T.41 .

1	Title:
2	Mapping of transgenic alleles in plants using a Nanopore-based sequencing strategy
3	
4	Shengjun Li ^{1,2,3#} , Shangang Jia ^{2,4#} , Lili Hou ^{2,4#} , Hanh Nguyen ^{2,4#} , Shirley Sato ^{2,4} , David
5	Holding ^{2,4} , Edgar Cahoon ^{2,9} , Chi Zhang ^{1,2} *, Tom Clemente ^{2,4} * and Bin Yu ^{1,2} *
6	
7	¹ School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588–
8	0118, USA
9	² Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska
10	68588–0666, USA
11	³ Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao
12	Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao
13	266101, China
14	¹ Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska
15 16	08388-0000, USA ⁵ Department of Piechemistry, University of Nebreske Lincoln, Lincoln, Nebreske
10 17	68588 0666 USA
18	00500-0000, CSA
19	[#] : Equal contributions
20	
21	*Corresponding author:
22	Bin Yu: <u>byu3@unl.edu</u>
23	Tom Clemente: <u>tclemente1@unl.edu</u>
24	Chi Zhang: <u>zhang.chi@unl.edu</u>
25	
26	
27	
28	
29	
30	Running Title: Nanopore-based strategy to map transgene alleles
	Running The. Runopole bused strategy to map transpole uncles
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

41 Abstract

71	
42	Transgenic technology was developed to introduce transgenes into various organisms to validate
43	gene function and add genetic variation for the development of beneficial input or output trait
44	over 40 years ago. However, the identification of the transgene insertion position in the genome,
45	while doable, can be cumbersome in the organisms with complex genomes. Here, we report a
46	Nanopore-based sequencing method to rapidly map transgenic alleles in the soybean genome.
47	This strategy is high-throughput, convenient, reliable, and cost-efficient. The transgenic allele
48	mapping protocol outlined herein can be easily translated to other higher eukaryotes with
49	complex genomes.
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	

72 Introduction

73 Transgenic technologies that introduce genetic variation into bacteria, animals and plants were 74 developed in 1972 (Cohen et al., 1972), 1974 (Jaenisch and Mintz, 1974) and 1982 (Barton et al., 75 1983), respectively. They have become a valuable resource to enhance genetic variations and to 76 gain insight of gene function. In higher plants, a single cope or multiple copies of transgenes are 77 randomly inserted into the genome (Kim et al., 2007; Weising et al., 1988). Expression levels of 78 a transgene are often influenced by the genomic context surrounding the transgenic allele and the 79 complexity of the genome (Butaye et al., 2004; Day et al., 2000; van Leeuwen et al., 2001; 80 Weising et al., 1988). Moreover, the transgene insertion position may also affect the function of 81 surrounding genes (Azpiroz-Leehan and Feldmann, 1997; Weising et al., 1988). Importantly, 82 prior knowledge of map position of a transgenic allele is beneficial when breeding programs 83 begin to introgress the allele into elite germplasms. Consequently, there is a need to efficiently 84 and accurately characterize transgenic alleles in higher plants 85 86 Strategies have been developed for mapping of transgenic alleles (Guo et al., 2016; Lepage et al., 87 2013). Complexity of the transgenic locus can be estimated through multiple approaches 88 including Southern blot analysis (Southern, 1975), quantitative PCR (Ingham et al., 2001) and 89 droplet PCR (Glowacka et al., 2016). One of the first methods used to successfully map a 90 transgenic allele in higher plants was plasmid rescue. This strategy involves restriction enzyme 91 digestion of the host genome containing the transgenic allele, cloning the cleavage products into 92 plasmid and selection of the plasmid containing the transgene fragment (Nan and Walbot, 2009). 93 Subsequent methods for mapping transgenic alleles are also primarily PCR based, include 94 Thermal Asymmetric Interlaced PCR (TAIL-PCR) (Liu and Chen, 2007; Liu et al., 1995), 95 Adaptor PCR which is sometimes referred to as anchored PCR (Singer and Burke, 2003; Thole 96 et al., 2009), and T-linker PCR that utilizes a specific T/A ligation (Yuanxin et al., 2003). 97 However, these methods are often challenging to scale-up for high-throughput (Guo *et al.*, 2016; 98 Ji and Braam, 2010). Moreover, failure to map transgenes can happen due to the complexity of 99 the transgenic locus and/or issues associated with the genomic context about the transgenic allele 100 (Wahler *et al.*, 2013). The next-generation Illumina sequencing technology is a method that can 101 map transgenic alleles in plants due to its depth of sequencing capacity (Guo *et al.*, 2016; Lepage 102 et al., 2013; Polko et al., 2012). However, because this method produces short reads, a high

degree of sequencing depth is needed, especially in crops that have large genomes that are rich in

104 repetitive sequence. This in turn, impacts the cost per transgenic locus mapped. In addition,

short-read sequencing data is challenging to resolve transgene insertion position in many plant

- species, such as soybean, due to issues related with genome rearrangements and copy-number
- 107 variations, which may lead to inaccurate mapping locations.

108

109 Recently, single molecule real-time (SMRT) sequencing technologies have been developed that 110 provide long-read sequencing datasets. These SMRT platforms developed by Pacific Biosciences (PacBio[®]) and Oxford Nanopore Technologies[®] offer significant attributes for genotyping plant 111 species. The most significant benefit is long read lengths, with Pacbio[®] platform generating up to 112 60 kb reads, and Nanopore[®] reads being up to ~ 1Mb (Jain et al., 2018; Lu et al., 2016). Both 113 technologies have been used in genome assembly (Badouin et al., 2017; Jain et al., 2018; 114 115 Michael et al., 2018; Rhoads and Au, 2015; Schmidt et al., 2017)). The MinION device, which was developed by Nanopore[®] technology and entered the market in 2014, is a portable apparatus 116 117 with less than 100g in weight. Furthermore, it is compatible with a PC or laptop with USB 3.0 118 ports (Jain *et al.*, 2016) making it a flexibility attribute permitting use outside of a laboratory setting (Castro-Wallace et al., 2017). In addition, compared with PacBio[®], the Nanopore 119 120 Technology apparatus is affordable in most laboratories. Thus, the MinION platform provides 121 potential for a high-throughput, cost-effective strategy to map transgenic alleles in plant species with complex genomes. 122

123

124 Described herein is a Nanopore Technology®-based platform pipeline designed for high-125 throughput mapping of transgenic alleles in plant species. Employing a target enrichment 126 approach using a combination of oligo probes to capture DNA fragments containing the 127 transgenic allele, permitted the rapid identification of map position of 51 transgenic alleles in a 128 single 1D sequencing-run. The calculated cost incurred by the procedure to map 51 transgenic 129 alleles is estimated to be \$1,360, and the results are generated within one week. The reads with 130 the transgenic allele averaged in the hundred, for each sample, suggesting that pooling can be further enlarged. These results demonstrate that this Nanopore[®]-based sequencing method is 131 132 rapid, convenient, reliable, cost-efficient and high-throughput.

133

134 Materials and Methods

135 Soybean growth condition

- 136 The soybean plants were grown in controlled greenhouse condition with 14 hour photoperiod
- and $28/26^{\circ}$ C day/night temperature. The soybean plants harboring the *Ds* element are in the
- 138 Thorne genetic background.
- 139

140 DNA extraction and shearing

- 141 DNA from of soybean leaves were extracted using CTAB method (Healey *et al.*, 2014) and
- 142 purified with DNeasy Plant Mini Kit (69104, QIAGEN). 6 μg genomic DNA in a total of 150 μl
- 143 nuclease free water was sheared into ~8 kb with g-TUBEs (520079, Covaris) by following
- 144 manufacturer's instruction.
- 145

146 DNA barcodes and Enrichment of the *Ds* element-containing fragments

- 147 1 µg sheared DNA fragments were end-repaired with Ultra II End-prep enzyme mix (E7546L,
- 148 NEB) for 5 minutes at 20°C and 5 minutes at 65°C using a thermal cycler, followed by
- 149 purification with the AMPure XP beads in a 1.5 ml DNA LoBind Eppendorf tube. After end-
- 150 repaired, DNA fragments were ligated to the Barcode Adapter from the barcode Kit 1D (EXP-
- 151 PBC001, Nanopore) using Blunt/TA Ligase Master Mix (M0367L, NEB). Following purification
- 152 with AMPure XP beads, the DNAs were ligated to the Barcode (EXP-PBC001, Nanopore) using
- LongAmp Taq (M0287S, NEB). The barcoded DNA library was then purified with AMPure XP
- 154 beads. After barcoding, the library was purified with pheno/chloroform method, and diluted with
- 4.8ul H₂O+8.5ul xGen 2X Hybridization buffer, then add 2.7ul xGen Hybridization enhancer
- 156 (1072281, Integrated DNA Technologies, IDT) and 1ul probe. Then hybridization was
- 157 performed at 65°C for 4h in a thermal cycler. After hybridization, the targets were captured by
- the Dynabeads M-270 Streptavidin beads (65-305, Thermo Fisher Scientific) that recognize the
- 159 dualbiotinylated probe. After washing with Stringent Wash Buffer and Wash Buffer I, II, III by
- 160 following the manufacture's protocol, the captured target fragments were amplified for 12 cycles
- 161 with primers recognizing the barcode using LongAmp Taq at the PCR condition: 15 seconds at
- 162 98°C, 30 seconds at 60°C, 6 minutes at 72°C. The resulting PCR products were purified with
- 163 AMPure XP beads, which were subjected to second round enrichment (step 3 and 4), or library

- 164 construction following manufacturer's instruction. The 5' dual biotinylated probe was
- synthesized from IDT and its sequence is shown probe in Supplementary Table S1.
- 166

167 Library Construction and Sequencing

- 168 Following target enrichment, barcoded libraries were pooled and 1 µg samples were end-repaired
- 169 with the Ultra II End-prep enzyme, purified with the AMPure XP beads and then ligated to the
- 170 sequencing adaptor (SQK-LSK108, Nanopore) with the Blunt/TA Ligation Master Mix. After
- 171 purification with the AMPure beads, the adapted DNA libraries were sequenced in the flow cells
- 172 (R9.4 version, FLC-MIN106, Nanopore). After 20-24 hours, the sequencing was stopped.
- 173

174 Assessment of target enrichment efficiency

To assess the target enrichment, 2% of samples were used as templates to perform quantitative
PCR (qPCR) using SYBR Green PCR Master Mix (Bio-Rad) with primers recognizing the Ds
element or an unrelated intergenic region in soybean chromosome 7. The primer sequences are
shown in Supplementary Table S1.

179

180 **PCR validation**

181 PCR reaction was performed with primers listed in Supplementary Table S1 using the condition:

182 95 °C 2 min; 95 °C 30 sec, 50 °C 30 sec, 72 °C 1:20 min for 34 cycles; 72 °C 5 min. The PCR

products were isolated with 1% agarose gel and visualized by Ethidium bromide staining.

184

185 **Bioinformatics analysis**

186 All barcoded reads were de-multiplexed and adapters were trimmed off using the Porechop

version 0.2.1 (https://github.com/rrwick/Porechop) with default parameters. To identify reads

188 with the *Ds* target sequence, the *Ds* target sequence was searched against trimmed reads for each

- sample with E-value $\leq 10^{-3}$. For all hits with the *Ds* target sequence, the 5' end and 3' end
- 190 sequences of the Ds target sequence were scanned on each read to identify long reads with one or
- 191 two complete ends of the *Ds* target sequence. Sequences on 5' end and/or 3' end sequences of
- long reads beyond the Ds target sequence, if length > 20bp, were recorded as flanking sequences,
- 193 which come from soybean genome. The flanking sequences were undergone blast searches
- against the soybean genome (v1.0). Uniquely aligned hits with aligned length > 200bp and >

195 80% sequence identity were kept. The genomic location for each flanking sequence were 196 determined based on its alignment. The insertion sites were determined based on statistically 197 enriched flanking sequences. The zero-inflated Poisson regression was used to model count data 198 that has an excess of zero counts. All read counts were fitted into the Zero-inflated Poisson 199 regression model with the R package, ZIM. For each peak of read counts, to determine if it was a significant peak, a P-value was calculated as the probability of observing a count value equally 201 as extreme, or more extreme, than the given read count based on the fitted distribution

- 202
- 203 Results

204

Mapping of maize *Ds* transpositions in the soybean genome through MinION sequencing without target enrichment

207 To evaluate the potential application of MinION sequencing to map transgenic alleles, a soybean 208 line, which contains a transgene stack harboring the maize Activator (Ac)/Dissociation (Ds)209 transposon system were used. The Ac transposase is controlled by the 35S CaMV promoter, and 210 the *Ds* element harbors the cassava vein mosaic virus promoter (CsVMV) as an activation tag. 211 The selected soybean lines were previously genotyped via Southern blot analysis to ascertain the 212 presence of the Ds loci and the absence of Ac allele, along with mapping of the Ds allele using 213 TAIL-PCR (Fig. 1A and Supplementary Fig. S1). To assess the power of MinION sequencing to 214 map transgenic alleles, genomic DNA isolated from one of the selected genotyped soybean lines 215 carrying the Ds-activation tag was sequenced on the FLO-MIN106 flow cell following the 1D 216 sequencing protocol without DNA fragmentation (Fig. 1B). A 24-hour sequencing run produced 217 approximately one million reads, resulting in about 2.8 Gb of sequence data (Table 1). Mining 218 the sequence data for *Ds* element revealed two reads containing the *Ds* element (Table 1). One 219 read was 957 bp covering partial Ds element flanked by 370 bp sequence at 3' end, and the other 220 was 6,806 bp, containing the full-length *Ds* element flanked by 2,347 bp 5' upstream sequences 221 and 3,047 bp downstream flanking the Ds sequence (Fig. 1C). The identified Ds junction 222 fragment sequences were mapped to the soybean Glyma.15g128600 gene (Fig. 1C), in 223 agreement to the TAIL-PCR results. To further validate the sequencing and TAIL-PCR 224 outcomes, PCR reactions were carried out with a primer set designed to span the Ds/junction 225 about the insertion site (Fig. 1A). The data revealed a 360 bp PCR product amplified from the

endogenous Glyma.15g128600 gene when control DNAs were used as templates, and a 1526 bp

fragment predicted to carry the *Ds*/junction target sequence amplified from DNAs of the

- transgenic soybean plants (Fig. 1D). These results demonstrate the potential of MinION
- sequencing to map a transgenic allele in the soybean genome. However, given the few reads that
- contain the *Ds*, refinement in the genomic DNA processing steps would be required for a high
- throughput/cost effective mapping pipeline with this technology.
- 232

Target enrichment of transgenic allele to improve mapping throughput with MinIONsequencing.

235 To improve read counts around the junction of a transgenic allele, a PCR-based method to enrich 236 the target sequences in the DNA library (Fig. 2) was developed. To test the enrichment protocol, DNA from two soybean lines carrying a Ds activation tag allele, previously characterized via 237 238 Southern blot and mapped by TAIL-PCR, were used. The enrichment protocol incorporated steps 239 for fragmentation of DNA to approximate 8 kb, end-repairing and dT-tailing, with subsequent 240 ligation to barcode adapters and PCR-barcoding (Fig. 2). The resultant reaction products were 241 subjected to a 120nt 5'-dual biotinylated probe designed to capture the transgenic *Ds* allele (Fig. 242 2). Following the probe capture step, the probe-captured fraction was re-amplified by PCR and 243 products were pooled for sequencing (Fig. 2). Total readings obtained were 357765 and 326189 244 for Line 2 and Line 3, respectively (Table 2). The average read length of Line 2 was 2426 bp 245 with the longest read of 20453 bp (Table 2), while the average read length of Line 3 was 2445 bp 246 with the longest read of 48971 bp (Table 2). Among the reads obtained implementing the 247 enrichment steps, 203 and 438 contained the Ds-allele sequence, for lines 2 and 3, respectively, 248 which correctly mapped to gene calls, Glyma.19g105100 and Glyma.11g247400, respectively 249 (Fig. 3A, 3B, and Table 2). The map positions were re-confirmed using PCR analyses 250 incorporating a primer set designed to amplify *Ds*/junction fragment region (Fig. 3C). 251 252 Given the high number of reads containing the *Ds* element, following the targeted enrichment

253 approach, the method appeared to be amendable for higher throughput by increasing sample pool

size. To this end, 15 soybean lines previously ascertained to harbor a single *Ds* element (Line 4-

- Line 18) were selected for integrating a pooling strategy with the targeted enrichment method.
- 256 Here five DNA pools, each of which contained DNAs from three soybean lines (Table 3 and

257 Supplementary Fig. S2), were prepared. Following the first target enrichment step, the pools 258 were subjected to an additional round of purification to increase coverage of the Ds-containing 259 DNA fragments (Fig. 2). Subsequent to each purification step, a quantitative PCR (qPCR) was 260 used to estimate the relative enrichment level of target fragment compared with an unrelated 261 DNA region that served as an internal control. After one round of enrichment, the ratio of target 262 fragments to the unrelated region was enriched 132-1120x across all DNA pools (Fig. 4A). 263 Following two rounds of purification the enrichment ratio ranged from 7469 to 238193 times in 264 the pools (Fig. 4B). MinION sequencing of the double enriched products resulted in total number 265 of reads ranged from 117266 to 523192 across the pools (Table 3), with reads containing the Ds 266 sequence ranging from 1856 to 36388 in the pools (Table 3). These results were translated to 267 ratios of reads containing the target sequence per total read counts for each pool in the range of 268 0.53 to 6.95% (Table 3). The average length of these Ds-containing reads was longer than 2Kb 269 and the majority (>99%) of these readings were longer than 1.2 Kb (Fig. S3). The Ds-containing 270 reads of each DNA pool were successfully mapped to three positions in the soybean genome 271 (Supplementary Table S2; Fig. 4C showing a position of readings at soybean genome from Pool 272 4), reflecting that the pools each contained three independently integrated *Ds* elements within the 273 soybean genome. The predicted mapped locations identified in Pool 4 were subsequently verified 274 by PCR using primer sets that spanned the Ds element/soybean genome junction (Line 13-Line 275 15; Fig. 4D).

276

277 MinION sequencing provides a platform for high-throughput method to identify map

278 position of transgenic alleles in plants

279 Reads containing sequences of the target allele in soybean, a Ds-activation tag element, averaged 280 in the hundreds (Table 3) from non-enriched genomic DNA, reflecting the power of MinION 281 sequencing technology as a cost effective tool that could be translated as a high-throughput 282 method to map a transgenic allele in the soybean genome. To further test its throughput, an 283 expanded pooling was performed with the enrichment steps, wherein 51 independent soybean 284 lines containing a single Ds element were divided into six pools, each of which contained eight 285 to ten lines (Table 4), for minion sequencing. The outcome from this expanded throughput 286 evaluation resulted in total read counts ranging from 19758 to 282690 across the pools, with 287 reads containing the Ds sequence ranging from 212 to 16146 (Table 4). These data were

sufficient to successfully map the transgenic allele in each of the 51 soybean lines analyzed(Supplementary Table S3).

290

To further validate if this method is suitable to map potential multiple transgene insertions, we selected 18 transgenic soybean lines harboring one to 3 copies of the original Ds transgene (~ 5Kb), which were determined by southern blot (Figure S4 and Supplementary Table S4). We divided these plants into 4 pools, and performed MinIon sequencing after target enrichment. We were able to identify 29 transgenic insertion loci (Supplementary Table S3), which agree with the southern blot result. This result suggests that our method can be used to map transgene loci with known insertion numbers.

298

299 Discussion

300 Communicated herein is a long read and affordable sequencing-method suitable for high-301 throughput mapping of transgenic alleles in higher plants. This method has at least five 302 advantages. First, it provides reliable information of sequences flanking the insertion position. In 303 most scenarios, over a hundred reads contain the target transgenic allele and associated junction 304 sequences. Second, the method is scalable, by coupling pooling with enrichment steps prior to 305 sequencing the transgenic allele in 51 independent lines were successfully mapped in a single 306 sequencing run. Importantly, the reads containing the target allele are sufficient to accurately 307 map a transgenic allele back to a reference genome. Thus, it is likely that sample pools can be 308 further enlarged. Moreover, the target enrichment method still has potential for additional 309 refinement given the ratios of reads containing the target sequences per total read count are still 310 low (ranging from ~0.5 to 10%). The current enrichment step only incorporates one probe to the 311 target allele. A refinement in the enrichment step might include the use of multiple probes that 312 recognize different regions of the target allele thereby improving specificity and efficiency of 313 capture. Third, the cost per map is relatively low, estimated at \$1360 per 51 samples, excluding 314 labor. If pooling can be expanded, the cost will be further reduced. In addition, after one round 315 purification, we may also use primers that recognize the target and adaptor to amplify the target 316 containing fragments, which will eliminate second round purification and improve specificity, 317 and thereby reduce the cost and allow pooling more samples. Fourth, it is rapid with the 318 timeframe from DNA fragmentation to mapped transgenic allele being approximately one week.

Lastly, since MinION is a portable device that can run at a laptop or desktop computer,

permitting utilization of this tool to modestly equipped laboratories globally, it has unrivaled

- 321 convenience and broad usability.
- 322

323 The introduction of novel genetic variation into higher plants through the tools of transgenic 324 technology offers a powerful way to complement plant breeding programs. Prior knowledge of 325 transgene insertion position facilitates breeding decisions. The MinION-based sequencing 326 strategy outlined here is a powerful, high-throughput tool to determine the insertion position of 327 transgenic alleles in higher plants. The average length of reads containing the Ds element here 328 was ~ 2.1 Kb and the longest reads was ~ 10 kb in the 51 sample-sequencing. This length should 329 be sufficient to cover a portion of a longer transgene with flanking sequencing at one end. Indeed, 330 we used this method to determine a population of soybean lines containing a ~5kb transgene. 331 The average reads containing the Ds elements are more than one hundred, which should be 332 sufficient to identify multiple insertion events in the genome. However, it may still be a 333 challenge to identify transgene copy numbers with the current target enrichment method when 334 multiple copies of the transgene exist in the same location of the genome. In this scenario, the 335 average read length needs to be improved. A possible solution is to perform size selection after 336 each round of target enrichment or after adapter addition to eliminate the short DNA fragments, 337 and thereby to improve the read length, although this may reduce the numbers of reads 338 containing the transgene.

339

340 Although this method is developed to examine a population of soybean lines containing the same 341 transgene, it can be adapted to map the transgene insertion from plants containing different 342 transgenes that do not share common fragments using probes targeting individual transgenes. We 343 noticed variations of reading within a barcode. This may due to the difference of DNAs 344 surrounding the insertion positions, which results in variations in efficiency of ligation or PCR. 345 Moreover, there are reading variations among different pools. This is likely due to that different 346 barcodes may have different optimal PCR conditions, as we currently use the same PCR 347 amplification condition for all pools.

348

349 Acknowledgments

- 350 This work was supported by the National Institute of Health (GM127414 to B.Y), the National
- 351 Science Foundation (Awards OIA-1557417 to B.Y, C.Z, E.C and T.C, IOS-1444581 to T.C, and
- 352 MCB-1808182 to B.Y), the Nebraska Soybean Board (Award #1727 to B.Y and #1728 to C.Z)
- and by a University of Nebraska, Agricultural Research Division grant to D.H.
- 354
- 355 **Conflict of Interest**
- 356 The authors declare Conflict of Intere

References:

Azpiroz-Leehan R, Feldmann KA. 1997. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. *Trends Genet* 13, 152-156.

Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, Lelandais-Briere C, Owens GL, Carrere S, Mayjonade B, Legrand L, Gill N, Kane NC, Bowers JE, Hubner S, Bellec A, Berard A, Berges H, Blanchet N, Boniface MC, Brunel D, Catrice O, Chaidir N, Claudel C, Donnadieu C, Faraut T, Fievet G, Helmstetter N, King M, Knapp SJ, Lai Z, Le Paslier MC, Lippi Y, Lorenzon L, Mandel JR, Marage G, Marchand G, Marquand E, Bret-Mestries E, Morien E, Nambeesan S, Nguyen T, Pegot-Espagnet P, Pouilly N, Raftis F, Sallet E, Schiex T, Thomas J, Vandecasteele C, Vares D, Vear F, Vautrin S, Crespi M, Mangin B, Burke JM, Salse J, Munos S, Vincourt P, Rieseberg LH, Langlade NB. 2017. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. *Nature* 546, 148-152.

Barton KA, Binns AN, Matzke AJ, Chilton MD. 1983. Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. *Cell* **32**, 1033-1043.

Butaye KM, Goderis IJ, Wouters PF, Pues JM, Delaure SL, Broekaert WF, Depicker A, Cammue BP, De Bolle MF. 2004. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. *Plant J* **39**, 440-449.

Castro-Wallace SL, Chiu CY, John KK, Stahl SE, Rubins KH, McIntyre ABR, Dworkin JP, Lupisella ML, Smith DJ, Botkin DJ, Stephenson TA, Juul S, Turner DJ, Izquierdo F, Federman S, Stryke D, Somasekar S, Alexander N, Yu G, Mason CE, Burton AS. 2017. Nanopore DNA Sequencing and Genome Assembly on the International Space Station. *Sci Rep* 7, 18022.

Cohen SN, Chang AC, Hsu L. 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. *Proc Natl Acad Sci U S A* **69**, 2110-2114. **Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW**. 2000. Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. *Genes Dev* **14**, 2869-2880.

Glowacka K, Kromdijk J, Leonelli L, Niyogi KK, Clemente TE, Long SP. 2016. An evaluation of new and established methods to determine T-DNA copy number and homozygosity in transgenic plants. *Plant Cell Environ* **39**, 908-917.

Guo B, Guo Y, Hong H, Qiu LJ. 2016. Identification of Genomic Insertion and Flanking Sequence of G2-EPSPS and GAT Transgenes in Soybean Using Whole Genome Sequencing Method. *Front Plant Sci* **7**, 1009.

Healey A, Furtado A, Cooper T, Henry RJ. 2014. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. *Plant Methods* **10**, 21.

Ingham DJ, Beer S, Money S, Hansen G. 2001. Quantitative real-time PCR assay for determining transgene copy number in transformed plants. *Biotechniques* **31**, 132-134, 136-140. **Jaenisch R, Mintz B**. 1974. Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. *Proc Natl Acad Sci U S A* **71**, 1250-1254.

Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, Fiddes IT. 2018. Nanopore sequencing and assembly of a human genome with ultra-long reads. *Nature Biotechnology*.

Jain M, Olsen HE, Paten B, Akeson M. 2016. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. *Genome Biol* **17**, 239.

Ji J, Braam J. 2010. Restriction site extension PCR: a novel method for high-throughput characterization of tagged DNA fragments and genome walking. *PLoS One* **5**, e10577.

Kim IH, Nagel J, Otten S, Knerr B, Eils R, Rohr K, Dietzel S. 2007. Quantitative comparison of DNA detection by GFP-lac repressor tagging, fluorescence in situ hybridization and immunostaining. *BMC Biotechnol* **7**, 92.

Lepage E, Zampini E, Boyle B, Brisson N. 2013. Time- and cost-efficient identification of T-DNA insertion sites through targeted genomic sequencing. *PLoS One* **8**, e70912.

Liu YG, Chen Y. 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. *Biotechniques* **43**, 649-650, 652, 654 passim.

Liu YG, Mitsukawa N, Oosumi T, Whittier RF. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. *Plant J* 8, 457-463.

Lu H, Giordano F, Ning Z. 2016. Oxford Nanopore MinION Sequencing and Genome Assembly. *Genomics Proteomics Bioinformatics* 14, 265-279.

Michael TP, Jupe F, Bemm F, Motley ST, Sandoval JP, Lanz C, Loudet O, Weigel D, Ecker JR. 2018. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. *Nat Commun* **9**, 541.

Nan GL, Walbot V. 2009. Plasmid rescue: recovery of flanking genomic sequences from transgenic transposon insertion sites. *Methods Mol Biol* **526**, 101-109.

Polko JK, Temanni MR, van Zanten M, van Workum W, Iburg S, Pierik R, Voesenek LA, Peeters AJ. 2012. Illumina sequencing technology as a method of identifying T-DNA insertion loci in activation-tagged Arabidopsis thaliana plants. *Mol Plant* **5**, 948-950.

Rhoads A, Au KF. 2015. PacBio Sequencing and Its Applications. *Genomics Proteomics Bioinformatics* 13, 278-289.

Schmidt MH, Vogel A, Denton AK, Istace B, Wormit A, van de Geest H, Bolger ME, Alseekh S, Mass J, Pfaff C, Schurr U, Chetelat R, Maumus F, Aury JM, Koren S, Fernie AR, Zamir D, Bolger AM, Usadel B. 2017. De Novo Assembly of a New Solanum pennellii Accession Using Nanopore Sequencing. *Plant Cell* **29**, 2336-2348.

Singer T, Burke E. 2003. High-throughput TAIL-PCR as a tool to identify DNA flanking insertions. *Methods Mol Biol* **236**, 241-272.

Southern EM. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. *Journal of Molecular Biology* **98**, 503-517.

Thole V, Alves SC, Worland B, Bevan MW, Vain P. 2009. A protocol for efficiently retrieving and characterizing flanking sequence tags (FSTs) in Brachypodium distachyon T-DNA insertional mutants. *Nat Protoc* **4**, 650-661.

van Leeuwen W, Ruttink T, Borst-Vrenssen AW, van der Plas LH, van der Krol AR. 2001. Characterization of position-induced spatial and temporal regulation of transgene promoter activity in plants. *J Exp Bot* **52**, 949-959.

Wahler D, Schauser L, Bendiek J, Grohmann L. 2013. Next-Generation Sequencing as a Tool for Detailed Molecular Characterisation of Genomic Insertions and Flanking Regions in Genetically Modified Plants: a Pilot Study Using a Rice Event Unauthorised in the EU. *Food Analytical Methods* **6**, 1718-1727.

Weising K, Schell J, Kahl G. 1988. Foreign genes in plants: transfer, structure, expression, and applications. *Annu Rev Genet* 22, 421-477.

Yuanxin Y, Chengcai A, Li L, Jiayu G, Guihong T, Zhangliang C. 2003. T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. *Nucleic Acids Res* **31**, e68.

Figure legends:

Fig. 1. MinION sequencing without *Ds***-enrichment.** (**A**) The schematic diagram of *Ds* insertion in soybean genome. The length of *Ds* insertion is 1166bp. The positions of forward (F) and reverse (R) primers used for PCR genotyping are shown. (**B**) Workflow of direct genome sequencing without target-enrichment. Genomic DNA was end-repaired and dA-tailed, ligated with sequencing adapters and sequenced on the FLO-MIN106 flow cell. (**C**) The schematic diagram of the *Ds* insertion in Glyma.15g128600 gene. Two reads are shown. The first one

covers 2347bp in the 5' flanking region and 3047bp in the 3' flanking region. The second one contains 370bp flanking sequence in the 3' region. (**D**) PCR validation of the *Ds* insertion in Line 1. Thorne was used as control plant. The length of DNA fragment without the *Ds* element in control plant is 360 bp, while the fragment length from Ds-containing Line 1 is 1526 bp.

Fig. 2. The workflow of the enrichment of *Ds*-containing fragments in DNA libraries

(A) The schematic diagram of oligo probe used to capture the *Ds* element. The probe is dual biotinylated at 5' end (green diamond). (B) The workflow of sequencing the enriched *Ds*-containing DNA fragments. Genomic DNA was sheared and ligated to PCR barcode adapters. The *Ds*-containing fragments were enriched one or two rounds. The enriched fragments were pooled and sequenced.

Fig. 3. Sequencing results after one-round enrichment of the Ds-containing fragments.

(A) and (B) Schematic diagram of the flanking sequences of Line 2 (A) and Line 3 (B). Partial sequences of reads were shown. (C) PCR validation of the Ds insertion in Line 2 and Line 3. Thorne was used as control plant. The lengths of the DNA fragment without the *Ds* element are 612bp for Line 2 and 689 bp for Line 3. With the *Ds* elements, the lengths of the DNA fragments are 1778 bp for Line 2 and 1855 bp for Line 3.

Fig. 4 Sequencing results after two-round enrichment of the Ds-containing fragments. (A)

and (**B**) Efficiency of one-round (A) and two-round (B) enrichment of the *Ds* element-containing fragments. 2% of samples before and after probe-enriching were used to perform qPCR. The amount of target fragments was normalized to that of internal control. (**C**) Schematic diagram of the flanking sequences of Line 15. Partial sequences of reads were shown. (**D**) PCR validation of the *Ds* insertion in Line 13, Line 14, and Line 15. The three individual lines were examined with three pairs of primers, respectively. Each primer pair (labeled above the picture) recognizes a potential insertion position of the *Ds* element, identified by sequencing. Line 13 containing a *Ds* insertion in Glyma15G128600 gene produced a 1719 bp fragment, while Line 14 and Line 15 without insertion in Glyma05G163800 gene produced a 1628 bp fragment, while Line 13 and Line 15 without insertions in this gene generated 462 bp fragments (indicated as arrows).

Line 15 containing a *Ds* insertion in Glyma11G181700 gene produced a 1560 bp fragment, while Line 13 and Line 14 without insertions in this gene generated 394 bp fragments (indicated as arrows).

Table 1, Sequencing result of one line without enrichment

- Table 2. Sequencing result of two lines with one-round enrichment
- Table 3. Sequencing result of the 15-sample pools
- Table 4. Sequencing result of the 50-sample pools

Supplementary data

Fig. S1. The diagram of the Ds system.

- Fig. S2. Agarose gel electrophoresis of sheared DNA. 8 ug genomic DNA samples in 150 ul ddH2O were fragmented to 8 kb
- Fig. S3. Size distribution of readings containing the Ds elements.
- Fig. S4. Copy numbers in various soybean transgenic lines determined by Southern Blot.
- Table S1. Oligo DNAs used in this study
- Table S2. Positions of Ds insertion identified in the 15-sample sequencing
- Table S3. Positions of Ds insertion identified in the 50-sample sequencing
- Table S4. Positions of *T-DNA* insertion identified in the 18-sample sequencing

Table 1. Sequencing result of one line without enrichment

Total reads number		Longest read (bp)	Target reads number	Percent of target reads	Longest read with targets (bp)
Line 1	1061117	351899	2	0.00019	6806

Note: Longest read indicates the longest read in all readings.

Table 2. Sequencing result of two lines with one-round enrichment

	Total readsLongest readnumber(bp)		Target reads number	Percent of target reads	Longest read with targets (bp)
Line 2	357765	20453	203	0.057	6524
Line 3	326189	48971	438	0.134	6725

Note: Longest reads indicate the longest reads in the individual barcoded lines.

Table 3. Sequencing result of the 15-sample pools

	Line number	Total reads number	Longest read (bp)	Target reads number	Percent of target reads	Longest read with targets (bp)
DNA pool 1	Line 4-6	351722	16352	1856	0.53	5100
DNA pool 2	Line 7-9	490852	21457	30937	6.30	9317
DNA pool 3	Line 10-12	117266	8000	3165	2.70	5770
DNA pool 4	Line 13-15	523192	25983	36388	6.95	13213
DNA pool 5	Line 16-18	234809	14215	5412	2.30	6008

Note: Line number indicates the pooled Ds-containing lines. Longest reads indicate the longest reads in each pool.

Table 4. Sequencing result of the 51-sample pools

	Line number	Total reads number	Longest read (bp)	Target reads number	Percent of target reads	Longest read with targets (bp)
DNA pool 1	Line 19-26	20317	8512	2104	10.36	6096
DNA pool 2	Line 27-34	47257	9995	212	0.45	6042
DNA pool 3	Line 35-42	19758	6953	1569	7.94	5476

DNA pool 4	Line 43-50	181763	10577	14485	7.97	8178
DNA pool 5	Line 51-59	63227	10137	5698	9.01	7007
DNA pool 6	Line 60-69	282690	10397	16146	5.71	8691

Note: Line number indicates the pooled Ds-containing lines. Longest reads indicate the longest reads in each pool.

Fig. 2

MinION Sequencing

Fig. 3

