Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The HIV-1 ribonucleoprotein dynamically regulates its condensate behavior and drives acceleration of protease activity through membrane-less granular phase-separation

View ORCID ProfileSébastien Lyonnais, S. Kashif Sadiq, Cristina Lorca-Oró, Laure Dufau, Sara Nieto-Marquez, Tuixent Escriba, Natalia Gabrielli, Xiao Tan, Mohamed Ouizougun-Oubari, Josephine Okoronkwo, Michèle Reboud-Ravaux, José Maria Gatell, Roland Marquet, Jean-Christophe Paillart, Andreas Meyerhans, Carine Tisné, Robert J. Gorelick, Gilles Mirambeau
doi: https://doi.org/10.1101/528638
Sébastien Lyonnais
1Infectious disease & AIDS Research Unit, IDIBAPS, Villaroel 170, Barcelona, Spain.
2CEMIPAI, UMS 3725 Université de Montpellier - CNRS, 1919 Route de Mende, 34000 Montpellier.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sébastien Lyonnais
  • For correspondence: sebastien.lyonnais@cemipai.cnrs.fr kashif.sadiq@h-its.org gilles.mirambeau@upmc.fr
S. Kashif Sadiq
3Infection Biology Laboratory, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain.
4Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sebastien.lyonnais@cemipai.cnrs.fr kashif.sadiq@h-its.org gilles.mirambeau@upmc.fr
Cristina Lorca-Oró
1Infectious disease & AIDS Research Unit, IDIBAPS, Villaroel 170, Barcelona, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laure Dufau
5UMR/CNRS 8256, IBPS, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sara Nieto-Marquez
1Infectious disease & AIDS Research Unit, IDIBAPS, Villaroel 170, Barcelona, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tuixent Escriba
1Infectious disease & AIDS Research Unit, IDIBAPS, Villaroel 170, Barcelona, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Natalia Gabrielli
1Infectious disease & AIDS Research Unit, IDIBAPS, Villaroel 170, Barcelona, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiao Tan
1Infectious disease & AIDS Research Unit, IDIBAPS, Villaroel 170, Barcelona, Spain.
5UMR/CNRS 8256, IBPS, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mohamed Ouizougun-Oubari
1Infectious disease & AIDS Research Unit, IDIBAPS, Villaroel 170, Barcelona, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Josephine Okoronkwo
1Infectious disease & AIDS Research Unit, IDIBAPS, Villaroel 170, Barcelona, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michèle Reboud-Ravaux
5UMR/CNRS 8256, IBPS, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
José Maria Gatell
1Infectious disease & AIDS Research Unit, IDIBAPS, Villaroel 170, Barcelona, Spain.
6Infectious Disease and HIV Service, Hospital Clínic, University of Barcelona, Barcelona, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roland Marquet
7Architecture et Réactivité de l’ARN, CNRS, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-Christophe Paillart
7Architecture et Réactivité de l’ARN, CNRS, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andreas Meyerhans
3Infection Biology Laboratory, DCEXS, Universitat Pompeu Fabra, Barcelona, Spain.
8Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carine Tisné
9Laboratoire de Cristallographie et RMN Biologiques, CNRS, Paris Sorbonne Cité, 4 Avenue de l’Observatoire, Paris, 75006, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert J. Gorelick
10AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gilles Mirambeau
1Infectious disease & AIDS Research Unit, IDIBAPS, Villaroel 170, Barcelona, Spain.
11UFR 927 des Sciences de la Vie, Faculté des Sciences et d’Ingénierie, Sorbonne Universités, Paris, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sebastien.lyonnais@cemipai.cnrs.fr kashif.sadiq@h-its.org gilles.mirambeau@upmc.fr
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular ‘sponges’, stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ~2400 Gag and ~120 GagPol by viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak-strong-moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted January 28, 2019.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The HIV-1 ribonucleoprotein dynamically regulates its condensate behavior and drives acceleration of protease activity through membrane-less granular phase-separation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The HIV-1 ribonucleoprotein dynamically regulates its condensate behavior and drives acceleration of protease activity through membrane-less granular phase-separation
Sébastien Lyonnais, S. Kashif Sadiq, Cristina Lorca-Oró, Laure Dufau, Sara Nieto-Marquez, Tuixent Escriba, Natalia Gabrielli, Xiao Tan, Mohamed Ouizougun-Oubari, Josephine Okoronkwo, Michèle Reboud-Ravaux, José Maria Gatell, Roland Marquet, Jean-Christophe Paillart, Andreas Meyerhans, Carine Tisné, Robert J. Gorelick, Gilles Mirambeau
bioRxiv 528638; doi: https://doi.org/10.1101/528638
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
The HIV-1 ribonucleoprotein dynamically regulates its condensate behavior and drives acceleration of protease activity through membrane-less granular phase-separation
Sébastien Lyonnais, S. Kashif Sadiq, Cristina Lorca-Oró, Laure Dufau, Sara Nieto-Marquez, Tuixent Escriba, Natalia Gabrielli, Xiao Tan, Mohamed Ouizougun-Oubari, Josephine Okoronkwo, Michèle Reboud-Ravaux, José Maria Gatell, Roland Marquet, Jean-Christophe Paillart, Andreas Meyerhans, Carine Tisné, Robert J. Gorelick, Gilles Mirambeau
bioRxiv 528638; doi: https://doi.org/10.1101/528638

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Molecular Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (2646)
  • Biochemistry (5259)
  • Bioengineering (3671)
  • Bioinformatics (15788)
  • Biophysics (7247)
  • Cancer Biology (5624)
  • Cell Biology (8088)
  • Clinical Trials (138)
  • Developmental Biology (4763)
  • Ecology (7510)
  • Epidemiology (2059)
  • Evolutionary Biology (10571)
  • Genetics (7727)
  • Genomics (10125)
  • Immunology (5187)
  • Microbiology (13896)
  • Molecular Biology (5383)
  • Neuroscience (30754)
  • Paleontology (215)
  • Pathology (876)
  • Pharmacology and Toxicology (1524)
  • Physiology (2253)
  • Plant Biology (5017)
  • Scientific Communication and Education (1040)
  • Synthetic Biology (1384)
  • Systems Biology (4145)
  • Zoology (812)