capabilities of SeaMet, we used a metabolite mixture (45

To determine the quantitative capabilities of SeaMet, we used a metabolite mixture (45
metabolites spanning 9 compound classes) and added different concentrations (from 0.0039 mMto 0.4 mM) to seawater. Our detection limits were in the nano-molar range and comparable to
those of targeted techniques for marine ecosystems that were developed to quantify single
compounds from specific molecular classes (Tables S2; Table S3). In contrast to previously
published techniques, which require at least an order of magnitude higher sample volumes,
SeaMet only requires 0.5 mL to 1 mL of seawater for metabolite detection (17, 33). Using
SeaMet, we measured 107 metabolite standards in seawater, representing major metabolite


148	groups involved in primary metabolic pathways (Table S4). Our method provides reproducible
149	quantification across metabolite classes ($r^2 > 0.7$), and gives similar linearity and dynamic range
150	in seawater samples compared to salt-free samples prepared with the standard GC-MS
151	derivatization method (Fig. 2A-H; Fig. S3). Moreover, we demonstrate that SeaMet reduces
152	variation in ion detection for individual metabolites (Welches t-test p -value < 0.01 across all ions
153	at 4 nmols; average % $CV_{salt} = 20.2 \pm 0.78$, average % $CV_{salt-free} = 23.5 \pm 0.72$) compared to
154	salt-free samples prepared with the standard GC-MS derivatization procedure (Table S2). The
155	analytical characteristics of the 107 metabolites (Table S4) can be used for more sensitive,
156	targeted GC-MS analyses or help in identifying metabolites in untargeted applications.
4	



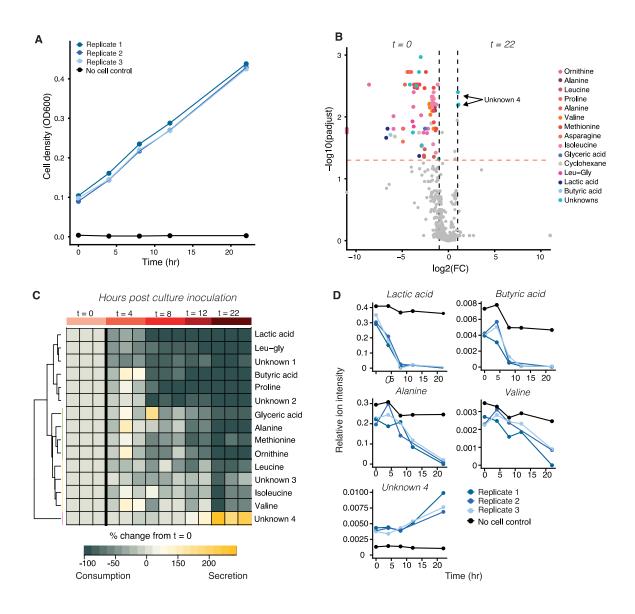
167	Given that SeaMet avoids SPE, we assessed how SPE sample treatment affects the ability
168	to detect compounds in marine samples. We compared GC-MS profiles measured with SeaMet
169	before and after salt removal using the most commonly used Bond Elut styrene-divinylbenzene
170	(PPL) SPE-columns. Our analyses revealed that small polar compounds, such as sugars, sugar
171	alcohols, amino acids, and organic acids, were co-removed with salt during SPE sample
172	preparation (Fig. 3B). These results provide evidence that SeaMet captures compounds
173	commonly missed by SPE-based exometabolomic approaches for marine samples. SeaMet thus
174	expands the range of metabolites that can be measured by untargeted approaches beyond those
175	currently used to characterize marine DOM, and contributes to advancing marine metabolomics.

B SeaMet

¹⁷⁶ 177

Figure 3. SeaMet enhances the detection of metabolites in marine samples. A, B Total ion

178 chromatogram cloud plots from GC-MS profiles of metabolite mixtures indicate significant differences


179 (Benjamini-Hochberg adjusted p-value < 0.05) between ion abundances when comparing A, SeaMet

180 (blue; top) to the standard metabolite derivatization (pink; bottom) protocol for GC-MS samples and **B**, 181 chromatograms using SeaMet on marine samples before (blue; top) and after (yellow; bottom) solid phase 182 extraction (SPE). Individual compound box plots are also shown in A and B to highlight improvements in 183 metabolite detection using SeaMet. For the cloud plots, larger bubbles indicate higher log2(fold changes) 184 between groups and more intense colors represent lower t-test p-values when comparing individual 185 feature (m/z ions) intensities. Samples prepared with SeaMet had high abundances of organic acids (lactic 186 acid, succinic acid, and fumarate), amino acids (isoleucine, leucine, threonine and valine), sugar alcohols 187 (myo-inositol and mannitol), and sugars (fructose, glucose, cellobiose, maltose, ribose, galactose, and 188 sucrose) in comparison to SPE-based sample preparation. Representatives of each class are indicated in **B**. 189 To show signal improvement using SeaMet, samples for both comparisons included authentic metabolite 190 standards representing multiple chemical classes.

191

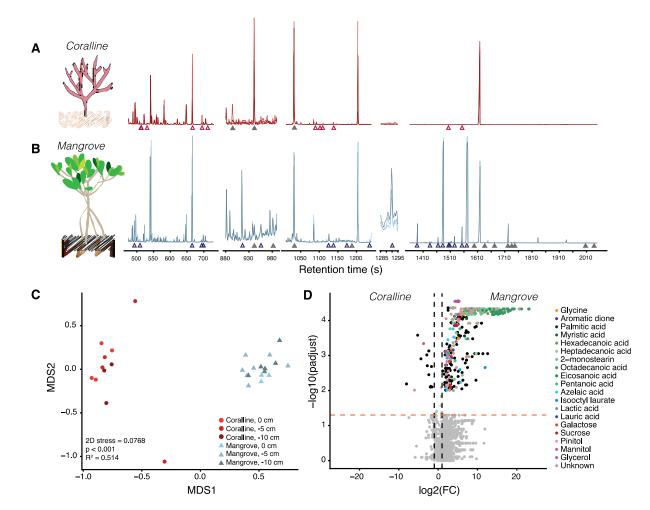
192 To demonstrate the power of SeaMet in characterizing the metabolism of marine bacteria, 193 we monitored changes in the extracellular metabolome during growth of a heterotrophic Gammaproteobacterium, Marinobacter adhaerens that occurs in aggregation with diatoms 194 195 throughout the North Sea. Using SeaMet, we simultaneously observed hundreds of metabolites 196 and detected significant changes in the metabolite composition of marine culture medium during the bacteria's initial growth phase (adjusted p-value < 0.05; Fig. 4; Fig. S3). The bacteria took 197 198 up different carbon and nitrogen resources in a cascade-like fashion, and later in growth, began excretion of an undescribed compound (Fig. 4C, D; Fig. S3). By measuring multiple metabolite 199 200 classes in a single analytical run, our results revealed that *M. adhaerens* preferentially took up 201 amino acids over readily available sugar compounds (e.g., trehalose, Fig. S3). Previous 202 proteomic results indicated that *M. adhaerens* had a high number of expressed amino acid uptake 203 transporters (34). Our results expand on these findings by i) highlighting which amino acids the 204 *M. adhaerens* prefers, ii) providing experimental evidence that this heterotroph does not take up sugars, despite the genomic ability to use them in their metabolism (35), and iii), showcasing 205 206 that *M. adhaerens* participates in the successional uptake of resources. Successional dynamics in

substrate use is a common energy conservation mechanism in bacteria (36) and affects central 207 208 carbon and nitrogen dynamics during growth. M. adhaerens, like many other bacteria, 209 participates in the release of organic carbon, which can be metabolized by other microorganisms 210 or will contribute to the complexity of refractory DOM. 211 Given that other exometabolomic methods for marine samples either miss major 212 compound classes due to sample pre-treatment (e.g., SPE based sample preparation) or are 213 targeted approaches that can only measure a few metabolite groups in a given run, it is likely 214 these observations in *M. adhaerens* physiology would have been obscured. Give the ease in 215 applying our method to culture studies, it is possible to integrate SeaMet with other "omics" approaches to help illuminate microbial physiology in the marine environment. By identifying 216 217 and quantifying metabolites that are consumed and excreted in cultivable marine bacteria, our 218 method expands our understanding of key primary compounds involved in the transformation of 219 organic matter in the ocean.

221

Figure 4. Metabolite consumption and excretion during culture of the marine heterotroph

223 Marinobacter adhaerens. A, Cell densities increased during the first 22 hours of culture growth in 224 Marine Broth. **B**, Volcano plot showing differences in ion abundances in cell growth media 225 between the initial and final (22 hour) sampling time points. Variables exhibiting high fold change values ($\log 2(\text{fold change}) > 2$) and significant differences (*p*-adjusted < 0.05) between 226 227 the two sampling time points are colored according to their metabolite database (NIST) 228 annotation. C, A heatmap of metabolite abundances after 22 h relative to starting conditions indicates 229 some compounds, like the dipeptide leucine-glycine (leu-gly), and lactic acid were taken up before others, 230 such as branch chain amino acids. After 12–22 hours of growth, the bacteria excreted an unknown


compound (Unknown 4). Hierarchical clustering shows groups of metabolites that changed significantly
during growth (left hand colored bars, B.H. adjusted p-value < 0.05; fold change > 2). These metabolite
groups represent successive stages in *M. adhaerens* consumption and production of marine broth
components. **D**, Relative ion abundances over time for select metabolites from each cluster group shown
in **C.** The blue lines represent biological replicate cultures while the black line shows results from a
control sample with no cell addition. Low variation among biological replicates highlights the
reproducibility of SeaMet.

238

To test the ability of our workflow to assess complex environmental metabolomes, we applied SeaMet to porewater samples from coralline and mangrove sediments. Coral reefs and mangroves, two globally important coastal ecosystems, contain many biological compounds that remain undescribed. It is essential to characterize the metabolome of these habitats to understand the role of these ecosystems in biogeochemical cycling.

244 Our approach detected 295 and 428 metabolite peaks from coralline and mangrove 245 porewater profiles (Fig. 5), including sugars, amino acids, organic acids, fatty acids, and 246 background signals. Diverse and abundant sugars from sediment porewaters adjacent to corals, as well as fatty acids from porewaters next to mangroves drove the observed significant 247 248 differences between habitats (ADONIS *p*-value < 0.001, $R^2 = 0.514$; Fig. 5 and Table S5). 249 Given that corals and mangroves thrive in oligotrophic waters and their associated 250 sediments harbor diverse, abundant and metabolically active microorganisms (37, 38), we were 251 surprised to measure high levels of metabolites that are typically consumed in primary 252 metabolism. Metabolomic analyses of marine sediments (in bulk) have also detected high abundances of primary metabolites (39, 40), suggesting sediment habitats - which are globally 253 home to an estimated 2.9 X 10²⁹ microbial cells (41) – contain many different types of 254 255 metabolites that drive microbial community metabolism. These data call for a reexamination of

256 carbon sequestration in coastal sediments using techniques that can identify and quantify the

accumulation of liable metabolites.

259 Figure 5. Metabolite profiles from marine habitats acquired with SeaMet. GC-MS metabolomic 260 profiles from A, coralline and B, mangrove sediment porewaters showed high concentrations of identified 261 metabolites (open triangles), e.g. fatty acids and sugars that explain multivariate differences in 262 composition in C. Profiles also revealed unknown peaks (filled triangles) for which no matches were 263 found in public databases (Table S5). C, Bray-Curtis informed non-metric multidimensional scaling 264 analysis of sediment porewater metabolomic profiles from coralline (red) and mangrove (blue) 265 habitats across sediment depths. ADONIS p-value and R² showed a significant correlation between sampling location and metabolite composition. **D**, Volcano plot showing differences in 266 267 ion abundances between habitats. Significant ions (p-adjusted < 0.05) with log2-fold change > 2 268 are shaded according to their metabolite database (NIST) annotation. 269

270	Due to the technical difficulties of detecting metabolites in seawater, a large portion of
271	ocean chemistry remains unannotated, reflecting one of the central challenges in metabolomics
272	research (42). By providing a new method to measure a broad scope of the marine metabolome,
273	we offer an avenue to identify molecules from marine environments and expand existing mass
274	spectrometry databases that aim to characterize chemical space across ecosystems. As an
275	example, our samples from sediment porewaters of mangroves and coral reefs revealed 11
276	metabolites driving variation between habitats that did not match public database entries (Fig. S6
277	and Table S5) (43, 44).

278

279 **Conclusions**

280 SeaMet is a marine metabolomics workflow that enables the analysis of primary 281 metabolism in the oceans. It is time efficient, allows the detection of diverse metabolite classes 282 in a single run, and expands the analytical window for molecules that can be detected within 283 marine samples. This advance enables untargeted metabolomics for marine ecosystems using a 284 low-cost, easy to use GC-MS platform. Moreover, SeaMet is independent of MS 285 instrumentation, allowing it to be combined with time-of-flight or Orbitrap MS detectors to 286 provide faster analysis time and higher mass resolving power to improve metabolite 287 identification. We expect our marine metabolomics workflow will enable the exploratory 288 analysis of metabolites occurring in seawater and thereby advance our understanding of the 289 ocean's vast and largely unexplored metabolome. 290

291

293 Materials and Methods

- 294 Data availability. All metabolite profile data will be made publicly available at Metabolights
- 295 (<u>https://www.ebi.ac.uk/metabolights/</u>) under identification numbers MTBLS826, MTBLS839,
- 296 MTBLS843, MTBLS844, MTBLS848, and MTBLS849 (currently IN REVIEW) or by contact
- 297 with the authors. Reviewer links:
- 298 https://www.ebi.ac.uk/metabolights/reviewer5eb6b480436b019d9f1351a828ee7c3d
- 299 https://www.ebi.ac.uk/metabolights/reviewerd923ea1c3a53d000b97ccf383991032d
- 300 <u>https://www.ebi.ac.uk/metabolights/reviewera9be9cf4-9a7d-4fff-98d5-c3d574c3b7f5</u>
- 301 <u>https://www.ebi.ac.uk/metabolights/reviewer08ce2d89-3945-45be-8a9b-4ea872fc86bf</u>
- 302 <u>https://www.ebi.ac.uk/metabolights/reviewer07a4ce73-1e8e-46aa-80c8-0c2f26411174</u>
- 303 <u>https://www.ebi.ac.uk/metabolights/reviewer2878413e6f8a6a883b27bdee8c1bbba6</u>
- 304

305 **Reagents and experimental sample preparation.** The derivatization chemicals, trimethylsilyl-306 N-methyl trifluoroacetamide (MSTFA) and N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) 307 were obtained from CS-Chromatographie Service and pyridine from Sigma-Aldrich at >99.98% 308 purity. Methoxyamine hydrochloride (MeOX; Sigma-Aldrich) aliquots were further dried at 309 60 °C in a drying oven for 1 h to remove residual moisture. Artificial seawater (ASW) was 310 prepared within the range of natural salinity (36‰) by dissolving (per L of water) 26.37 g sodium chloride, 6.8 g magnesium sulfate heptahydrate, 5.67 g magnesium chloride hexahydrate. 311 312 1.47 g calcium chloride, 0.6 g potassium chloride, and 0.09 g potassium bromide. Following autoclave sterilization, pH was adjusted to 7.7 using sodium hydroxide. 1 mL of the following 313 314 supplements and solutions were added: 150 mM monopotassium phosphate, 500 mM ammonium 315 chloride pH 7.5, trace element solution, selenite-tungstate solution, vitamin solution, thiamine

solution, B12 solution and 0.21 g sodium bicarbonate (45). Ultra-pure water (MQ) was prepared by purifying deionized water with an Astacus membraPure system (Astacus membraPure, 18.3 $m\Omega \times cm 25 \text{ °C}$).

319 Metabolite standards were obtained from commercial sources (Table S4) and combined 320 into mixtures in which each compound had a final concentration of 0.4 mM. Metabolite mixtures 321 were prepared to (a) test the effect of salt and water on metabolite detection, (b) develop SeaMet, 322 our marine metabolomics workflow. (c) compare metabolite detection before and after solid 323 phase extraction (SPE) based sample preparation, and (d) to quantify the detection limits of 324 specific compound classes (Table S6). Finally, multiple mixtures were prepared to document the 325 retention times of 107 standards dissolved in ASW using SeaMet (Table S4). Sample aliquots 326 for the above mentioned experiments were prepared by drying down 200 μ L of the mixture in a speed vacuum concentrator (Eppendorf Concentrator Plus^(R), 2.5 h, 45°C, V-AQ) for all 327 experiments except SPE comparison and quantification of detection limits. For the SPE 328 329 comparison experiment, 400 µL of the mix were dried down. For the quantification of metabolite 330 classes, a serial dilution of the mix was prepared to obtain concentrations between 0.5 nmol and 331 80 nmol of each compound. All dried mixture samples were stored at 4 °C.

332

333 SeaMet metabolite derivatization. To prepare marine samples for gas chromatography-mass 334 spectrometry (GC-MS) analysis, 0.5 to 1 mL of a saltwater sample or experimental mixture 335 dissolved in ASW was dried in a speed vacuum concentrator for 8 hours (Eppendorf 336 Concentrator Plus^(R), 45°C, V-AQ). To further remove residual water locked within the salt 337 pellet, 250 μ L of toluene (99.8%, < 0.2 % water) was added to each sample and the mixture was 338 ultrasonicated for 10 min at maximum intensity. The toluene was subsequently removed under a

339 gentle flow of N₂ gas. Metabolite derivatization was performed by adding 80 μ L of MeOX 340 dissolved in pyridine (20 mg \times mL⁻¹) to the dried pellet. The mixture was ultrasonicated (EMag 341 Emmi-12HC®) for 10 min at maximum intensity, briefly vortexed to dissolve the pellet into 342 solution, and subsequently incubated for 90 min at 37 °C using a thermal rotating incubator 343 under constant rotation at 1350 rpm. The pyridine was removed from the sample at room temperature under a gentle flow of N₂ gas (approximately 1 hour). Following the addition of 100 344 345 µL of BSTFA, the mixture was ultrasonicated for 10 min at maximum intensity, vortexed, and 346 incubated for 30 min at 37 °C using a thermal rotating incubator under constant rotation at 1350 347 rpm. The derivatized mixture was ultrasonicated for 10 min at maximum intensity. Remaining 348 salt in each sample was pelleted through centrifugation at 21.1 g for 2 min at 4 °C. 100 µL was 349 transferred to a GC-MS vial for analysis. The full proposed method is publicly available at 350 dx.doi.org/10.17504/protocols.io.nyxdfxn.

351

352 GC-MS data acquisition. All derivatized samples were analyzed on an Agilent 7890B GC 353 coupled to an Agilent 5977A single quadrupole mass selective detector. Using an Agilent 7693 354 autosampler, 1 µL was injected in splitless mode through a GC inlet liner (ultra inert, splitless, 355 single taper, glass wool, Agilent) onto a DB-5MS column ($30 \text{ m} \times 0.25 \text{ mm}$, film thickness 0.25 356 um; including 10 m DuraGuard column, Agilent). The inlet liner was changed every 50 samples 357 to avoid damage to the GC column and associated shifts in retention times. The injector 358 temperature was set at 290 °C. Chromatography was achieved with an initial column oven 359 temperature set at 60 °C followed by a ramp of 20 °C min⁻¹ until 325 °C, then held for 2 mins. 360 Helium carrier gas was used at a constant flow rate of 1 mL min⁻¹. Mass spectra were acquired in 361 electron ionization mode at 70 eV across the mass range of 50–600 m/z and a scan rate of 2

scans s⁻¹. The retention time for the method locked using standard mixture of fatty acid methyl
esters (Sigma Aldrich).

364

365 Data processing and analysis. Raw Agilent data files were converted to mzXML files using 366 Msconvert (46) and imported into XCMS (v. 2.99.6)(47) within the R software environment (v. 367 3.4.2) for data processing and analysis. Total ion chromatograms (TIC) were obtained using the 368 xcmsRaw function. TICs comparing sample preparation steps were expressed as a percentage of 369 the MQ control. For environmental and cell culture GC-MS profiles, peaks were picked using the 370 matchedFilter algorithm in XCMS with a full width at half maximum set to 8.4, signal to noise 371 threshold at 1, m/z width of 0.25 (step parameter), and m/z difference between overlapping peaks 372 at 1 (Supplemental Text 1). Resulting peaks were grouped, retention times corrected and 373 regrouped using the density (bandwidth parameter set to 2) and obiwarp methods. Following 374 peak filling, the CAMERA (v.1.32.0)(48) package was used to place m/z peaks into pseudo-375 spectra by grouping similar peaks with the groupFWHM function. Masses below 150 m/z were 376 removed from the resulting peak table and all profiles were normalized to the ribitol internal 377 standard. Peaks occurring in run blanks and those with higher relative standard deviation scores 378 (% RSD > 25) in quality control samples (cell culture experiment only) were removed from the 379 dataset. To determine differences in metabolite abundances between sediment habitats, 380 metabolite peak data were analyzed using a Bray-Curtis informed non-metric multidimensional 381 scaling analysis followed by an analysis of variance using distance matrices (ADONIS) to test if 382 there are significant differences in metabolite composition between sites. To identify individual 383 peaks that differed significantly between sediment habitats and between cell culture sampling 384 time points, resulting peaks tables were also log transformed and compared using a one-way

385 analysis of variance. All p-values were adjusted using the Benjamini-Hochberg (B.H.) method to 386 control for false positives (49). Significant variables exhibiting large fold-change differences 387 between starting and ending conditions were further investigated. CAMERA grouped peaks from 388 the environmental survey, and those important to shifts in the cell culture experiment were 389 identified using AMDIS (50). Peaks with NIST hits below 800 were compared to the online data 390 repositories, BinVestigate (44) and Golm (43) using the calcualted Kovats retention indices (51) 391 based on a reference n-alkane standard (C7-C40 Saturated Alkanes Standards, Sigme-Aldrich). If 392 no hit was provided, these were considered unknowns.

393

The effect of salt and water on metabolite detection. To test the effect of salt on metabolite 394 395 derivatization, metabolite mix aliquots were resuspended in 1 mL of ASW ranging in salinity 396 from 0 to 34‰ and dried as described above. Methoxamine-trimethylsilylation (TMS) two step 397 derivatization was performed by resuspending each sample in 80 μ L of MeOX in pyridine (20) mg mL⁻¹) and incubating for 90 min at 37 °C using a thermal rotating incubator under constant 398 399 rotation at 1350 rpm. MSTFA was subsequently added to the mixture, and the mixture incubated 400 under the same conditions for 90 min (29). Derivatized samples were centrifuged to pellet salt 401 and the supernatant was transferred to a GC-MS vial for analysis. To test the independent effect 402 of water on metabolite derivatization reactions, MQ was added to dried mixture aliquots in steps 403 of 1 μ L from 0 to 10 μ L. Replicate water gradient samples were subsequently derivatized as 404 before using MeOX and MSTFA or by replacing the MSTFA reagent with BSTFA.

405

406 Marine metabolomics method development. To show how each method development step
407 increased signal intensity and reduced variation in metabolite detection, replicate mixture

408 aliquots (n = 5) were resuspended in 0.5 mL of ASW. Mixture aliquots (n = 5) were also 409 resuspended in MQ as a no-salt control to highlight the effects of saltwater on metabolite derivatization. 40 µL ribitol (0.2 mM) and 100 µL cholestane (1 mM) were added to each aliquot 410 411 as internal standards. MQ and ASW samples were first derivatized following the (i) two-step 412 methoxamine-trimethylsilylation (TMS) previously described. Successive steps in the proposed 413 protocol were then applied to ASW samples to demonstrate the combined effects on metabolite 414 detection: (ii) exchange of MSTFA for BSTFA, (iii) removal of residual water from the salt 415 pellet by increasing the speed vacuum drying time and by introducing a toluene drying step to 416 help extract water from the salt pellet, (iv) ultrasonication of the samples after the steps involving 417 addition of toluene, MeOX, BSTFA and following the last derivatization step, and (v) drying the 418 MeOX in pyridine reagent between derivatization reactions. Resulting GC-MS profiles were 419 used to show increases in total signals detected with successive changes in the proposed 420 protocol. Additionally, a cloud plot (using processed peak integration data) was generated to 421 compare compounds dissolved in seawater and to show which metabolite ions exhibited 422 significant (B.H. adjusted p < 0.05) and large fold changes (log2(FC) > 2) between the standard 423 and the SeaMet method.

424

Solid phase extraction. Replicate metabolite mix aliquots (n = 6) were resuspended in 2 mL of artificial seawater. 0.5 mL was reserved from each sample to compare GC-MS profiles before and after SPE sample concentration. Inorganic salts were eluted and metabolites extracted from the remaining 1.5 mL mixture following a SPE based technique using Bond Elut styrenedivinylbenzene (PPL) columns (17). The internal standards ribitol and cholestane were added to both, the reserved sample (before SPE) and the resulting SPE-concentrated sample (after SPE). All samples were prepared for GC-MS analysis following the proposed marine metabolomics method. Resulting profiles were compared using a cloud plot to show which metabolite ions exhibited significant (B.H. adjusted p < 0.05) and large fold changes (log2(FC) > 2) between the pre- and post- SPE treatments.

436 **Environmental sampling.** Replicate porewater profiles were collected from coralline (n = 4)and mangrove (n = 6) sediments from Carrie Bow Cay (N 16° 04' 59", W 88° 04' 55") and Twin 437 Cayes, Belize (N 16° 50' 3", W 88° 6' 23") using a 1 m steel lance with a 2 µm inner diameter 438 439 covered by 0.063 mm steel mesh. Samples (2 mL water) were collected every 5 cm from the sediment surface to 15 cm depth. Samples were immediately frozen at -20 °C until further 440 441 analysis. Directly before preparation for GC-MS, the internal standards ribitol and cholestane 442 were added to 0.5 mL of each environmental sample. The mixture was subsequently prepared for 443 GC-MS analysis using the SeaMet method described above.

444

445 Cell culture sampling. Replicate cultures (n = 3) of Marinobacter adhaerens HP15 DsRed were cultivated in Marine Broth media at 18 °C and 240 rpm as previously described (34). Media 446 447 samples from the cell cultures and a no-bacteria control media were collected at 0, 4, 8, 12, and 448 22 h post culture inoculation. Cell counts were monitored at each time point by measuring the 449 optical density at 600 nm (OD₆₀₀). Sampling was carried out by collecting 2 mL of each culture 450 and pelleting the cells through centrifugation for 10 min, at 21.1 g and 4 °C. The supernatant was 451 immediately stored at -20 °C until preparation for GC-MS analysis. Prior to sample 452 derivatization using SeaMet, ribitol (0.2 mM; 40 µL) and cholestane (100 mM; 100 µL) were 453 added to 0.5 mL of each experimental sample and subsequently dried down in a speed vacuum

454	concentrator (8 hr, 45 °C, VA-Q). To control for technical variation, quality control (QC)						
455	samples ($n = 3$) were prepared by combining 0.25 µL of each culture supernatant and an						
456	extraction blank generated by drying down 0.5 mL of MQ.						
457							
458	Supporting information						
459	Supporting information includes supporting tables, figures, references and XCMS peak picking						
460	script.						
461							
462	Acknowledgements						
463	We thank T. Gulstad, K. Caspersen, F. Fojt, and M. Meyer (MPI-Bremen) for support with data						
464	acquisition and sample preparation, N. Böttcher (Jacobs University Bremen) for providing						
465 culture samples, D. Michellod for sediment pore water sample collection, and B. Gei							
466	Beckmann (MPI-Bremen) for valuable discussions. We acknowledge the Max-Planck Society						
467	and the Gordon and Betty Moore Foundation (Marine Microbial Initiative Investigator Award to						
468	ND, Grant #GBMF3811) for financial support. This work is contribution *XXX* from the						
469	Carrie Bow Cay Laboratory, Caribbean Coral Reef Ecosystem Program, National Museum of						
470	Natural History, Washington DC.						
471 472	References						
473 474	1. Moran MA, <i>et al.</i> (2016) Deciphering ocean carbon in a changing world. <i>Proc Natl Acad Sci U S A</i> 113(12):3143-3151.						
475 476 477 478 479 480 481 482	2. Lechtenfeld OJ, Hertkorn N, Shen Y, Witt M, & Benner R (2015) Marine sequestration of carbon in bacteria metabolites. <i>Nat Comm</i> 6:6711.						
	3. Sabine CL, <i>et al.</i> (2004) The oceanic sink for anthropogenic CO ₂ . <i>Science</i> 305:367-371.						
	4. Sunagawa S, <i>et al.</i> (2015) Structure and function of the global ocean microbiome. <i>Science</i> 384(6237).						

483		
484 485 486	5.	Kell DB, <i>et al.</i> (2005) Metabolic footprinting and systems biology: the medium is the message. <i>Nat Rev Microbiol</i> 3(7):557-565.
487 488 489	6.	Swenson TL, Jenkins S, Bowen BP, & Northen TR (2015) Untargeted soil metabolomics methods for analysis of extractable organic matter. <i>Soil Biol and Biochem</i> 80:189-198.
490 491 492	7.	Swenson TL, Karaoz U, Swenson JM, Bowen BP, & Northen TR (2018) Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. <i>Nat Commun</i> 9(1):19.
492 493 494 495	8.	Allen J, <i>et al.</i> (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. <i>Nat Biotech</i> 21(6):692-696.
496 497	9.	Paczia N, <i>et al.</i> (2012) Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. <i>Microbe Cell Fact</i> 11(22).
498 499 500	10.	Ternon E, <i>et al.</i> (2016) Spherulization as a process for the exudation of chemical cues by the encrusting sponge <i>C. crambe. Sci Rep</i> 6:29474.
501 502 503	11.	Kuhlisch C & Pohnert G (2015) Metabolomics in chemical ecology. <i>Nat Prod Rep</i> 32(7):937-955.
504 505 506	12.	May MA, Bishop KD, & Rawson PD (2017) NMR profiling of metabolites in larval and juvenile blue mussels (<i>Mytilus edulis</i>) under ambient and low salinity conditions. <i>Metabolites</i> 7(3).
507 508 509 510 511	13.	Sogin EM, Putnam HM, Nelson CE, Anderson P, & Gates RD (2017) Correspondence of coral holobiont metabolome with symbiotic bacteria, archaea and Symbiodinium communities. <i>Environ Microbiol Rep</i> 9(3):310-315.
512 513	14.	Goulitquer S, Potin P, & Tonon T (2012) Mass spectrometry-based metabolomics to elucidate functions in marine organisms and ecosystems. <i>Mar Drugs</i> 10(4):849-880.
514 515 516	15.	Selander E, <i>et al.</i> (2016) Solid phase extraction and metabolic profiling of exudates from living copepods. <i>PeerJ</i> 4.
517 518 519 520 521	16.	Wienhausen G, Noriega-Ortega BE, Niggemann J, Dittmar T, & Simon M (2017) The exometabolome of two model strains of the roseobacter group: a marketplace of microbial metabolites. <i>Front Microbiol</i> 8:1985.
522 523 524	17.	Dittmar T, Koch B, Hertkorn N, & Kattner G (2008) A simple and efficient method for the solid- phase extraction of dissolved organic matter (SPE-DOM) from seawater. <i>Limnol Oceanogr</i> 6:230-235.
525 526 527	18.	Amin SA, <i>et al.</i> (2015) Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. <i>Nature</i> 522(7554):98-101.
528 529 530 531	19.	Sanudo-Wilhelmy SA, <i>et al.</i> (2012) Multiple B-vitamin depletion in large areas of the coastal ocean. <i>Proc Natl Acad Sci U S A</i> 109(35):14041-14045.

532 533 534 535	20.	Koch BP, Ludwichowski K-U, Kattner G, Dittmar T, & Witt M (2008) Advanced characterization of marine dissolved organic matter by combining reversed-phase liquid chromatography and FT-ICR-MS. <i>Mar Chem</i> 111(3-4):233-241.
536 537 538 539	21.	Petras D, <i>et al.</i> (2017) High-Resolution Liquid Chromatography Tandem Mass Spectrometry enables large scale molecular characterization of dissolved organic matter. <i>Front Mar Sci</i> 4. DOI: <u>10.3389/fmars.2017.00405</u>
540 541 542	22.	Jiao N, <i>et al.</i> (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. <i>Nat Rev Microbiol</i> 8(8):593-599.
543 544 545	23.	A J, <i>et al.</i> (2005) Extraction and GC/MS analysis of the human blood plasma metabolome. <i>Anal Chem</i> 77(24):8086-8094.
546 547 548	24.	Fiehn O, <i>et al.</i> (2000) Metabolite profiling for plant functional genomics. <i>Nat Biotechnol</i> 18:1157-1161.
549 550 551	25.	Theriot CM, <i>et al.</i> (2014) Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to <i>Clostridium difficile</i> infection. <i>Nat Commun</i> 5:3114.
552 553 554 555	26.	Bruce TJ, <i>et al.</i> (2008) cis-Jasmone induces <i>Arabidopsis</i> genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. <i>Proc Natl Acad Sci USA</i> 105(12):4553-4558.
556 557 558	27.	Fischer E & Sauer U (2003) Metabolic flux profiling of <i>Escherichia coli</i> mutants in central carbon metabolism using GC-MS. <i>Euro J Biochem</i> 270(5):880-891.
559 560 561 562	28.	Villas-Boas SG, Noel S, Lane GA, Attwood G, & Cookson A (2006) Extracellular metabolomics: a metabolic footprinting approach to assess fiber degradation in complex media. <i>Anal Biochem</i> 349(2):297-305.
563 564 565	29.	Roessner U, Wagner C, Kopka J, Trethewey RN, & Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. <i>Plant J</i> 23(1):131-142.
566 567 568	30.	Chan EC, Pasikanti KK, & Nicholson JK (2011) Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. <i>Nat Protoc</i> 6(10):1483-1499.
569 570 571 572	31.	Kind T, <i>et al.</i> (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. <i>Anal Chem</i> 81:10038-10048.
573 574 575	32.	Liebeke M & Puskas E (2019) Drying enhances signal intensity for global GC-MS metabolomics. <i>Metabolites</i> 9(4).
576 577 578	33.	Johnson WM, Kido Soule MC, & Kujawinski EB (2017) Extraction efficiency and quantification of dissolved metabolites in targeted marine metabolomics. <i>Limnol Oceanogr</i> 15(4):417-428.
578 579 580 581 582	34.	Stahl A & Ullrich MS (2016) Proteomics analysis of the response of the marine bacterium <i>Marinobacter adhaerens</i> HP15 to the diatom <i>Thalassiosira weissflogii</i> . <i>Aquat Microb Ecol</i> 78(2):65-79.

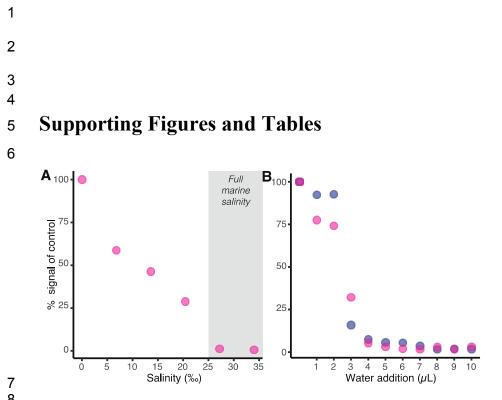
583 584 585	35.	Gardes A, <i>et al.</i> (2010) Complete genome sequence of <i>Marinobacter adhaerens</i> type strain (HP15), a diatom-interacting marine microorganism. <i>Stand Genomic Sci</i> 3(2):97-107.
586 587 588 589	36.	Behrends V, Ebbels TM, Williams HD, & Bundy JG (2009) Time-resolved metabolic footprinting for nonlinear modeling of bacterial substrate utilization. <i>Appl Environ Microbiol</i> 75(8):2453-2463.
590 591 592	37.	Ian H & Jed AF (2006) Spatial and vertical biogeography of coral reef sediment bacterial and diazotroph communities. <i>MEPS</i> 306:79-86.
593 594 595	38.	Andreote FD, <i>et al.</i> (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. <i>PLoS One</i> 7(6):e38600.
596 597 598 599	39.	Beale DJ, <i>et al.</i> (2018) Seasonal metabolic analysis of marine sediments collected from Moreton Bay in South East Queensland, Australia, using a multi-omics-based approach. <i>Sci Total Environ</i> 631-632:1328-1341.
600 601 602	40.	Kimes NE, <i>et al.</i> (2013) Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. <i>Front Microbiol</i> 4:50.
603 604 605 606	41.	Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, & D'Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. <i>Proc Natl Acad Sci U S A</i> 109(40):16213-16216.
607 608 609	42.	Luzzatto-Knaan T, <i>et al.</i> (2017) Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae. <i>Elife</i> 6. DOI: <u>10.7554/eLife.24214</u>
610 611 612	43.	Kopka J, et al. (2005) GMD@CSB.DB: the Golm metabolome database. <i>Bioinformatics</i> 21(8):1635-1638.
613 614 615	44.	Lai Z, <i>et al.</i> (2018) identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. <i>Nat Methods</i> 15(1):53-56.
616 617 618 619 620	45.	Widdel F & Bak F (1992) Gram-Negative Mesophilic Sulfate-Reducing Bacteria. <i>The</i> <i>Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification,</i> <i>Applications</i> , eds Balows A, Trüper HG, Dworkin M, Harder W, & Schleifer KH (Springer, New York, NY).
621 622 623	46.	Holman JD, Tabb DL, & Mallick P (2014) Employing ProteoWizard to Convert Raw Mass Spectrometry Data. <i>Curr Protoc Bioinformatics</i> 46:13 24 11-19.
624 625 626 627	47.	Smith CA, Want EJ, O'Maille G, Abagyan R, & Siuzdak G (2006) XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. <i>Anal Chem</i> 78 (3): 779-787.
628 629 630 631	48.	Kuhl C, Tautenhahn R, Bottcher C, Larson TR, & Neumann S (2012) CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. <i>Anal Chem</i> 84(1):283-289.
632 633	49.	Benjamini Y & Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. <i>J R Stat Soc Series B</i> 57(1):289-300.

634 635 636 637	50.	Stein SE (1999) An integrated method for spectrum extraction and cCompound identification from gas chromatography/mass spectrometry data. <i>JASMS</i> 10:770-781.
638 639 640 641 642	51.	Kovats E (1958) Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. <i>Helv. Chim. Acta.</i> 41(7):1915-1932.

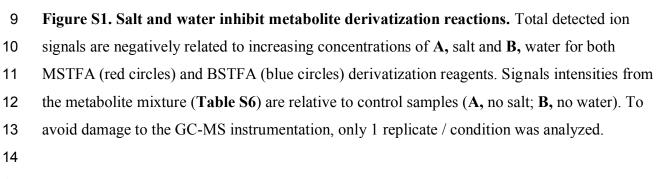
1 Supplementary Information for

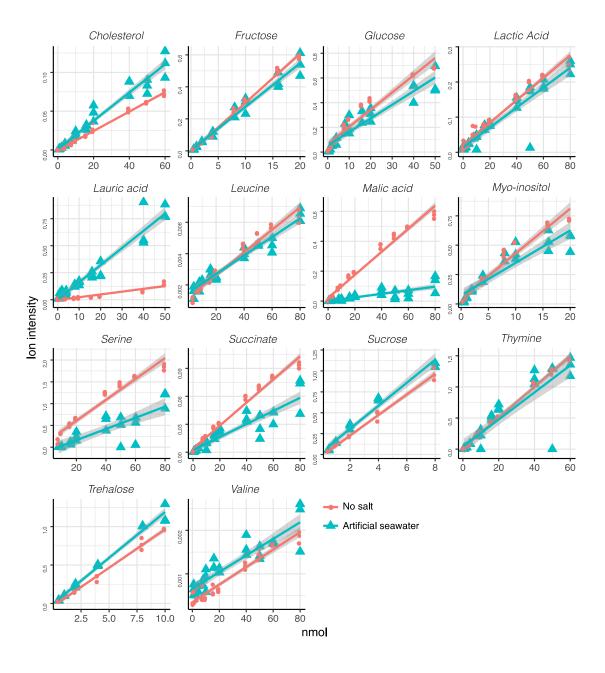
	2	Marine	metabolomics:	a method fo	r the non-targeted	measurement
--	---	--------	---------------	-------------	--------------------	-------------

3 of metabolites in seawater by gas-chromatography mass


4 spectrometry.

5


- 6 E. Maggie Sogin^{1*}, Erik Puskas¹, Nicole Dubilier¹, Manuel Liebeke^{1*}
- 7 *Corresponding authors
- 8 Maggie Sogin, email: <u>esogin@mpi-bremen.de</u>, tel: +49 421 2028-823
- 9 Manuel Liebeke email: <u>mliebeke@mpi-bremen.de</u>, tel: +49 421 2028-822


10 *This PDF file includes*

- 11 Figures S1-S3
- 12 Tables S1-S6
- 13 Supplementary Text 1
- 14 Supplementary references
- 15
- 16
- 17
- 18
- 19
- 13
- 20

3 Figure S2. Calibration curves for individual metabolites in salt free and artificial seawater

4 (ASW). Calculated calibration curves were compared for compounds that were detected in both
5 salt-free and ASW conditions (n=3 for each concentration). Gray shading represents 90%

6 confidence intervals and points are fitted using a linear regression. Model results are reported in7 Table S2.

- 8
- .
- 9
- 10

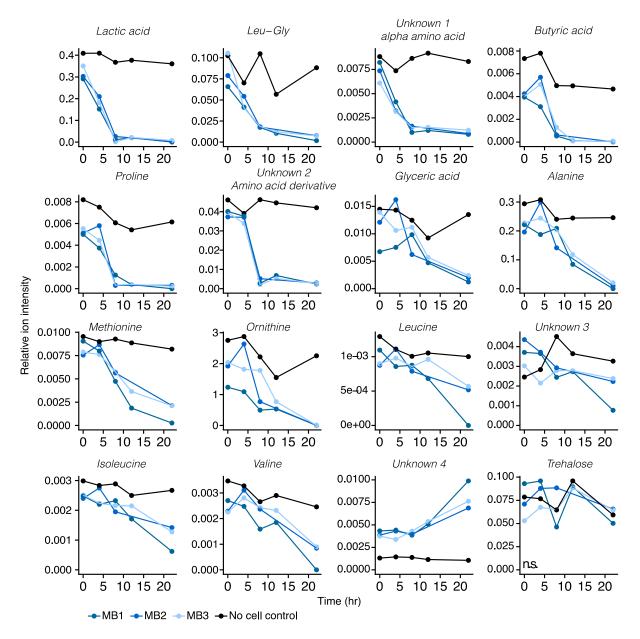


Figure S3. Extracellular metabolite levels shift with cell culture density. Metabolite relative
abundances for each cell culture and no-cell control are plotted through time. Only metabolites
that significantly (adjusted *p*-value < 0.05) varied with time in replicate culture experiments are
plotted for clarity.

- 1 **Table S1.** Mixture of 45 metabolites used for the development and testing of the sample
- 2 preparation method, with their retention times as detected in samples dissolved in artificial
- 3 seawater using GC-MS. Metabolites with multiple retention times represent different TMS
- 4 derivatives.

Compound	Retention time (s)	Compound 5		
		class 6		
Alanine	883	Amino acid 7		
Arginine	Not detected	Amino acid 8		
Aspartic acid	788	Amino acid		
Carnitine	Not detected	Amino acid 9		
Cellobiose	1536	Disaccharides 10		
Citric acid	Not detected	Organic acid 11		
Cysteine	Not detected	Amino acid 12		
Dimethylsulfoniopropionate	Not detected	Organic compound		
Fructose	1099/1106	Monosaccharides		
Fumerate	732	Organic acid		
Galactose	1109	Aldoses		
Glucose	1112	Monosaccharides		
Glutamate	Not detected	Amino acid		
Glutamic acid	931	Amino acid		
Glutamine	824	Amino acid		
Glycerophosphate	Not detected	Organic compound		
Glycine	700	Amino acid		
Histidine	Not detected	Amino acid		
Isoleucine	687	Amino acid		
Lactic acid	512	Organic acid		
Lauric acid	956	Fatty acid		
Leucine	582/669	Amino acid		
Lysine	1130	Amino acid		
Maleic acid	695	Dicarboxylic acid		
Malic acid	835	Dicarboxylic acid		
Maltose	1557/1565	Disaccharides		
Mannitol	1138	Sugar alcohol		
Mannose	1118	Monosaccharides		
Methionine	781/860	Amino acid		
Myo-inositol	1231	Sugar alcohol		
NAG	1223	Sugar		
Ornithine	931/1064	Amino acid		
Oxalic Acid	558	Dicarboxylic acid		
Phenylalanine	938	Amino acid		
Proline	692	Amino acid		
Pyruvate	Not detected	Organic acid		
Ribose	971	Aldoses		
Serine	659/738	Amino acid		
Succinic acid	704	Organic acid		
Sucrose	1508	Disaccharides		
Threonine	785	Amino acid		
Thymine	Not detected	Amino acid		
Trehalose	1557	Disaccharides		
Tryptophan	1289	Amino acid		
Urea	648	Organic compound		
Valine	534	Amino acid		
vanne	554	Amino acid		

- 1 Table S2. Quantification ions, calibration coefficients, and retention of metabolites from each
- 2 compound class in no salt and salt conditions. The minimum and maximum calibration points of
- 3 select compounds from representatives of each metabolite class in artificial seawater are
- 4 reported. The lowest concentration at which signals were observed is reported for select
- 5 compounds.

			N	o salt					Salt		
Compound	Category	quantification	Retention	r ²	%CV	Retention	r ²	%	Min	Max	Lowest
		ion (m/z)	time (s)		4	time (s)		CV	calibration	calibration	conc.**
					nmol			4	point	point	
								nmol	(nmol)*	(nmol)*	
Glycine 3TMS	Amino acid	204.1	689	0.955	17.12	689	< 0.7	4.68	0.5	80	
Histidine 2TMS	Amino acid	218.1	1126	0.973	20.73	Not detected					
Leucine 2 TMS	Amino acid	177.06	659	0.961	17.24	660	0.939	25.93	4	80	
Lysine 3TMS	Amino acid	156.1	989	0.973	31.31	Not detected					
Lysine 4TMS	Amino acid	174.1	Not detected			1127	< 0.7	15.28	0.5	80	
Ornithine 3TMS	Amino acid	174.1	928	0.992	18.19	Not detected					
Ornithine 4TMS	Amino acid	174.1	Not detected			1061	< 0.7	17.38	0.5	80	
Serine 3TMS	Amino acid	204.16	732	0.957	NA	733	< 0.7		8	80	
Thymine 2TMS	Amino acid	255.1	765	0.996	22.65	766	0.775	7.11	0.5	60	0.25
Valine 2TMS	Amino acid	188.09	612	0.94	32.15	614	0.828	10.94	1	80	0.25
Citrate/citric acid 3TMS	Organic acid	244.14	1061	0.954	16.68	Not detected					
Glutamic acid 3TMS	Organic acid	339.13	933	< 0.7	46.64	Not detected					
Glutamic acid 3TMS	Organic acid	246.1	Not detected			929	< 0.7	18.1	1	80	
Glutamic acid dervative - <i>Hydroxproline</i>	Organic acid	216.09	860	0.995	18.33	Not detected					
Glutamic acid dervative - <i>Hydroxproline</i>	Organic acid	221.09	860	< 0.7	14.13	859	< 0.7	4.68	0.5	80	
Lactic Acid 2TMS	Organic acid	191.1	478	0.971	20.21	480	0.877	7.28	0.5	80	0.0312
Lauric acid TMS	Organic acid	257.2	955	0.903	34.18	955	0.938	37.16	0.5	50	0.0312
Malic acid 3TMS	Organic acid	233.1	832	0.98	14.04	832	< 0.7	11.45	0.5	80	
Succinate 2TMS	Organic acid	172.1	696	0.982	15.94	696	0.835	5.71	0.5	80	0.25
Cholesterol TMS	Sterol	247.25	1716	0.99	34.42	1717	0.954	26.18	0.5	60	0.5
Fructose 5TMS	Sugar	307.2	1093	0.994	12.6	1093	0.971	16.89	0.5	20	0.0312
Glucose 5TMS	Sugar	205.1	1121	0.982	24.61	1120	0.804	15.18	0.5	80	0.125
Sucrose 8TMS	Sugar	361.27	1495	0.989	13.5	1495	0.975	2.44	0.5	8	0.0312

Trehalose	Sugar	361.27	1543	0.991	12.91	1543	0.985	2.07	0.5	10	0.0312	
8TMS												
Myo-inositol 6TMS	Sugar alcohol	305	1223	0.947	14.19	1224	0.853	14.34	0.5	20	0.0312	-
1	CV = % coefficient of variation											
2	*nmol in 0.5 mL of artificial seawater											
3	** For selected compounds in artificial seawater											
4												
5												
6												
7												
8												
9												
10												
11												
12 12												
13 14												
14												
15 16												
10												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
32												
33 34												
34 35												
36												
37												
38												
39												
40												
41												

Table S3. Targeted techniques for the quantification of specific metabolite classes in seawater

Compound class	Sample pre- treatment	Detection method	Limit of detection	Amount of sample required	Ref
Amino acids	o- phthaldialdehyde/2- mercaptoethanol derivatization	High performance liquid chromatography	fM	25 μL	1
Sugars: Monosaccharides and disaccharides	Acid hydrolysis, desalting	High performance anion exchange chromatography- pulsed amperometric detector	nM	~12 mL	2
Sterols	Derivatization Solid phase extraction	GC-MS LC/ESI-MS/MS	nM pM	1 L 5 L	3 4
Fatty acids	Solvent extraction	GC-MS	μΜ	90 L	5,6
Organic acids	Derivatization with 2-nitrophenyl hydrazine and carbodiimine hydrocholoride	High pressure liquid chromatography with ion pairing	nM	2 mL	7

- 1 Table S4. Retention times, quantification and qualification ions of the 107 metabolite standards
- 2 detected in artificial seawater using SeaMet. Kyoto Encyclopedia of Genes and Genomes
- 3 (KEGG ID) ids and associated BRITE functional hierarchy or metabolite class of each
- 4 compound are indicated.

Metabolite	Manufacture	KEGG	BRITE	Retention	Quantification	Qualifying
standard	company	ID	hierarchy/	time (s)	ion	ions
	1 0		General category			
β-D-allose	Biolog	NA	Aldohexose sugar	1111	205	189; 147
3-methyl glucose	Biolog	NA	Sugar	1086	204	217; 147
D-galactonic acid-y- lactone	Biolog	NA	Sugar	1066	261	217; 160
Lactulose	Biolog	C07064	Sugar	1553	307	361; 217
N-acetyl-β-D-	Biolog	NA	Sugar	1221	205	319; 274
gannosamine	Biolog	1471	Sugar	1221	205	519,274
α-methyl-D-galactoside	Biolog	NA	Sugar	1095	307	217; 103
β-methyl-D-glucoside	Biolog	NA	Sugar	1113	331	215; 129
β-methyl-D-glucuronic acid	Biolog	NA	Sugar	1173	292	305; 319
β-methyl-D-xyloside	Biolog	NA	Sugar	997	205	319; 147
D-arabinose	Biolog	C00216	Carbohydrates; Monosaccharides; Aldoses	962	307	217; 189
D-mannose	Biolog	C00159	Carbohydrates; Monosaccharides; Aldoses	1126	203	217; 301
D-ribose	Biolog	C00121	Carbohydrates; Monosaccharides; Aldoses	973	204	217; 147
D-xylose	Biolog	C00181	Carbohydrates; Monosaccharides; Aldoses	959	217	307; 103
Galactose	Sigma-Aldrich	C00124	Carbohydrates; Monosaccharides; Aldoses	1124	319	147; 205; 217
Glucose	AppliChem	C00031	Carbohydrates; Monosaccharides; Aldoses	1120	321	147; 160; 205
L-arabinose	Biolog	C00259	Carbohydrates; Monosaccharides; Aldoses	969	217	307; 277
L-lyxose	Biolog	C01508	Carbohydrates; Monosaccharides; Aldoses	956	217	307; 189
D-glucosamine	Biolog	C00329	Carbohydrates; Monosaccharides; Amino sugars	1141	217	307; 319
N-acetyl-D-galactosamine	Biolog	C01132	Carbohydrates; Monosaccharides; Amino sugars	1505	230	245; 217
N-acetyl-D-glucosamine	Biolog	C00140	Carbohydrates; Monosaccharides; Amino sugars	1234	319	205; 333
N-acetyl-D- glucosaminitol	Biolog	C00140	Carbohydrates; Monosaccharides; Amino sugars	1220	319	205; 202

Metabolite	Manufacture	KEGG	BRITE	Retention	Quantification	Qualifying
standard	company	ID	hierarchy/	time (s)	ion	ions
			General category			
2-deoxy-D-ribose	Biolog	C01801	Carbohydrates;	898	174	250; 100
			Monosaccharides;			
			Deoxy sugars			
D-mannosamine	Biolog	C03570	Carbohydrates;	999	217	319; 205
			Monosaccharides;			
			Deoxy sugars			
L-fucose	Biolog	C01019	Carbohydrates;	1015	174	214; 200
			Monosaccharides;			
Lubampaga	Dialag	C00507	Deoxy sugars	1032	189	217; 147
L-rhamnose	Biolog	C00507	Carbohydrates; Monosaccharides;	1032	189	217; 147
			Deoxy sugars			
D-psicose	Biolog	C06568	Carbohydrates;	1097	307	217; 277
D psicose	Diolog	000000	Monosaccharides;	1097	507	217,277
			Ketoses			
D-tagatose	Biolog	C00795	Carbohydrates;	1110	319	217; 205
C	C		Monosaccharides;			
			Ketoses			
Fructose	Sigma-Aldrich	C00095	Carbohydrates;	1098	307	147; 217; 277
			Monosaccharides;			
			Ketoses			
L-sorbose	Biolog	C00247	Carbohydrates;	1113	204	217; 147
			Monosaccharides;			
~			Ketoses			
Dulcitol	Biolog	C01697	Sugar alcohol	1145	217	252; 233
I-Erythritol	Biolog	C00503	Sugar alcohol	869	304	174; 147
D-arabitol L-arabitol	Biolog	C01904 C00532	Sugar alcohol Sugar alcohol	1001 1002	205 319	307; 319 307; 205
Lactitol	Biolog	NA	Sugar alochol	1584	361	204. 217
Maltitol	Biolog Biolog	NA	Sugar alochol	1596	361	204. 217 217; 204
Mannitol	Fluka	C00392	Carbohydrates;	1135	319	147; 205; 217
Widmintor	1 luka	000372	Monosaccharides;	1155	517	147, 205, 217
			Sugar alcohols			
Myo-inositol	Fluka	C00137	Carbohydrates;	1224	305	147; 217; 305
<u>,</u>			Monosaccharides;			., .,
			Sugar alcohols			
Sorbitol	Merck	C00794	Carbohydrates;	1134	319	205; 217; 307
			Monosaccharides;			
			Sugar alcohols			
D-melibiose	Biolog	C05402	Carbohydrates;	1764	363	469; 334
			Oligosaccharides;			
~			Disaccharides	1.000		
Gentiobiose	Biolog	C08240	Carbohydrates;	1593	361	345; 217
			Oligosaccharides;			
Maltose	Sigma-Aldrich	C00208	Disaccharides Carbohydrates;	1550	361	204; 217; 319
iviait05C	Sigina-Aluncii	00208	Oligosaccharides;	1550	501	204, 217, 319
			Disaccharides			
Palatinose	Biolog	C01742	Carbohydrates;	1603	361	204; 217
- and those	Biolog	001/72	Oligosaccharides;	1005	501	201, 217
			Disaccharides			
Sucrose	Fluka	C00089	Carbohydrates;	1495	361	73; 147; 217
			Oligosaccharides;			, ., .
	1	1	Disaccharides	1	1	1

Metabolite	Manufacture	KEGG	BRITE	Retention	Quantification	Qualifying
standard	company	ID	hierarchy/	time (s)	ion	ions
	1 0		General category			
Trehalose	Fluka	C01083	Carbohydrates; Oligosaccharides;	1543	377	147; 191; 217
			Disaccharides			
Turanose	Biolog	C19636	Carbohydrates; Oligosaccharides;	1561	361	345; 319
			Disaccharides			
α-D-Lactose	Biolog	C00243	Carbohydrates; Oligosaccharides;	1530	361	217; 204
			Disaccharides			
Lauric acid	Fluka	C002679	Lipids; Fatty acids; Saturated fatty acids	955	215	117; 201; 257
Capric acid	Biolog	C01571	Lipids; Fatty acids; Saturated fatty acids	823	247	359; 147
Sebacic acid	Biolog	C08277	Lipids; Fatty acyls; Fatty acids and conjugates; Dicarboxylic acids	1116	319	205; 217
Beta-sitosterol	Biolog	C01753	Lipids; Sterol lipids; Sterols	1176	333	292; 319
Cholesterol	Sigma-Aldrich	C00187	Lipids; Sterol lipids; Sterols	1717	247	129; 329; 443
Ergosterol	Biolog	C01694	Lipids; Sterol lipids; Sterols	1784	485	394; 255
Stigmasterol	Biolog	C05442	Lipids; Sterol lipids; Sterols	1814	357	396; 487
Thymine	Fluka	C00178	Nucleic acids; Bases; Pyrimidine	766	255	113; 147; 270
Uracil	Biolog	C00106	Nucleic acids; Bases; Pyrimidine	724	259	215; 147
Adenosine	Biolog	C00212	Nucleic acids; Nucleosides; Ribonucleosides	1527	361	204; 217
2-hydroxybenzoic acid	Biolog	C00805	Organic acid	737	146	103; 73
4-hydroxybenzoic acid	Biolog	C00156	Organic acid	941	292	219; 189
Citraconic acid	Biolog	C02226	Organic acid	733	195	177; 120
Citramalic acid	Biolog	C00851	Organic acid	827	158	260; 68
D-tartaric acid	Biolog	C02107	Organic acid	948	252	281; 296
D,L-α-amino-N-butyric acid	Biolog	NA	Organic acid	516	177	205; 161
Glycolic acid	Biolog	C00160	Organic acid	528	174	202; 116
m-hydroxyphenylacetic acid	Biolog	NA	Organic acid	939	174	318; 200
Mucic acid	Biolog	C00879	Organic acid	1217	378	319; 246
p-hydroxyphenylacetic Acid	Biolog	NA	Organic acid	949	217	147; 307
Sorbic acid	Biolog	NA	Organic acid	665	174	147; 100
α-hydroxybutyric acid	Biolog	NA	Organic acid	578	191	233; 147
α-hydroxyglutaric acid(-γ- lactone)	Biolog	NA	Organic acid	927	296	281; 164
δ-amino-N-valeric acid	Biolog	C00803	Organic acid; Carboxylic acid; Monocarboxylic acids/ ALT: Lipids; Fatty acyls; Fatty acid sand	941	267	223; 193

Metabolite	Manufacture	KEGG	BRITE	Retention	Quantification	Qualifying
standard	company	ID	hierarchy/	time (s)	ion	ions
	1 2		General category	()		
			conjugates; Straight			
			chain fatty acids			
Acetic acid		C00033	Organic acids;	509	147	73; 137
			Carboxylic acids;			,
			Monocarboxylic acids			
Propionic acid		C00163	Organic acids;	497	147	117; 191
			Carboxylic acids;			
			Monocarboxylic acids			
Fumarate	Fluka	C00122	Dicarboxylic acid	727	245	143; 147; 217
Itaconic acid	Biolog	C00490	Dicarboxylic acid	729	147	259; 73
Maleic acid	Fluka	C01384	Dicarboxylic acid	692	245	73; 147; 215
Succinate	Merck	C00042	Organic acids;	696	262	129; 147; 247
			Carboxylic acids;			
			Dicarboxylic acids			
Lactic acid	Fluka	C00186	Organic acids;	480	193	117; 147; 191
			Carboxylic acids;			
			Hydroxycarboxylic			
			acids			
Malic acid	Sigma-Aldrich	C00149	Organic acids;	832	233	147; 245; 307
			Carboxylic acids;			
			Hydroxycarboxylic			
0.1.1.1.1.1.1.1.1		001000	acids	500	0.6	100 55
β-hydroxybutyric acid	Biolog	C01089	Organic acids;	580	86	188; 75
			Carboxylic acids;			
			Hydroxycarboxylic			
N1 4 1	D' 1	C1070(acids	555	205	100 222
N-butylamine	Biolog	C18706	Organic compound	555 644	205 189	190; 233
Urea	Fluka	C00086	Organic compound			73; 147; 171
D,L-octopamine	Biolog	C04227	Organic compound	1200	333	292; 305
Ethanolamine	Biolog	C00189	Peptides; Amines;	690	219	130; 117
Phenylethyl-amine	Dialag	C05332	Biogenic amines	899	247	202: 147
Phenyletnyl-amine	Biolog	005552	Peptides; Amines; Biogenic amines	899	247	203; 147
Putrescine	Biolog	C00134	Peptides; Amines;	1017	117	133; 160
ruiescille	Biolog	00134	Biogenic amines	1017	11/	155, 100
Alanine	Fluka	C00041	Peptides; Amino acids;	531	218	116; 233; 258
Alalille	Гика	00041	Common amino acids	551	210	110, 255, 258
Aspartic acid	Fluka	C00049	Peptides; Amino acids;	858	232	147; 218; 292
Aspartic aciu	Гика	00049	Common amino acids	0.50	232	147, 210, 292
Cysteine	Fluka	C00097	Peptides; Amino acids;	885	220	147; 204; 246
Cysteme	Гика	000097	Common amino acids	885	220	147, 204, 240
Glutamic acid	Merck	C00025	Peptides; Amino acids;	929	177	73; 147; 246
Glutanile dela	WICICK	000025	Common amino acids	525	1//	75, 147, 240
Glycine	Fluka	C00037	Peptides; Amino acids;	689	204	147; 174; 248
oryenie	1 Iuna	000037	Common amino acids	007	204	147, 174, 240
Isoleucine	Fluka	C00407	Peptides; Amino acids;	684	232	147; 158; 218
issicusiiie	1 Junu	000-107	Common amino acids	50-	252	177, 150, 210
L-phenylalanine	Biolog	C00079	Peptides; Amino acids;	897	221	321; 147
- r	5.0.08	200017	Common amino acids			,
Leucine	Biolog	C00123	Peptides; Amino acids;	598	169	125; 95
Leavine	Diolog	000125	Common amino acids	660	177	86; 146; 188
Lysine	Fluka	C00047	Peptides; Amino acids;	1127	174	218; 230; 317
		200017	Common amino acids	1	- / .	210, 200, 017
Methionine	Sigma-Aldrich	C00073	Peptides; Amino acids;	779	221	104; 178; 206
	CILLIM I HUITUN	000015	· epineos, r minio acido,			101, 170, 200

Metabolite	Manufacture	KEGG	BRITE	Retention	Quantification	Qualifying
standard	company	ID	hierarchy/	time (s)	ion	ions
			General category			
Proline		C00148	Peptides; Amino acids; Common amino acids	689	216	142; 189; 244
Serine	Fluka	C00065	Peptides; Amino acids; Common amino acids	733	204	73; 116; 132
Threonine	Biolog	C00188	Peptides; Amino acids; Common amino acids	720 756	255 291	147; 219; 320
Valine	Sigma-Aldrich	C00183	Peptides; Amino acids; Common amino acids	614	188	130; 146; 174
Hydroxy-L-proline	Biolog	C01157	Peptides; Amino acids; Other amino acids	849	307	205; 217
L-homoserine	Biolog	C00263	Peptides; Amino acids; Other amino acids	816	229	117; 129
Ornithine	Merck	C00077	Peptides; Amino acids; Other amino acids	1061	162	73; 142; 174
γ-aminobutyric acid	Biolog	C00334	Peptides; Amino acids; Other amino acids	897	120	146; 91
Gly-Glu	Biolog	NA	Dipeptide	1193	267	174; 426

- 1 Table S5. Major metabolite peaks found in marine sediment porewaters and their retention
- 2 times. Compounds that did not match NIST database enteries are labeled as "unknown" followed
- 3 by their retention time. Mass spectra from these compounds were also compared to both the
- 4 Golm and BinBase databases using the Kovats retention time index adjustment. Golm predicted
- 5 functional groups and BinBase splash id's are reported when unknowns matched database hits.

		Detention		Unknown Compounds			
Habitat	Annotation	Retention	Class	Kovats	Golm predicted	BinBase related	
		time (s)		retention index	functional groups	splash ID	
	Lactic acid	499	Organic acid			- F	
	Acetate	512	Organic acid				
	Alanine	533	Amino acid				
-	Glycerol	666	Sugar alcohol				
-	Glycine	695	Amino acid				
	Succinate	699	Organic acid				
	Propanoic acid	713	Organic acid				
	Unknown 893	895		1563	No hits	No hits	
Coralline	Unknown 1031	1031		1759	Primary alcohol Secondary alcohol Alcohol 1,2, diol Hydroxy	splash10-0fvj- 0920000000- 2b50a374508a5be92557	
	Azelaic acid	1048	Fatty Acid				
	Unknown compound 1073	1073		1823	Hydroxy Alcohol Carboxylic acid	No hits	
-	Pinitol	1089	Sugar alcohol				
-	Fructose	1101	Sugar				
	Galactose	1108	Sugar				
	Galactose	1112	Sugar				
	Mannitol	1138	Sugar alcohol				
-	Sucrose	1503	Sugar				
-	Trehalose	1553	Sugar				
	Lactic acid	499	Organic acid				
-	Acetate	512	Organic acid				
-	Glycerol	666	Sugar alcohol				
	Succinate	699	Organic acid				
	Pentanoic acid	914	Organic acid				
	Lauric acid	937	Straight chain fatty acid				
	Lauric acid	956	Straight chain fatty acid				
Mangrove	Unknown 1031	1031		1759	Primary alcohol Secondary alcohol Alcohol 1,2, diol Hydroxy	splash10-0fvj- 0920000000- 2b50a374508a5be92557	
	Azelaic acid	1048	Fatty Acid			l l	
	Aromatic dione	1126				l l	
	Mannitol	1138	Sugar alcohol			l l	
	Palmitic acid	1177	Straight chain fatty acid				
	Isooctyl laurate	1235	Straight chain fatty acid				
	Lauric acid	1289	Straight chain fatty acid				
	Myristic acid	1371	Straight chain fatty acid				
	Myristic acid	1388	Straight chain fatty acid				

		Retention		Unknown Compounds				
Habitat	Annotation	time (s)		Kovats retention index	Golm predicted functional groups	BinBase related splash ID		
	Pentadecanoic acid	1434	Straight chain fatty acid					
	Hexadecanoic acid	1464	Straight chain fatty acid					
	Hexadecanoic acid	1481	Straight chain fatty acid					
	Sucrose	1503	Sugar					
	Heptadecanoic acid	1509	Straight chain fatty acid					
	Heptadecanoic acid	1524	Straight chain fatty acid					
	2-Monostearin	1552	Straight chain fatty acid					
	Octadecanoic acid	1569	Straight chain fatty acid					
	Unknown peak 1595	1595		2832	Alcohol	No hits		
	Nonadecanoic acid	1607	Straight chain fatty acid					
	Unknown 1634	1635		2930	Alcohol Hydroxy Primary alcohol	No hits		
	Eicosanoic acid	1647	Straight chain fatty acid					
	Unkonwn 1669	1672		3023	Alcohol Hydroxy Primary alcohol	No hits		
	Unknown Compound 1720	1721		3151	Hydroxy Alcohol Carboxylic acid Primary alcohol	splash10-0500- 1910000000- 49e59c211689b393e2ad		
	Unknown compound 1732	1734		3185	Alcohol Hydroxy Primary alcohol	No hits		
	Unknown compound 1746	1746		3215	Alcohol Hydroxy Primary alcohol	No hits		
	Unknown 2005	2005		3691	Alcohol Hydroxy Alkene	No hits		
	Unknown 2030	2035		NA	Hydroxy	No hits		

- 1 Table S6. Metabolite mixtures used across experiments. All mixtures contain a diverse range of
- 2 compounds representing multiple metabolite classes. A reduced set of compounds were
- 3 combined to both show the effects of salt and water on metabolite detection and create
- 4 calibration curves for specific compounds.

Compound	Class	Experiment Mixture
Pyruvate	Alpha keto-acid	Method development and SPE
Alanine	Amino acid	Method development and SPE
Arginine	Amino acid	Method development and SPE
Aspartic acid	Amino acid	Method development and SPE
Carnitine	Amino acid	Method development and SPE
Cysteine	Amino acid	Method development and SPE
Glutamate	Amino acid	Method development and SPE
Glutamic acid	Amino acid	Method development and SPE
Glutamine	Amino acid	Method development and SPE
Glycine	Amino acid	Method development and SPE
Histidine	Amino acid	Method development and SPE
Isoleucine	Amino acid	Method development and SPE
Lactic acid	Amino acid	Method development and SPE
Leucine	Amino acid	Method development and SPE
Lysine	Amino acid	Method development and SPE
Methionine	Amino acid	Method development and SPE
Ornithine	Amino acid	Method development and SPE
Phenylalanine	Amino acid	Method development and SPE
Proline	Amino acid	Method development and SPE
Serine	Amino acid	Method development and SPE
Threonine	Amino acid	Method development and SPE
Thymine	Amino acid	Method development and SPE
Tryptophan	Amino acid	Method development and SPE
Valine	Amino acid	Method development and SPE
Citric acid	Organic acid	Method development and SPE
Fumerate	Organic acid	Method development and SPE
Lauric acid	Organic acid	Method development and SPE
Maleic acid	Organic acid	Method development and SPE
Malic acid	Organic acid	Method development and SPE
Succinic acid	Organic acid	Method development and SPE
DMSP	Organic compound	Method development and SPE
Oxalic Acid	Organic compound	Method development and SPE
Urea	Organic compound	Method development and SPE
Cellobiose	Sugar	Method development and SPE
Fructose	Sugar	Method development and SPE
Galactose	Sugar	Method development and SPE
Glucose	Sugar	Method development and SPE
Maltose	Sugar	Method development and SPE
Mannose	Sugar	Method development and SPE
NAG	Sugar	Method development and SPE
Ribose	Sugar	Method development and SPE

Sucrose	Sugar	Mathod dayalonmont and SDE
Trehalose	Sugar	Method development and SPE
	Sugar	Method development and SPE
Mannitol	Sugar alcohol	Method development and SPE
Myo-inositol	Sugar alcohol	Method development and SPE
Glycerophosphate	Sugar phosphate	Method development and SPE
Alanine	Amino acid	Quantifying salt-water effect
Glutamine	Amino acid	Quantifying salt-water effect
Glycine	Amino acid	Quantifying salt-water effect
Lactate	Amino acid	Quantifying salt-water effect
Leucine	Amino acid	Quantifying salt-water effect
Lysine	Amino acid	Quantifying salt-water effect
Ornithine	Amino acid	Quantifying salt-water effect
Serine	Amino acid	Quantifying salt-water effect
Succinate	Amino acid	Quantifying salt-water effect
Thymine	Amino acid	Quantifying salt-water effect
Valine	Amino acid	Quantifying salt-water effect
Citric acid	Organic acid	Quantifying salt-water effect
Glutamic acid	Organic acid	Quantifying salt-water effect
Malic acid	Organic acid	Quantifying salt-water effect
Oxalic acid	Organic acid	Quantifying salt-water effect
Fructose	Sugar	Quantifying salt-water effect
Glucose	Sugar	Quantifying salt-water effect
NAG	Sugar	Quantifying salt-water effect
Sucrose	Sugar	Quantifying salt-water effect
Trehalose	Sugar	Quantifying salt-water effect
Myo-inositol	Sugar alcohol	Quantifying salt-water effect
Glycine	Amino acid	Quantify detection limits
Histidine	Amino acid	Quantify detection limits
Leucine	Amino acid	Quantify detection limits
Lysine	Amino acid	Quantify detection limits
Ornithine	Amino acid	Quantify detection limits
Serine	Amino acid	Quantify detection limits
Thymine	Amino acid	Quantify detection limits
Valine	Amino acid	Quantify detection limits
Citate/citric acid	Organic acid	Quantify detection limits
Glutamic acid	Organic acid	Quantify detection limits
Lactic Acid	Organic acid	Quantify detection limits
Lauric acid	Organic acid	Quantify detection limits
Malic acid	Organic acid	Quantify detection limits
Succinate	Amino acid	Quantify detection limits
Cholesterol	Sterol	Quantify detection limits
Fructose		
	Sugar	Quantify detection limits
Glucose	Sugar	Quantify detection limits
Sucrose	Sugar	Quantify detection limits
Trehalose	Sugar	Quantify detection limits
Myo-inositol	Sugar alcohol	Quantify detection limits

Supplementary Text 1. R script for peak picking for GC-MS data # Peak Picking.R # EM Sogin # Description: R script to pick peaks from GC-MS data library(xcms) library(CAMERA) ## PEAK PICKING, RETENTION TIME GROUPING & CORRECTION WITH XCMS setwd('home/path/to/files') files<-list.files(pattern='.mzXML', recursive = T, full.names=T) xs <- xcmsSet(files, method = "matchedFilter", fwhm = 8.4, snthresh = 1, step= 0.25, steps= 2, sigma = 3.56718192627824, max= 500, mzdiff= 1,index= FALSE) $xset1 \le group(xs,method = "density", bw=2, mzwid=1, minfrac = 0.3, minsamp = 1, max = 500) \#$ Initial peak grouping xset2 <- retcor(xset1)</pre> $xset2 \le group(xset2, method = "density", bw=2, mzwid=1, minfrac = 0.3, minsamp = 1, max = 500)$ xset<-fillPeaks(xset2)</pre> ## Group peaks in to pseudo-spectra using CAMERA an<-xsAnnotate(xset) xsF<-groupFWHM(an, perfwhm=3) peaks<-getPeaklist(xsF)</pre> peaks[is.na(peaks)]<-0 save.image('Peak Picking Results.RData') # End

30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			

1 Supplementary references

- Lindroth P & Mopper K (1979) High performance liquid chromatographic determination of
 subpicomole amounts of amino acids by precolumn fluorescence derivatization with oPhthaldialdehyde. *Anal Chem* 51(11):1667-1674.
- Engel A & Händel N (2011) A novel protocol for determining the concentration and composition
 of sugars in particulate and in high molecular weight dissolved organic matter (HMW-DOM) in
 seawater. *Mar Chem*127(1-4):180-191.
- 9 3. Rocha MJ, Cruzeiro C, & Rocha E (2013) Development and validation of a GC-MS method for
 10 the evaluation of 17 endocrine disruptor compounds, including phytoestrogens and sitosterol, in
 11 coastal waters their spatial and seasonal levels in Porto costal region (Portugal). *J Water Health*11(2):281-296.
- 4. Ronan JM & McHugh B (2013) A sensitive liquid chromatography/tandem mass spectrometry method for the determination of natural and synthetic steroid estrogens in seawater and marine biota, with a focus on proposed Water Framework Directive Environmental Quality Standards. *Rapid Commun Mass Spectrom* 27(7):738-746.
- 17 5. Kennicutt MC & Jeffrey LM (1981) Chemical and GC-MS characterization of marine dissolved lipids. *Mar Chem* 10:367-387.
- Mannino A & Harvey HR (1999) Lipid composition in particulate and dissolved organic matter in the Delaware Estuary: Sources and diagenetic patterns. *Geochimica et Cosmochimica Acta* 63(15):2219-2235.
- Albert DB & Martens CS (1997) Determination of low-molecular-weight organic acid
 concentrations in seawater and pore-water samples via HPLC *Mar Chem* 56:27-37.

24 25 26