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Abstract

Although habitat loss has large, consistently negative effects on biodiversity, its genetic 

consequences are not yet fully understood. In this paper, we assess the genetic consequences 

of extreme habitat loss driven by mining in two endemic plants from Amazonian Savannas. 

Our analyses are the first to overcome major methodological limitations like the confounding 

effect of habitat fragmentation, historical processes underpinning genetic differentiation, 

time-lags between the onset of disturbances and genetic outcomes, and the need for large 

numbers of samples, genetic markers and replicated landscapes to ensure sufficient statistical 

power. We found that both species are remarkably resilient, as genetic diversity and gene 

flow patterns were unaffected by habitat loss. Our study unambiguously demonstrates that it 

is not possible to generalize about the genetic consequences of habitat loss, and imply that 

future conservation efforts need to consider species-specific genetic information.

2

14

15

16

17

18

19

20

21

22

23

24

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2019. ; https://doi.org/10.1101/528430doi: bioRxiv preprint 

https://doi.org/10.1101/528430
http://creativecommons.org/licenses/by-nc-nd/4.0/


In spite of ample evidence showing that habitat loss has large, consistently negative effects on

biodiversity 1, very few studies have assessed the consequences of habitat amount on genetic 

variation 2. Habitat loss can potentially impact the demographics of natural populations, 

reducing population size, migration, gene flow and genetic diversity, and thereby increasing 

inbreeding and extinction risk 3. Understanding the genetic consequences of habitat loss is 

therefore essential to safeguard biological diversity and fulfill Aichi Biodiversity Targets and 

Sustainable Development Goals 4.

Important limitations constrain the quantification of habitat amount effects on 

genetic variation. Firstly, habitat loss and fragmentation are often confounded, so 

disentangling the relative contribution of habitat amount requires controlling for 

fragmentation 1.  Secondly, landscape effects can also be easily confounded with historical 

processes and the underlying population structure 5. Thirdly, a coarse resolution of spatial 

data and time-lags between the onset of disturbances and genetic responses may mask the 

effects of recent landscape modification 6,7. Finally, large numbers of samples and genetic 

markers, and replicated sampling designs that capture enough landscape heterogeneity are 

needed to detect or rule out possible landscape effects with sufficient statistical power 8,9. 

Failure in overcoming any of these limitations may hide important detrimental effects to the 

maintenance of genetic variability, or reveal spurious patterns unrelated to habitat loss.

Few studies have attempted to quantify the impact of habitat loss on both genetic 

diversity and gene flow, and neither has yet accounted for all the methodological limitations 

outlined above 2,7. Here we fill this important knowledge gap assessing the genetic 

consequences of extreme habitat loss driven by open-pit mining in two endemic plants from 

the Eastern Amazon. Firstly, we were able to assess the independent effect of habitat loss, as 

open-pit mining in our study region rarely involves habitat fragmentation (Supplementary 
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Figure S1). We also accounted for the underlying population structure when assessing 

landscape effects on genetic diversity and gene flow, assessed the sensitivity of our analyses 

to the resolution of spatial data, and used annual species (which complete a full reproductive 

cycle and die within one year) to minimize possible time-lag effects. Finally, we sampled 

hundreds of individuals scattered across two separate regions exposed to mining, and 

genotyped them at thousands of single nucleotide polymorphisms (SNPs) distributed across 

their genomes to assure high statistical power.

Our study species were Brasilianthus carajensis (Melastomataceae) and 

Monogereion carajensis (Asteraceae), annual herbs endemic to the Carajás Mineral Province 

in the Eastern Amazon (Fig. 1). Both species seem to be pollinated by insects, their seeds 

dispersed by the wind, and exclusively occur in the banded iron formations known as Cangas 

10,11 which constitute inselbergs of Amazonian Savannas embedded in an evergreen forest 

matrix. As Cangas harbor one of the world's largest deposits of high-grade iron ore 12, they 

have attracted substantial attention from mining companies. In fact two of the world’s largest 

iron-ore mines are located in the region (Fig. 1), with operations in Serra Norte dating back to

the 1980s, while Serra Sul only began activities in 2014. We predicted that: i) Individuals 

surrounded by undisturbed habitats would show higher genetic diversity and lower 

inbreeding than those exposed to habitat loss driven by mining; ii) Gene flow would be best 

explained by recent landscape modifications, and mining areas would represent barriers to 

gene flow.

Results

Neutral dataset
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We collected leaf tissue samples of 150 individuals of B. carajensis and 207 

individuals of M. carajensis distributed across the entire occurrence range of both species and

surrounding two large iron ore mines (Fig. 1). Samples were frozen and their DNA later 

extracted and shipped for genotyping-by-sequencing (RAD-sequencing) and bioinformatic 

processing. We identified a total of 10,016 SNPs in B. carajensis and 20,464 SNPs in M. 

carajensis, but after filtering these for quality, depth, linkage disequilibrium, deviations from 

the Hardy-Wenberg Equilibrium and FST outlier loci, we obtained sets of neutral and 

independent markers containing 1,411 and 6,052 loci for each species respectively. 

Genetic structure

Two complementary genetic clustering approaches used to assess population structure

(Admixture 13 and Discriminant Analysis of Principal Components - DAPC 14) indicated the 

presence of three clusters in B. carajensis and two in M. carajensis (Fig. 2, Supplementary 

Figure S2-S4). Significant albeit low inbreeding was found in one genetic cluster of each 

species (Fig. 2). Both species showed spatial autocorrelation in genetic relatedness in Serra 

Norte but not in Serra Sul, and the strength of spatial autocorrelation was higher in B. 

carajensis (Fig. 2).

Genetic diversity

To assess the effect of habitat loss on genetic diversity, we regressed individual-level 

diversity metrics on historical habitat amount (1979) and habitat loss driven by mining in 

different years (2011, 2014 and 2016). Heterozygosity (HE) and inbreeding (F) were not 

influenced by habitat loss, neither in Serra Norte nor in Serra Sul, as the set of best-fitting 
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models always included null models or historical (pre-mining) habitat amount (Fig. 3, 

Supplementary Table S1). Historical habitat amount was found to be associated with 

inbreeding in both species, although the direction of the effect varied (Fig. 4, Supplementary 

Table S2).

Gene flow

To assess the effect of habitat loss on gene flow, we first employed a genetic 

algorithm to optimize gene flow hypotheses 15, then calculated effective resistance between 

individual samples using Circuitscape V4.0 16, and finally modeled isolation by resistance 

(IBR) regressing pairwise genetic relatedness on resistance distances through Maximum 

Likelihood Population Effects (MLPE) models. Resistance to gene flow due to mining was 

modeled using land cover maps for different years (2016, 2014, 2011 and 1979). Additional 

variables found to be important predictors of gene flow in other plants 17,18 were modeled 

along with land cover, including geographic distance, terrain roughness, elevation, and 

bioclimatic variables. The optimization of resistance surfaces revealed that Canga was the 

land cover class representing lowest resistance to gene flow in both species, whereas mining 

areas and evergreen forests imposed higher resistance (Supplementary Figure S5-S8). 

However, univariate MLPE regression models revealed that geographic distance usually 

explained relatedness patterns as well as land cover (Supplementary Table S3), and only pre-

mining land cover (1979) was found to explain relatedness patterns better than geographic 

distance in M. carajensis from Serra Norte. Our results thus reveal that mining neither 

hinders nor facilitates gene flow in these two endemic annual plants. While these results hold 

across different resolutions (Supplementary Table S3), an independent barrier analysis also 

failed to identify barriers between individuals separated by mining areas (Supplementary 

6

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2019. ; https://doi.org/10.1101/528430doi: bioRxiv preprint 

https://doi.org/10.1101/528430
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S9). Multiple MLPE regression models showed that isolation by geographic distance 

(IBD) explained genetic relatedness patterns in B. carajensis, whereas isolation by resistance 

(IBR, 16) was more important in M. carajensis (Fig. 3, Supplementary Table S4). In all cases, 

genetic relatedness decreased with increasing resistance (Fig. 4, Supplementary Table S5). 

Germination experiments

Germination experiments revealed that seeds from both species are able to germinate 

in mining waste substrates. Whereas M. carajensis showed similar germination in Canga and 

mining substrates, germination rates of B. carajensis were higher in Canga topsoil 

(Supplementary Figure S10).

Discussion

Our study is the first to assess the genetic consequences of habitat loss while 

accounting for all the major limitations constraining the quantification of habitat amount 

effects on genetic variation. Our results reveal that habitat loss driven by mining did not 

affect genetic diversity or gene flow in two endemic herbs from Amazonian Savannas. 

Whereas historical habitat amount was found to influence inbreeding; heterozygosity and 

inbreeding were not affected by habitat loss in either species, and gene flow was mainly 

influenced by geographic distance in B. carajensis and by pre-mining land cover and local 

climate in M. carajensis. 

The genetic structure in B. carajensis mirrored that from the co-occurring perennial 

morning glory Ipomoea maurandioides 17, showing two differentiated genetic clusters in 

Serra Norte, while M. carajensis only presented one cluster in Serra Norte and another one 
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across the remaining distribution range. This genetic structure was considered when assessing

landscape effects on genetic diversity and gene flow, so our results were not biased by 

historical patterns of genetic differentiation.

The maintenance of genetic diversity in spite of extreme habitat loss suggests that our 

study plants are able to colonize mining environments and maintain gene flow across open-

pit mines. Germination experiments revealed that seeds from both species can indeed 

germinate in mining waste substrates. Additionally, both plant species showed extensive gene

flow across mining areas, and mining neither enhanced nor hindered gene flow. Similar 

results were found for a threatened orchid and the American pika, which showed analogous 

levels of genetic diversity in mining and natural habitats 19,20, although neither gene flow nor 

historical effects were assessed. Inbreeding levels in our focus species are comparable to 

those observed in the widespread I. maurandioides 17, and since they were associated with 

historical habitat amount they seem to reflect density-dependent selfing 21.

Both species presented spatial autocorrelation in genetic relatedness in Serra Norte 

but not in Serra Sul, indicating a more restricted gene flow in the Canga archipelago of Serra 

Norte than in the large continuous plateau of Serra Sul. Additionally, geographic distance 

resistance was weakly correlated with recent land cover resistance in Serra Norte but not in 

Serra Sul, where it was strongly correlated with land cover resistance from all years 

(Supplementary Figure S11). We thus expected that isolation by resistance (IBR) would be 

easier to disentangle from isolation by distance (IBD) in Serra Norte than in Serra Sul. In 

Serra Norte, however, geographic distance and pre-mining land cover (highly correlated with 

geographic distance) were the best predictors of current gene flow in B. carajensis and M. 

carajensis populations, respectively. Considering the strong winds characterizing Montane 

Savanna ecosystems from the Carajás Mineral Province 12, and the fact that wind currents in 

open landscapes are known to facilitate long-distance dispersal of plant propagules 22,23, we 
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posit that wind-mediated dispersal is driving gene flow across Montane Savannas and open-

pit mines. On the other hand, local climate differences also appear to explain gene flow 

patterns in M. carajensis populations from Serra Sul better than IBD, suggesting mismatches 

in flowering periods 24. We nevertheless caution that our study design and the little available 

knowledge on the natural history of these plants do not allow disentangling the relative 

contribution of pollen and seed dispersal on gene flow.

The absence of an effect of habitat loss on genetic variation can be attributed to time-

lags between the onset of disturbances and genetic responses 25. We overcame this 

methodological limitation by focusing on species with a short generation time (i.e. 

completing their life cycle within one year), and by explicitly incorporating time scale into 

our analyses (evaluating land cover maps from different years). Moreover, our isolation by 

resistance models primarily reflect recent gene flow, as they explicitly account for the 

underlying population structure and rely on relatedness estimates calculated from thousands 

of independent and neutral SNPs. Mining operations began in the 1980s in Serra Norte, 

allowing enough time (~40 generations) to assess genetic responses to mining. On the other 

hand, Serra Sul was still pristine by 2013, so only three plant generations were exposed to 

mining before our samples were collected in 2017. This could explain why geographic 

distance explained relatedness patterns in Serra Sul better than land cover (Supplementary 

Table S3). However, land cover did not explain relatedness patterns in either species in Serra 

Norte, which clearly shows that gene flow has been maintained across mines. In contrast, 

land cover in existence two decades ago was found to explain gene flow in a perennial 

narrow endemic morning glory occurring in Serra Norte 17, indicating that our methods 

should be sufficient to detect an effect of mining should there be one. Additionally, our 

findings were unaffected by the resolution of spatial data and were supported by an 
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independent barrier analysis, so they clearly reveal that gene flow in our two annual herbs is 

unaffected by habitat loss driven by mining.

Conclusions

Using thousands of genetic markers to study two annual endemic plants in replicated 

landscapes, we found that extreme habitat loss driven by mining did not result in any 

detectable genetic consequences. Since our results are not biased by the effect of habitat 

fragmentation, the underlying genetic structure of plant populations, the resolution of spatial 

data, nor time-lag effects, they unambiguously reveal that habitat loss does not always entail 

negative genetic consequences. For instance, our study reveals remarkably resilient species to

extreme habitat loss. These findings imply that it is not possible to generalize about the 

genetic consequences of habitat loss, so future conservation efforts need to consider species 

individually. 

Materials and Methods

Sampling, DNA extraction, and genome size estimation

We collected leaf tissue samples of 150 individuals of B. carajensis and 207 

individuals of M. carajensis between February and June 2017 (SISBIO collection permit N. 

48272-4). Samples were collected in the main Canga plateaus of our study area, comprising 

the entire occurrence range of both species, and care was taken to sample individuals at or 

around iron ore mines (Fig. 1). To ensure high DNA quality and concentration, we preserved 

B. carajensis samples in silica and M. carajensis samples in 10 mL of a NaCl-saturated 

solution of 2% CTAB 26, and stored them at -80 °C until analysis. Total DNA of B. carajensis 

was extracted using a CTAB 2% protocol 27 followed by a DNA purification protocol 28; 
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whereas the DNeasy Plant Mini Kit (Qiagen, EUA) was used for M. carajensis. DNA 

concentration for both species was quantified using the Qubit High SensitivityAssay kit 

(Invitrogen), and DNA integrity assessed through 1.2% agarose gel electrophoresis. All DNA 

samples were adjusted to a final concentration of 5 ng/µL in a final volume of 30 µL. We 

used flow cytometry to estimate genome size in both species. Nuclei were obtained from 

fresh leaf tissues chopped along with references in general purpose buffer with 1% Triton X-

100 and 1% PVP-30 29. The whole sample preparation was conducted on ice until the events 

acquisition on a PI fluorescence mean under a 575/26 bandpass filter. Triplicates of 1000 PI 

stained nuclei were analyzed under a 488 nm laser on BD FACS Aria II cytometer. The 

internal standard used was tomato (Lycopersicon esculentum; 2C = 1.98 pg, 30). 

RAD sequencing and SNP discovery

DNA samples were shipped to SNPSaurus (http://snpsaurus.com/) for sequencing and 

bioinformatic analyses. Briefly, nextRAD genotyping-by-sequencing libraries were prepared 

31 using Nextera reagent (Illumina, Inc) and considering the estimated genome size of each 

species (2C DNA content was 508 Mbp in B. carajensis and 6,284 Mbp in M. carajensis). 

The nextRAD libraries were then sequenced on an Illumina HiSeq 4000 (University of 

Oregon). Reads were trimmed using BBMap tools (http://sourceforge.net/projects/bbmap/) 

and a de novo reference was created by collecting 10 million reads evenly from the samples, 

excluding reads that had counts fewer than 5 or more than 700 for B. carajensis; and fewer 

than 6 or more than 1,000 for M. carajensis. The remaining loci were then aligned to each 

other to identify alleles. All reads were mapped to the reference with an alignment identity 

threshold of 90% using BBMap, generating 150bp contigs. Genotype calling was done using 

Samtools and bcftools (https://github.com/samtools/samtools), and the resulting set of 

11

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2019. ; https://doi.org/10.1101/528430doi: bioRxiv preprint 

https://github.com/samtools/samtools
http://sourceforge.net/projects/bbmap/
http://snpsaurus.com/
https://doi.org/10.1101/528430
http://creativecommons.org/licenses/by-nc-nd/4.0/


genotypes were filtered to remove loci with a minor allele frequency of less than 3%. 

Heterozygous loci or loci that contained more than 2 alleles in a sample (suggesting collapsed

paralogs) were removed. The absence of artifacts was checked by counting SNPs at each read

nucleotide position and determining that SNP number did not increase with reduced base 

quality at the end of the read. A total of 43,887 contigs were generated for B. carajensis 

(sequencing depth ranged between 18 and 239), and 36,040 for M. carajensis (depth ranging 

between 14 and 246).

Neutral datasets

The R package r2vcftools (https://github.com/nspope/r2vcftools) - a wrapper for 

VCFtools 32 - was used to perform final quality control on the genotype data. We filtered loci 

for quality (Phred score > 50 both species), read depth (30 – 240 both species), linkage 

disequilibrium (LD, r2 < 0.6 and r2 < 0.4 for B. carajensis and M. carajensis, respectively), 

and strong deviations from the Hardy Weinberg Equilibrium (HWE, p < 0.0001 both species).

Additionally, we removed any potential loci under selection detected through genome scans, 

whereby FST outlier tests were applied after adjusting false discovery rates (q = 0.05) 

according to the distribution of p-values 33. The resulting sets of neutral and independent loci 

were then used in all subsequent analyses.

Genetic structure

We used two complementary genetic clustering software to assess population 

structure: Admixture 13 and DAPC from the adegenet package 14,34. For the former analysis, 

the number of ancestral populations (k) was allowed to vary between 1 and 10, and the best k 
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was chosen based on cross-validation errors 35. For the second analyses, the number of 

clusters was assessed using the function “find.cluster”, which runs successive k-means 

clustering with an increasing number of clusters, and then determined the best-supported 

number of genetic clusters using the Bayesian Information Criterion (BIC). Considering the 

ancestry coefficients assigned by Admixture, we then estimated expected heterozygosity (HE) 

and inbreeding coefficients (F) for each genetic cluster. Additionally, we assessed fine-scale 

spatial genetic structure within each genetic cluster by quantifying spatial autocorrelation in 

Yang’s genetic relatedness between pairs of individuals 36. To do so we used local polynomial 

fitting (LOESS) of pairwise relatedness and pairwise geographic distance (https://github.com/

rojaff/Lplot).

Land cover maps

To account for time-lag effects when assessing the genetic consequences of habitat 

loss, we built land cover maps for different years (2016, 2014, 2011 and 1979), comprising 

pre-mining maps (1979). Landsat images (spatial resolution of 30 meters in 7 spectral bands) 

were used for years 1979 and 2011, while 2014 and 2016 maps were generated using Sentinel

images (spatial resolution of 10 meters in 4 spectral bands). Images were downloaded from 

the Earth Explorer Server (https://earthexplorer.usgs.gov/), selecting scenes from the month 

of July to minimize clouds. All images were converted to ground reflectance in percentage 

using the ATCOR algorithm of the PCI Geomatica 2016 software. The scenes were joined to 

create a mosaic of the study area and derive the Normalized Difference Vegetation Index - 

NDVI 37. We then employed the eCognition 9 software using a Geographic Object-Based 

Image Analysis (GEOBIA) to classify land cover types. The Multi-resolution classification 

algorithm was selected, given that it allows obtaining segments with different sizes due to 
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brightness, shape, smoothness and compactness. Montane Savanna (Canga), Water, Forest, 

Mine, Pastureland and Urban classes were identified.

Genetic diversity 

To assess the effect of habitat loss on genetic diversity, we regressed individual-level 

diversity metrics (HE and F) on historical habitat amount and habitat loss driven by mining in 

different years (2011, 2014 and 2016) using high resolution land cover maps (10 x 10m). By 

so doing we explicitly evaluated the effect of habitat loss accounting for historical habitat 

amount. Historical habitat amount was calculated by extracting the proportion of Canga 

habitat in a buffer surrounding each individual using pre-mining maps (1979). Habitat loss in 

different years was calculated by subtracting habitat amount for a given year from historical 

habitat amount. To select an optimal buffer size we first ran uni-variate models using habitat 

amount extracted from the most recent land cover maps (2016) with buffers varying in size 

between 100 and 900m, and then compared all models using AIC. As habitat amount 

calculated with the largest buffers (900m) was always among the best models (∆AIC ≤ 2), we

chose this buffer size to encompass a greater portion of lost areas (Supplementary Table S6). 

In Serra Norte, which comprises an archipelago of Canga plateaus, we fit linear 

mixed-effect models, using each plateau as a random effect to account for site-specific 

characteristics and spatial autocorrelation. In the case of B. carajensis from Serra Norte, we 

also included a random effect specifying the genetic cluster containing each individual (see 

genetic structure results). In Serra Sul, which comprises a single large plateau, we used 

generalized least-squares models (GLS) fitted with different correlation structures (linear, 

exponential, Gaussian, and spherical) to explicitly model spatial autocorrelation. The 

“weight” argument was used in some cases to account for heteroscedasticity. Raw F and 
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logit-transformed HE were used as response variables and models fitted using the nmle R 

package 38. The set of best models (∆AIC ≤ 2) were compared to reduced models without 

each predictor variables using likelihood ratio tests (LRT, α = 0.05) and all models were 

validated by plotting residual vs. fitted values and by checking for residual autocorrelation. 

Relative variable importance was calculated dividing the sum of Akaike weights by the 

number of models containing each predictor variable from those included in set of best-fitting

models. Model averaging across the set of best models was used to compute parameters 

estimates that account for uncertainty in model selection 39.

Gene flow

To assess the effect of habitat loss on gene flow, we employed a genetic algorithm to 

optimize gene flow hypotheses and then tested them by modeling isolation by resistance 

(IBR, 16). Yang’s genetic relatedness between pairs of individuals 36 was used as a proxy for 

gene flow, as it was developed for SNP markers and similar measures of relatedness have 

proven highly accurate individual-based genetic distance metrics in landscape genetic studies 

40. Resistance to gene flow due to mining was modeled using land cover maps for different 

years (2016, 2014, 2011 and 1979) containing only the major land cover classes of our study 

region: Montane Savanna (Canga), Forest (evergreen forest) and Mine. Water bodies, 

Pastureland and Urban areas were excluded because they occurred outside the extent of our 

samples (Fig. 1). By so doing we were able to evaluate the permeability to gene flow of each 

land cover class; and test whether habitat loss driven by mining hindered gene flow across 

our replicated landscapes. Additional variables found to be important predictors of gene flow 

in other plants 17,18 were modeled along with land cover, including geographic distance, 

elevation (DEM retrieved from the USGS Earth Explorer), terrain roughness (generated from 

15

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 23, 2019. ; https://doi.org/10.1101/528430doi: bioRxiv preprint 

https://doi.org/10.1101/528430
http://creativecommons.org/licenses/by-nc-nd/4.0/


the DEM using the Terrain Analysis plug-in from QGIS), and bioclimatic variables (retrieved 

from WorldClim). To select a set of orthogonal variables explaining most climatic variation 

across our study area, we first ran separate principal component analyses (PCA) for each 

species using the extracted values from all 19 WorldClim bioclimatic layers plus elevation 

(scaled). We then selected the three variables showing the strongest correlation with the first, 

second and third PCA axis (which explained more than 85% of total variance in both B. 

carajensis and M. carajensis). These were minimum temperature of coldest month (bio06) 

and precipitation of wettest (bio16) and coldest quarter (bio19) for B. carajensis; and 

minimum temperature of coldest month (bio06), precipitation of wettest quarter (bio16) and 

temperature seasonality (bio04) for M. carajensis. 

A genetic algorithm implemented through the ResistanceGA package was used to 

generate optimized resistance surfaces for each one of these variables 15. In the case of land 

cover maps, random initial resistance values were assigned for each class; then pairwise 

effective distances were measured using random-walk commute times; and finally pairwise 

genetic distance was regressed on effective distance using maximum likelihood population 

effect models (MLPE, see below). The whole process was iterated until no significant change

was found in the objective function 15. We then performed the same steps for the remaining 

continuous predictors, but instead of assigning random initial resistance values, eight types of

transformations were applied to the raw values. In this case, two parameters controlling 

Ricker and Monomolecular functions were iteratively varied during the optimization 15. Ten 

independent runs of optimization were conducted for each surface to assess the convergence 

in parameter estimates 41. All rasters were set to Universal Transverse Mercator (UTM) 

projection, and cropped to the extent of sampling locations plus a buffer area of 5 km to 

minimize border effects 17. Land cover resistance surfaces and terrain roughness were 
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optimized using 250 x 250 m resolution maps, while 900 x 900 m resolution maps were used 

for WorldClim layers as this is the highest available. Serra Norte and Serra Sul were analyzed

separately aiming to replicate IBR analyses in two separate areas exposed to open-pit mining.

Using the program Circuitscape V4.0 16, we then calculated pairwise resistance 

distances between all samples, employing the optimized resistance surfaces described above 

plus a surface where all pixels were set to 1 to assess isolation by geographic distance (IBD). 

To assess isolation by resistance (IBR), defined as the correlation between genetic and 

resistance distances 16, we fitted mixed-effects regression models using penalized least 

squares and a correlation structure designed to account for the non-independence of pairwise 

distances (maximum-likelihood population effects - MLPE: 

https://github.com/nspope/corMLPE; 42). Yang’s genetic relatedness between individuals was 

used as the response variable and the different resistance distances (contemporary and 

historical land cover, elevation, terrain roughness, temperature, precipitation, and geographic 

distance) as predictors. All MLPE models accounted for the underlying population structure, 

either by considering only individuals belonging to the same genetic cluster (most cases), or 

by including an additional random effect specifying if pairwise distances represented 

individuals from the same or from different genetic clusters (the case of B. carajensis from 

Serra Norte, see genetic structure results). To evaluate the incidence of time-lag effects 

potentially masking mining effects on gene flow, we first fitted uni-variate models for each 

species and region using resistance distances from land cover surfaces from all years, plus 

those from geographic distance surfaces. The best models were selected using the Akaike 

Information Criterion (∆AIC < 2), and whenever geographic distance was found among the 

best models we considered IBD as the most parsimonious gene flow model. To evaluate the 

sensitivity of our analysis to the resolution (grain size) of spatial data, we also compared uni-
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variate land cover models containing resistance distances computed from surfaces with 

different grain sizes (100 x 100 m, 300 x 300 m, 600 x 600 m and 900 x 900 m). Results were

consistent across the different resolutions (Supplementary Table S3), so we ran all subsequent

analysis using a grain size of 900 x 900 m. We then fitted multiple regression models 

containing resistance distances from the best uni-variate land cover models selected in the 

previous step and resistance distance from all other optimized surfaces for each species and 

region. Models containing all possible combinations of non-collinear predictors (r < 0.6, 

Supplementary Figure S11) were compared using the dredge function from the package 

MuMIn (https://github.com/rojaff/dredge_mc; 43), and best models were selected using AIC. 

Likelihood ratio tests (LRT) were performed to assess the influence of each predictor variable

on the best model’s log-likelihood 44, and relative variable importance and model-averaging 

were calculated as described above. Finally, we carried out a barrier analysis to identify 

genetic discontinuities between individuals by using Monmonier’s algorithm and Gabriel’s 

graph implemented in package adegenet 34. 

Germination experiments

To evaluate if seeds from both study species are able to germinate inside iron ore 

mines, we ran a set of germination experiments. Seeds from both species were sown over 

four different substrates (Whatman® paper, Canga topsoil, forest topsoil, and mining waste 

substrate) placed in plastic boxes (Gerbox – 11 x 11 x 4 cm) and kept in a growth chamber 

(Fitotron SGC 120, Weiss Technik, UK) under continuous darkness, constant temperature 

(20°C) and air humidity (60%) for 33 consecutive days, from September 4th to October 7th 

2018. Substrates received distilled water until the retention capacity, and water losses by 

evaporation were replaced daily. All treatments were carried out with five replicates for each 
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substrate in each species. Each replicate contained 25 seeds from B. carajensis and 12 seeds 

from M. carajensis. The number of germinated seeds was recorded daily, with germination 

defined as the emission of 2 mm of primary root.

Data availability

Genotype data will be deposited in figshare and url addresses provided upon the acceptance 

of this manuscript.

Code availability

Custom code has been deposited in GitHub and is cited in the text.
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Figure legends

Fig. 1. Map of the study region depicting the location of the collected samples from 

Brasilianthus carajensis (blue circles) and Monogereion carajensis (white triangles) in Serra 

Norte (right panels) and Serra Sul (left panels). Hill shade maps are shown overlaid with land

cover color maps for the different years analyzed. The location of the Carajás Mineral 

Province within Brazil is shown on the upper left corner. 
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Fig. 2. Map showing the ancestry coefficients from Brasilianthus carajensis (A and C) and 

Monogereion carajensis (B and D) in Serra Norte (upper panels) and Serra Sul (lower panels)

determined using the Admixture software. Montane Savanna areas are shown in green against

hill shade layers. Smaller lower-left corner plots show spatial autocorrelation in genetic 

relatedness, where black solid lines are the LOESS fit to the observed relatedness, and gray 

shaded regions are 95% confidence bounds around the null expectation (black dotted lines). 

Genetic diversity measures for each genetic cluster are shown in the upper tables. Sample 

sizes (N) are followed by mean expected heterozygosity (HE) and mean inbreeding coefficient

(F), and values represent 95% confidence intervals.
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Fig. 3. Relative variable importance in the set of best-fitting models (ΔAIC ≤ 2) for 

Brasilianthus carajensis and Monogereion carajensis in Serra Norte and Serra Sul (see 

methods and Supplementary Tables S1 and S4 for details). Individual-level genetic diversity 

metrics (HE and F) were response variables and habitat amount in 1979 and habitat loss in 

2011, 2014 and 2016 were predictors in genetic diversity models. Pairwise inter-individual 

genetic relatedness was the response variable and resistance distances computed from 

optimized surfaces were predictors in IBR models. Likelihood Ratio Test (LRT) were 

performed to assess if each predictor variable significantly improved the model’s log-

likelihood (significance levels are highlighted with: *p < 0.05; **p < 0.01; and ***p < 

0.001). 
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Fig. 4. Coefficient plots for the set of best-fitting models (ΔAIC ≤ 2) for Brasilianthus 

carajensis and Monogereion carajensis in Serra Norte and Serra Sul (see methods and 

Supplementary Tables S2 and S5 for details). Points represent model-averaged regression 

coefficients and lines the 95% confidence intervals.
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