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The	mammalian	 liver	 is	 composed	 of	 repeating	 hexagonal	 units	 termed	 lobules.	 Spatially-
resolved	 single-cell	 transcriptomics	 revealed	 that	 about	 half	 of	 hepatocyte	 genes	 are	
differentially	 expressed	 across	 the	 lobule.	 Technical	 limitations	 impede	 reconstructing	
similar	 global	 spatial	 maps	 of	 other	 hepatocyte	 features.	 Here,	 we	 used	 zonated	 surface	
markers	 to	 sort	 hepatocytes	 from	 defined	 lobule	 zones	 with	 high	 spatial	 resolution.	 We	
applied	transcriptomics,	microRNA	array	measurements	and	Mass-spectrometry	proteomics	
to	 reconstruct	 spatial	 atlases	 of	 multiple	 zonated	 hepatocyte	 features.	 We	 found	 that	
protein	 zonation	 largely	 overlapped	 mRNA	 zonation.	 We	 identified	 zonation	 of	 key	
microRNAs	such	as	miR-122,	and	inverse	zonation	of	microRNAs	and	their	hepatocyte	gene	
targets,	 implying	 potential	 regulation	 through	 zonated	 mRNA	 degradation.	 These	 targets	
included	 the	 pericentral	 Wnt	 receptors	 Fzd7	 and	 Fzd8	 and	 the	 periportal	 Wnt	 inhibitors	
Tcf7l1	 and	 Ctnnbip1.	 Our	 approach	 facilitates	 reconstruction	 of	 spatial	 atlases	 of	multiple	
cellular	features	in	the	liver	and	in	other	structured	tissues.	

	

Introduction	

The	 mammalian	 liver	 is	 a	 highly	 structured	 organ,	 consisting	 of	 repeating	 hexagonally	
shaped	 units	 termed	 ‘lobules’	 (Fig.	 1a).	 In	 mice,	 each	 lobule	 consists	 of	 around	 9-12	
concentric	layers	of	hepatocytes1.	Blood	flowing	from	portal	nodes	(PN)	at	the	corner	of	the	
lobules	 towards	 draining	 central	 veins	 (CV)	 generates	 gradients	 of	 oxygen,	 nutrients	 and	
hormones	 along	 the	 lobule	 radial	 axis.	 Additionally,	 Wnt	 morphogens	 secreted	 by	
endothelial	 cells	 surrounding	 the	 CV	 create	 a	 graded	 morphogenetic	 field2.	 This	 graded	
microenvironment	gives	rise	to	spatial	heterogeneity	in	gene	expression	among	hepatocytes	
residing	at	different	lobule	layers,	a	phenomenon	that	has	been	termed	‘liver	zonation’3,4.		

We	 have	 recently	 used	 spatially-resolved	 single	 cell	 transcriptomics	 to	 uncover	 the	 global	
zonation	patterns	of	hepatocyte	gene	expression5.	We	 found	 that	around	half	of	all	 genes	
expressed	 in	 hepatocytes	 are	 zonated,	with	 specific	 functional	 specialization	 that	 seem	 to	
match	 the	 zonated	 microenvironment.	 This	 global	 zonation	 suggests	 that	 similar	 spatial	
heterogeneity	of	hepatocytes	may	also	exist	 for	other	cellular	 features,	 including	proteins,	
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metabolites	and	regulatory	molecules	such	as	microRNAs.	However,	achieving	similar	global	
zonation	maps	for	cellular	features	beyond	mRNA	has	encountered	technical	difficulties.		

Immunohistochemistry	enables	measurements	of	protein	levels	with	high	spatial	resolution	
but	it	is	low-throughput	and	often	limited	by	lack	of	availability	of	antibodies.		Laser	capture	
microdissection	 (LCM)	 and	 digitonin	 perfusion	 enable	 extracting	 large	 numbers	 of	
periportally	 or	 pericentrally	 enriched	 cells6,7.	 However,	 these	 techniques	 are	 limited	 in	
spatial	 resolution	 and	 purity,	 since	 they	measure	 both	 hepatocytes	 and	 non-parenchymal	
cells.	Single	cell	measurements	of	cellular	features	beyond	mRNA	are	starting	to	emerge8,9,	
however	 these	 technologies	 are	 less	 mature	 in	 tissues,	 compared	 to	 bulk	 analysis.	 A	
methodology	that	would	enable	massive	isolation	of	pure	cell	types	from	defined	layers	with	
high	spatial	resolution	would	enable	generating	organ	spatial	atlases	of	key	features	such	as	
methylation	patterns,	 chromatin	conformations,	microRNA	content	and	proteomics.	 In	 the	
liver,	 such	 measurements	 would	 broaden	 our	 understanding	 of	 the	 regulation	 of	 liver	
zonation	and	could	be	used	in	order	to	more	precisely	model	liver	metabolic	function.	

In	 this	 work,	 we	 developed	 an	 approach	 termed	 ‘spatial	 sorting’,	 that	 utilizes	 surface	
markers	with	discordant	zonation	profiles	 to	 isolate	massive	amounts	of	hepatocytes	 from	
defined	 lobule	 layers	 (Fig.	 1b).	 We	 used	 these	 for	 high-throughput	 profiling	 of	 mRNAs,	
microRNAs	and	proteins	(Fig.	1c),	revealing	novel	features	of	liver	zonation.	These	include	a	
comprehensive	 proteomic	 zonation	map	 and	 the	 identification	 of	 zonated	microRNA	with	
discordantly	 zonated	 target	 genes.	 Our	 approach	 can	 be	 readily	 applied	 to	 profile	 other	
cellular	features	of	hepatocytes	and	other	cell	types	in	health	and	disease.		

	
Fig.	1	|	Spatial	sorting	approach	for	isolating	large	amounts	of	hepatocytes	from	distinct	layers	with	
high	resolution.	a,	 Identification	of	zonated	surface	markers.	cv	–	central	vein.	pn	–	portal	node.	b,	
Fluorescence-activated	cell	sorting	(FACS)	enables	defining	gates	that	enrich	for	zonated	hepatocytes	
according	to	their	surface	marker	expression.	c,	Spatially-sorted	hepatocytes	can	be	measured	using	
multiple	assays	that	require	large	input	material,	such	as	RNA-seq,	Mass	spectrometry	and	microRNA	
microarray	applied	in	the	current	study.		

Results	

Spatial	sorting	enables	 isolating	bulk	hepatocyte	populations	from	different	lobule	 layers	
with	high	spatial	resolution	

We	 used	 our	 recently	 reconstructed	 mRNA	 zonation	 map5	 to	 identify	 zonated	 surface	
markers	with	a	large	dynamic	range	in	expression,	spanning	several	radial	lobule	layers	(Fig.	
1a,	Supplementary	Fig.	1a).	We	argued	that	the	combined	staining	of	two	inversely	zonated	
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surface	proteins	would	be	informative	for	inferring	the	lobule	positions	of	single	hepatocytes	
(Fig.	1b),	which	would	facilitate	cell	sorting	of	many	cells	according	to	their	spatial	origin	(Fig.	
1b-c).	 CD73,	 encoded	 by	 the	 gene	 Nt5e,	 is	 an	 enzyme	 converting	 mononucleotides	 to	
nucleosides	 that	exhibits	pericentral	 zonation.	E-cadherin,	a	 cell-cell	 adhesion	glycoprotein	
encoded	by	Cdh1,	exhibits	periportal	zonation10	 (Fig.	2a).	We	used	 immunofluorescence	to	
validate	the	zonation	of	these	two	surface	markers	at	the	protein	level	as	well	(Fig.	2b-c).		

We	 perfused	 livers	 to	 dissociate	 single	 cells	 and	 performed	 Fluorescence-activated	 cell	
sorting	 (FACS)	 of	 isolated	 hepatocytes	 stained	 with	 antibodies	 against	 CD73	 labeled	 with	
APC	 and	 E-cadherin	 labeled	 with	 PE	 (Methods).	 We	 filtered	 hepatocytes	 by	 size	 and	 by	
selecting	cells	that	were	negative	for	the	endothelial	cell	marker	CD31	and	the	immune	cell	
marker	CD45,	to	avoid	pairs	of	hepatocytes	and	non-parenchymal	cells	(NPCs)11.	We	further	
filtered	 out	 non-viable	 cells	 and	 selected	 4n	 hepatocytes	 using	 Hoechst	 staining	 (Fig.	 3a).	
Stratifying	 hepatocytes	 by	 ploidy	 was	 important	 to	 obtain	 precise	 lobule	 localization	
(Methods,	 Supplementary	 Fig.	 1b-c).	 The	 selected	 hepatocytes	 displayed	 strong	 anti-
correlation	 in	 the	 fluorescence	 of	 CD73	 and	 E-cadherin,	 as	 expected	 from	 the	 zonated	
expression	patterns	(Fig.	3b).		

	
Fig.	 2	 |	 CD73	 and	 E-cadherin	 are	 inversely	 zonated	 surface	markers.	 a,	Nt5e,	 encoding	 CD73	 and	
Cdh1,	encoding	E-cadherin	are	surface	markers	that	are	zonated	at	the	mRNA	level.	Data	taken	from	
5.	 b,	 CD73	 and	 E-cadherin	 proteins	 are	 zonated.	 Shown	 is	 an	 example	 of	 a	 lobule	 stained	 by	
immunofluorescence	with	antibodies	against	CD73	(red)	and	E-cadherin	 (green).	Cytoplasmic	yellow	
blobs	 are	 tissue	 auto-fluorescence.	 Blue	 –	 DAPI	 nuclear	 stain.	 c,	 Quantification	 of	
immunofluorescence	 images	 (8	 lobules	 from	three	mice).	Patches	are	SEM	across	 the	eight	 lobules.	
CV	–	central	vein,	PN	–	portal	node.	

We	defined	eight	gates	based	on	 the	 combined	 fluorescence	of	CD73	and	E-cadherin	 (Fig.	
3b).	 To	 ensure	 reproducibility,	 the	 gates	 were	 defined	 as	 percentiles	 of	 the	 marginal	
expression	 levels	 of	 each	 surface	 marker,	 compared	 to	 unstained	 control	 (Methods).	 To	
validate	that	our	defined	gates	represent	sequential	 lobule	 layers,	we	performed	bulk	RNA	
sequencing	 (RNAseq)	 on	 10,000	 sorted	 hepatocytes	 from	 each	 gate	 and	 compared	 the	
zonation	 profiles	 to	 our	 spatially-resolved	 scRNAseq	 map5.	 Zonation	 profiles	 were	 highly	
concordant	(Fig.	3c,	Supplementary	Table	1),	demonstrating	the	feasibility	of	our	approach	
for	isolating	bulk	hepatocytes	with	high	spatial	resolution.	
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Fig.	 3	 |	 Spatial	 sorting	 reliably	 captures	 the	different	 lobule	 layers.	 a,	 FACS	gating	 strategy.	 FSC-A	
and	 SSC-A	 were	 used	 for	 hepatocytes	 size	 selection.	 Non-viable	 cells	 were	 filtered	 out	 by	 Zombie	
Green	 Viability	 kit.	 Staining	with	 CD31	 and	 CD45	 antibodies	 enabled	 to	 gate	 out	 non-parenchymal	
cells.	 Tetraploid	 hepatocytes	were	 selected	 based	 on	Hoechst	 stain.	b,	 Distribution	of	 the	 included	
cells	 (40-60%	 from	all	 events)	 according	 to	 intensities	of	CD73	and	E-cadherin.	Grey	 lines	mark	 the	
unstained	 control	 limits,	 rectangles	 and	 numbers	 mark	 the	 gates	 used	 for	 spatially-sorted	
populations.	c,	Max-normalized	expression	patterns	of	selected	genes	along	the	different	FACS	gates	
in	 blue	 (N=5	 mice),	 compared	 with	 interpolated	 max-normalized	 zonation	 profiles	 based	 on	 ref.5	
(Methods)	in	yellow.	Line	patches	represent	SEM.		

Mass	spectrometry	proteomic	measurements	of	spatially-sorted	hepatocytes	

We	 next	 applied	 spatial	 sorting	 to	 reconstruct	 the	 zonation	 patterns	 of	 the	 hepatocyte	
proteome.	 	To	this	end,	we	sorted	100,000	hepatocytes	from	each	of	the	eight	FACS	gates	
for	 five	 ad-lib.	 mice	 and	 performed	 mass-spectrometry	 proteomics.	 For	 each	 mouse	 and	
gate	 we	 also	 isolated	 10,000	 cells	 and	 applied	 bulk	 RNAseq.	 The	 Mass-spectrometry	
measurements	 yielded	 3,210	 identified	 proteins	 (Methods,	 Supplementary	 Table	 2).	 The	
hepatocyte	 protein	 content	 averaged	 over	 all	 FACS	 gates	 was	 highly	 correlated	 with	 	 a	
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previous	bulk	measurements	compared	to	ref.12,	with	Spearman’s	r	=	0.75,	(Supplementary	
Fig.	2).		

Our	 dataset	 included	 3,051	 proteins	 with	 matched	 mRNA	 (Supplementary	 Table	 3).	 The	
means	of	the	protein	and	mRNA	levels	over	all	gates	were	positively	correlated	(Spearman’s	
r	=	0.5,	p-val	=	1.2x10-181).	Yet,	for	some	proteins,	there	was	a	marked	difference	in	protein	
and	mRNA	relative	abundances	(Fig.	4).	These	predominantly	included	hepatocyte	secreted	
proteins.	 For	 example,	 Alb,	 encoding	 the	 secreted	 carrier	 protein	 albumin,	 was	 the	most	
highly	abundant	hepatocyte	mRNA	(0.050±0.004	of	cellular	transcripts)	but	was	ranked	only	
64	 in	 protein	 levels	 (0.0034±0.0002	 of	 cellular	 proteins).	 Other	 secreted	 proteins,	 which	
were	 ranked	 significantly	 higher	 in	 mRNA	 compared	 to	 the	 protein	 level	 included	
apolipoproteins	 encoded	 by	 Apoa1,	 Apoa2,	 Apoe,	 alpha-antitrypsin	 encoded	 by	 Serpin	
genes,	 complement	 system	 proteins	 and	 vitronectin,	 encoded	 by	 Vtn	 (Fig.	 4a).	 A	 similar	
discordance	between	 the	 levels	of	mRNAs	and	proteins	 for	 secreted	genes	was	previously	
observed	in	mammalian	cell	lines13.	Ribosomal	mRNAs	and	proteins	had	a	protein	to	mRNA	
ratio	close	to	one,	whereas	genes	of	the	TCA	cycle	had	substantially	higher	protein	to	mRNA	
levels	 (Fig.	 4b,	 Supplementary	 Fig.	 2).	 Cps1,	 encoding	 the	 urea	 cycle	 enzyme	 carbamoyl-
phosphate	 synthase	 was	 ranked	 first	 in	 protein	 content	 (0.0682±0.0066),	 but	 only	 478	 in	
mRNA	 expression	 (2.88x10-4±5.4x10-5	 of	 cellular	 transcripts,	 Fig.	 4a).	 	 Thus,	 the	 relative	
expression	levels	of	mRNAs	and	proteins	differ	for	distinct	functional	classes.	

	
Fig.	 4	 |	 Correlations	 between	 mRNA	 and	 protein	 levels.	 a,	 Proteomaps	 for	 visualizing	 the	
distributions	of	the	mean	mRNA	and	mean	proteins	over	all	FACS	gates.	Each	tile	represents	a	gene,	
size	 is	 proportional	 to	 its	 fraction	 in	 the	 total	 dataset.	 Visualization	was	 done	 using	 https://bionic-
vis.biologie.uni-greifswald.de/14–16.	 Color	 classification	 key	 for	 selected	 categories	 is	 shown	 at	 the	
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bottom.	b,	 Gate-averaged	mRNA	and	protein	 levels	 are	mildly	 correlated	 (Spearman	 r=0.5).	 Shown	
are	 three	KEGG	 functional	 classifications	with	distinct	 ratios	of	mRNAS	and	proteins.	Red	 is	a	 linear	
regression	line	(Methods). 

Zonation	patterns	of	the	hepatocyte	proteome	

We	next	examined	whether	the	hepatocyte	proteome	exhibited	zonated	patterns.	We	found	
that	 55%	 of	 the	 hepatocyte	 proteins	 (1,672	 out	 of	 3,051)	 were	 significantly	 zonated	
(FDR<0.05,	Kruskal-Wallis	test,	Fig.	5a).	Periportal	and	pericentral	enriched	KEGG	pathways	
largely	recapitulated	previous	zonation	studies.	Bile	acid	biosynthesis,	lipid	metabolism	and	
P450	 xenobiotic	metabolism	were	 pericentrally	 zonated,	 while	 gluconeogenesis,	 oxidative	
phosphorylation	 and	 complement	 and	 coagulation	 cascades	 were	 periportally	 zonated	
(Supplementary	Fig.	3).		

The	 combined	measurements	 of	 both	mRNA	 and	 proteins	 from	 the	 same	 spatially-sorted	
gates	enabled	a	controlled	comparison	of	protein	and	mRNA	zonation	patterns	(Fig.	b-c).	The	
periportal	 biases	 (the	 difference	 between	 the	 expression	 in	 the	 periportal	 and	 pericentral	
gates	 divided	 by	 the	 mean	 expression)	 were	 significantly	 correlated	 between	 mRNA	 and	
proteins,	indicating	similar	mRNA	and	protein	zonation	profiles	for	most	genes	(Spearman’s	r	
=	0.39,	p-val	=	1.45x10-110,	for	protein	and	mRNA	with	minimal	expression	level	higher	than	
10-5	r=0.45,	p-val	=	1.71x10-79	Fig.	b-c).	Notably,	some	genes	exhibited	discordant	zonation	of	
mRNAs	and	proteins.	These	included	genes	that	were	zonated	at	the	protein	but	not	mRNA	
level,	such	as	Rbp4,	Idh3b,	Mrpl43	and	genes	that	were	zonated	at	the	mRNA	but	not	at	the	
protein	level,	such	as	A1cf,	Clmn	and	Lsr	(Fig.	5c).	The	discordant	genes	also	included	Hnf4a,	
a	 key	 hepatocyte	 transcription	 factor4,17.	 The	 mRNA	 levels	 of	 Hnf4a	 were	 not	 zonated,	
whereas	the	protein	content	was	higher	in	the	periportal	gates.	This	periportal	protein	bias	
is	 in	 line	 with	 previously	 reported	 involvement	 of	 Hnf4a	 in	 periportal	 repression	 of	 Wnt	
regulated	pericentral	genes17–19	and	induction	of	periportally	expressed	targets20.	Thus,	our	
analysis	 indicates	 that	 the	 majority	 of	 proteins	 and	 mRNAs	 are	 similarly	 zonated,	 and	
highlight	genes	with	potential	post-transcriptional	regulation.	
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Fig.	5	|	A	spatial	atlas	of	 the	hepatocyte	proteome.	a,	Zonation	of	hepatocyte	proteins.	Genes	are	
sorted	by	the	zonation	profile	center	of	mass.	Selected	genes	shown	on	the	left.	Protein	levels	were	
normalized	to	the	maximal	 level	across	all	FACS	gates.	b,	Periportal	bias	 in	expression	of	mRNA	and	
proteins,	calculated	as	the	difference	between	the	two	periportal	gates	and	the	two	pericentral	gates,	
normalized	by	the	mean	expression	across	all	gates.	Light	grey	–	all	matched	mRNA	and	proteins.	Dark	
grey	–	mRNA	and	proteins	with	minimal	expression	fraction	higher	than	10-5	 in	any	of	 the	gates	 for	
both	mRNA	and	protein.	Spearman’s	r	is	indicated	for	each	dataset.	Dashed	line	marks	a	slope	of	1.	c,	
Expression	profiles	of	mRNA	(grey)	and	their	respective	proteins	(red).	Mean	of	five	mice	 is	plotted.	
Error	bars	represent	SEM.	
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Zonation	of	the	hepatocyte	microRNA	content	

We	next	asked	whether	spatial	sorting	could	be	used	to	explore	the	regulatory	mechanisms	
that	shape	hepatocyte	zonation.	MicroRNAs	(miRNAs/miRs)	are	short	RNA	oligonucleotides,	
roughly	22	bp	 long,	 that	 target	specific	mRNAs	 through	Watson-Crick	base-pairing,	 leading	
to	increased	degradation	or	decreased	translation	of	target	transcripts21.	Regulation	by	miRs	
seems	to	be	important	in	liver	development,	metabolism	and	homeostasis	22,23.	Notably,	miR	
regulation	may	 impact	 liver	 zonation,	 as	mice	 lacking	 the	miR	 central	 processing	 element	
Dicer	 in	 hepatocytes	 exhibit	 profound	 changes	 in	 zonation	 patterns24.	 We	 reasoned	 that	
combined	 global	measurements	of	 the	 zonation	profiles	 of	miRs	 and	mRNA	 could	 identify	
potential	miR-target	 regulatory	 interactions	 through	the	detection	of	miR-target	pairs	with	
anti-correlated	expression	profiles25.	

To	 this	 end,	 we	 performed	 microRNA	 microarray	 measurements	 on	 spatially	 sorted	
hepatocytes	from	three	mice.	We	detected	302	miRs	that	were	expressed	in	hepatocytes	in	
all	three	mice.		We	further	focused	on	137	miRs	that	were	classified	as	“high	confidence”	in	
miRBase26.	 45%	 (61/137)	 of	 these	 high-confidence	 hepatocyte-expressed	 miRs	 were	
significantly	zonated	(FDR	≤	0.2,	Kruskal-Wallis	test	with	Benjamini-Hochberg	correction,	Fig.	
6a).	 Most	 zonation	 profiles	 (48/61)	 were	 mildly	 pericentral	 with	 4	 ≤	 COM	 ≤	 4.5	 (COM	 =	
center	of	mass,	Methods),	while	seven	others	showed	strong	periportal	zonation	(COM	≥	6).	
We	 measured	 the	 expression	 of	 six	 of	 the	 miRs	 predicted	 to	 be	 zonated	 using	 qRT-PCR,	
obtaining	 excellent	 correspondence	 with	 the	 microarray	 measurements	 (mean	 rPearson	 =	
0.83±0.23,	Fisher’s	method	𝑝	<	10-37,	Fig.	6b,	Methods).	

The	 zonated	miRs	 included	miRs	 previously	 described	 to	 play	 a	 role	 in	 liver	 development,	
metabolism	and	regeneration.	MiR-122-5p,	the	most	abundant	miR	in	our	measurements,	in	
agreement	 with	 previous	 studies27,	 comprised	 46.5±3.5%	 of	 the	 total	 miR	 content	 in	
hepatocytes.	We	 found	 that	miR-122-5p	was	 periportally	 zonated,	with	 a	 1.15-fold	 higher	
expression	 in	 the	 periportal	 gates	 compared	 to	 the	 pericentral	 gates	 (p-value	 <	 0.01,	
Kruskall-Wallis	test).	miR-122-5p	was	significantly	anti-correlated	with	its	targets	compared	
to	 randomized	 genes	 (Methods),	 indicating	 a	 potential	 regulatory	 role	 in	 shaping	 their	
zonation.	 Prominent	 pericentral	 miR-122-5p	 targets	 (genes	 that	 were	 repressed	 in	 their	
expression	 in	 the	 periportal	 layers	 in	 which	 miR-122	 was	 more	 abundant)	 included	 the	
canonical	miR-122-5p	target	gene	Cs,	encoding	citrate	synthase,	as	well	as	Klf6	and	Slc35a428	
(Supplementary	Fig.	4).	MiR-30a-5p	exhibited	periportal	 zonation	 (periportal	 to	pericentral	
ratio	of	1.19,	p=0.007,	Fig.	6a,	Supplementary	Table	4).	Mtdh,	a	known	target	of	miR-30a-5p,	
previously	 shown	 to	 change	 in	 expression	 in	 liver	 tumors29,	 was	 pericentral,	 inversely	
zonated	to	its	miR	regulator		(rSpearman	=	-0.81,	p	=	0.022,	Supplementary	Table	5).	Additional	
zonated	miRs	 included	the	pericentral	miR-103-3p	and	miR-107-3p	and	the	periportal	miR-
802-5p,	which	have	been	previously	shown	to	modulate	hepatic	glucose	sensitivity30,31	(Fig.	
6a).	In	summary,	our	measurements	revealed	profound	zonation	of	key	hepatic	miRs.	
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Fig.	 6	 |	 Zonated	expression	of	hepatocyte	miRs.	 a,	Mean	expression	 vs.	 zonation	profile	 center	of	
mass	for	all	detected	high-confidence	miRs.	Selected	miRs	are	labelled.	Dashed	red	lines	denote	the	
median	of	each	quantity.	Red	dots	are	miRs	that	are	significantly	zonated	(FDR	≤	0.2).	b,	Validations	of	
hepatocyte	 miR	 zonation	 profiles	 using	 qRT-PCR.	 Profiles	 for	 both	 qRT-PCR	 and	 microarrays	 are	
normalized	 by	 expression	 levels	 of	 miR-103-3p	 (rPearson	 =	 0.83±0.23,	 Methods).	 Error	 bars	 indicate	
SEM.	Discrepancies	between	qRT-PCR	and	microarray	profiles	for	let-7e-5p,	miR-376a	and	miR-802-5p	
may	be	due	to	limited	sensitivity	of	the	microarray	at	low	expression	levels.	

Computational	approach	for	detection	of	putative	miR-regulated	hepatocyte	target	genes	
using	zonation	profiles	

Spatially-stratified	measurements	 of	miRs	 and	mRNAs	 could	 be	 use	 identify	 potential	miR	
regulation	at	 the	mRNA	degradation	 level.	Such	regulation	would	be	manifested	 in	 inverse	
correlations	 between	 the	 zonation	 profiles	 of	 a	 target	mRNA	and	 its	 regulating	miR(s).	 To	
identify	 such	 interactions,	 we	 constructed	 a	 miR-mRNA	 regulatory	 network	 based	 on	
predictions	 from	 TargetScan32	 (Supplementary	 Table	 5).	 We	 included	 all	 hepatocyte-
expressed	 genes	 and	 interactions	 with	 high	 confidence	 (Methods).	 The	 resulting	 network	
included	 33,672	 interactions	 between	 131	 miRs	 and	 6,650	 genes.	 For	 each	 gene,	 we	
constructed	the	cumulative	regulating	miR	profile,	by	summing	up	the	zonation	profiles	of	all	
miRs	with	a	predicted	regulatory	interaction	for	the	considered	target	gene	(Supplementary	
Table	 6).	 We	 computed	 the	 Spearman	 correlation	 between	 the	 gene’s	 mRNA	 zonation	
profile	 and	 the	 cumulative	 miR	 zonation	 profile	 and	 compared	 it	 to	 randomized	 degree-
preserving	networks	(Fig.	7a,	Methods).		

Our	 analysis	 identified	 45	 genes	 that	 were	 significantly	 more	 anti-correlated	 with	 their	
regulating	miRs	compared	to	random	(FDR	≤	0.2,	Supplementary	Table	6).	Pericentral	target	
genes	included	Mgst1,	which	encodes	the	enzyme	microsomal	glutathione	S-transferase	that	
conjugates	glutathione	to	hydrophobic	electrophiles.	Periportal	target	genes	included	cyclin-
dependent	kinase	inhibitor	1	(also	known	as	p21),	encoded	by	Cdkn1a.	Cdkn1a	showed	anti-
correlation	with	10	of	its	11	regulating	miRs	(median	rSpearman	=	-0.79,	Supplementary	Fig.	5),	
including	 miR-20a-5p,	 miR-20b-5p,	 miR-22-3p	 miR-93-5p	 and	 miR-106b-5p	 that	 were	
experimentally	validated	as	Cdkn1a	regulators33,34.		Alpha-1-acid	glycoprotein	1	(AGP1),	and	
Alpha-1-acid	glycoprotein	2	(AGP2),	encoded	by	the	genes	Orm1	and	Orm2	respectively,	are	
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secreted	 plasma	 carrier	 proteins	 that	 were	 periportal	 target	 genes,	 significantly	 anti-
correlated	 with	 all	 of	 their	 regulating	 miRs	 miR-20a-5p,	 miR-20b-5p,	 miR-93-5p	 and	 miR-
106b-5p	(mean	rSpearman	 	=	 -0.994±0.011,	Fisher’s	method	 	p	<	10-14,	Fig.	7b,	Supplementary	
Fig.	 5).	 These	 miRs,	 which	 also	 regulate	 Cdkn1a,	 are	 considered	 part	 of	 the	 same	 “miR	
family”	 due	 to	 their	 high	 seed	 sequence	 similarity33	 and	 exhibit	 similar	 zonation	 patterns	
(Supplementary	Fig.	5),	suggesting	modular	expression	and	activity	of	this	miR	family.	

	

Regulation	of	Wnt	signaling	components	by	miRNA	

Wnt	is	a	major	factor	that	shapes	hepatocyte	zonation35–40.	Wnt	and	Rspondin	morphogens	
are	 secreted	 by	 pericentral	 liver	 endothelial	 cells2,11,41–43,	 resulting	 in	 higher	 pericentral	
expression	 of	 Wnt-activated	 genes	 and	 lower	 pericentral	 expression	 of	 Wnt-inhibited	
genes5,35.	 Notably,	 hepatocyte-specific	 Dicer	 knock-out	 mice	 have	 perturbed	 zonation	 of	
Wnt-regulated	 genes,	 such	 as	Glul	 and	Arg124.	 This	 suggests	 that	miRs	 could	 differentially	
modulate	hepatocyte	Wnt	signaling	in	different	lobule	zones.	To	explore	this	hypothesis	we	
analyzed	 the	 miR-target	 sub-network	 that	 includes	 genes	 associated	 with	 Wnt	 signal	
processing	(Methods,	Fig.	7c-d).	This	analysis	uncovered	several	key	components	of	the	Wnt	
network	that	exhibit	zonation	in	hepatocytes	and	that	have	spatially-anticorrelated	zonated	
miRs.	 The	 Wnt	 receptors	 Fzd7	 and	 Fzd8	 were	 more	 highly	 expressed	 in	 pericentral	
hepatocytes,	whereas	 their	 regulating	miRs	miR149-5p,	miR-30a-5p,	miR-30a-3p,	miR-21a-
5p,	miR-99a-5p	and	miR-100-5p	were	more	abundant	in	periportal	hepatocytes.	In	contrast,	
inhibitory	 components	 of	 Wnt	 signaling	 such	 as	 Ctnnbip1	 and	 Tcf7l1	 were	 periportally	
zonated.	 Tcf7l1,	 also	 known	 as	 Tcf3,	 is	 a	 transcriptional	 repressor	 of	Wnt-activated	 genes	
that	is	inactivated	by	binding	of	β-catenin44.	This	periportally	zonated	gene	is	anti-correlated	
with	its	regulators	miR-212-3p,	miR-423-5p	and	miR-5107-5p	(Fig.	7d).	Ctnnbip1,	encoding	β-
catenin	interacting	protein,	prevents	the	binding	of	β-catenin	to	TCF7L1	and	thus	its	removal	
and	activation	of	Wnt	target	genes45.	The	miR	regulators	of	this	periportal	gene,	miR-188-5p	
and	miR-3102-5p,	were	pericentrally-zonated	(Fig.	7d).	Our	analysis	thus	highlights	zonated	
components	of	hepatocyte	Wnt	signaling	and	their	potential	regulation	by	miRs.	
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Fig.	 7	 |	Network	 analysis	 of	miR-target	 interactions.	 a,	 Schematic	 illustration	 of	 the	 algorithm	 for	
inferring	 significant	 interactions	 between	 miRs	 and	 target	 genes.	 b,	 Zonation	 profiles	 of	 selected	
genes	 and	 their	 significantly	 anti-correlated	 cumulative	 miR	 profiles.	 c,	 Regulatory	 network	 of	
hepatocyte-expressed	Wnt	pathway	components	and	their	expressed	regulating	miRs.		Edges	colored	
by	 the	 correlation	 between	 the	 miR	 and	 target.	 Edge	 weight	 is	 proportional	 to	 the	 absolute	
correlation	 value.	 d,	 Selected	 pairs	 of	 miRs	 and	 regulated	 Wnt	 signaling	 components	 (outlined	 in	
green	in	Fig.	7c).	The	transcripts	of	Ctnnbip1,	Fzd8,	Tcf7l1	and	Znrf3	are	anti-correlated	with	most	of	
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their	regulating	miRs,	suggesting	that	miRs	have	a	relatively	more	important	role	in	regulating	these	
genes’	expression	in	comparison	to	other	genes.	

Discussion	

The	 liver	 exhibits	 profound	 division	 of	 labor	 among	 hepatocytes	 that	 reside	 at	 different	
zones.	 Understanding	 and	 modeling	 liver	 function	 thus	 requires	 characterizing	 the	
hepatocyte	 functions	at	each	 lobule	coordinate.	 In	 this	study,	we	present	spatial	sorting,	a	
generic	approach	to	isolate	large	amounts	of	hepatocytes	with	high	spatial	resolution	for	a	
broad	range	of	downstream	measurement	modalities.	The	approach	utilizes	zonated	surface	
markers	 that	 can	 be	 identified	 by	 spatially	 resolved	 transcriptomic	 atlases.	 We	
demonstrated	 applications	 of	 this	 approach	 for	 resolving	 the	 zonation	 of	 hepatocyte	
proteins	and	miRs.	The	approach	can	be	readily	applied	to	other	structured	organs	and	cells	
types	 exhibiting	 zonation,	 including	 liver	 endothelial	 cells11,	 intestinal	 enterocytes46	 and	
kidney	 cells47,48.	 The	 usage	 of	 endogenous	 surface	 markers	 renders	 spatial	 sorting	
particularly	useful	for	studying	zonation	in	humans	as	well.		

Our	proteome	analysis	revealed	some	notable	discordance	between	the	average	hepatocyte	
levels	 of	 proteins	 and	 mRNAs,	 mostly	 for	 genes	 encoding	 secreted	 proteins	 (Fig.	 4).	 In	
contrast,	we	 found	 that	 the	 protein	 zonation	 profiles	 highly	 overlap	 those	 of	 the	mRNAs.	
These	results	argue	for	a	predominance	of	spatial	regulation	of	hepatocyte	protein	levels	via	
transcription	or	mRNA	stability,	rather	than	through	translational	control	or	protein	stability.	
Hnf4a,	 a	 key	 hepatic	 transcription	 factor,	 was	 among	 the	 small	 group	 of	 genes	 for	which	
protein	and	mRNA	zonation	profiles	were	discordant.	Hnf4a	mRNA	was	expressed	in	a	non-
zonated	manner,	whereas	its	protein	levels	were	periportally	zonated.	This	fits	with	previous	
reports	of	periportal	expression	of	Hnf4a	hepatocyte	target	genes4,18–20.	Notably,	Hnf4a	is	a	
transcriptional	activator	of	miR-12249,	the	most	abundant	liver-expressed	miR,	which	we	also	
found	 to	 be	 periportally	 zonated.	 Due	 to	 sensitivity	 limitations	 of	 mass-spectrometry	
proteomics	 our	 proteomic	measurements	 did	 not	 include	 low-abundance	 genes,	 including	
other	key	 liver	transcription	factors,	which	may	exhibit	higher	 levels	of	post-transcriptional	
regulation.	

Recent	works	 have	 begun	 to	 develop	 in-silico	multi-scale	models	 for	 predicting	 the	 liver’s	
response	 to	 stimulations	 by	 metabolites	 and	 xenobiotics50–52.	 These	 models	 consider	
multiple	 units	 representing	 hepatocytes	 at	 different	 zones	 that	 exchange	 materials	 and	
process	them	through	individualized	metabolic	networks,	thus	modeling	the	polarized	blood	
perfusion	throughout	the	lobule.	Future	incorporation	of	the	zonated	levels	of	enzymes	into	
such	models	could	increase	their	precision	and	better	capture	in-vivo	fluxes.	Our	proteomic	
map	provides	such	detailed	zonation	of	key	enzymes	(Supplementary	Table	3).	

Our	work	provided	a	global	spatial	atlas	of	miR	zonation,	identifying	key	hepatocyte	zonated	
genes	 such	 as	miR-122-5p	 and	miR-30a-5p.	We	used	 the	 combined	miR	 and	 target	mRNA	
levels	 to	 identify	 potential	 regulatory	 interactions	 that	 could	 entail	 zonated	 mRNA	
degradation.	This	 forms	an	 important	resource	for	 future	functional	validations.	MiRs	have	
been	shown	to	be	highly	dynamic	along	the	course	of	several	diseases	such	as	fibrosis,	viral	
infection	 and	 liver	 cancer23,53,54.	 Spatial	 sorting	 could	 be	 used	 to	measure	 the	 zonation	 of	
these	 miRs	 along	 the	 courses	 of	 these	 diseases.	 Moreover,	 plasma	 measurements	 of	
zonated	miRs55	could	potentially	be	used	as	biomarkers	to	identify	zonated	liver	damage.		
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Wnt	 is	 a	 key	 regulator	 of	 hepatocyte	 zonation2,35,39.	 The	 pericentral	 secretion	 of	 Wnt	
morphogens	by	endothelial	cells	generates	a	zonated	external	morphogen	field,	that	could	
explain	 a	 significant	 fraction	 of	 the	 zonated	 hepatocyte	 genes.	Our	 study	 revealed	 that	 in	
addition	 to	 the	 Wnt	 signal,	 the	 hepatocyte	 Wnt	 sensing	 and	 processing	 machinery	 also	
seems	 to	be	 zonated.	We	measured	pericentral	 expression	of	 the	key	Wnt	 receptors	 Fzd7	
and	 Fzd8	 and	 periportal	 zonation	 of	 the	 Wnt	 inhibitors	 Tcf7l1	 and	 Ctnnbip1.	 This	 joins	
previous	 reports	 of	 periportal	 zonation	 of	 APC,	 a	 key	Wnt	 regulator35.	 Our	 study	 further	
identified	 miRs	 that	 regulate	 these	 zonated	 Wnt	 components.	 Thus	 miRs	 seem	 to	 be	
upstream	 of	Wnt	 signaling.	 These	 results	 could	 explain	 the	 effects	 of	 hepatocyte-specific	
Dicer	KO	and	beta-catenin	KO.	While	Dicer	KO	resulted	in	perturbed	zonation	of	Wnt	targets,	
beta-catenin	KO	did	not	substantially	alter	miR	levels24.	

Our	 approach	 enables	 attaining	 up	 to	 a	 few	 hundreds	 of	 thousands	 of	 hepatocytes	 per	
sorted	 population.	 	 While	 this	 amount	 is	 compatible	 with	 a	 broad	 range	 of	 assays,	 it	 is	
insufficient	 for	 assays	 that	 require	 massively	 larger	 amounts	 of	 material,	 such	 as	 RNA	
methylations57	 and	 metabolic	 profiling58.	 Moreover,	 since	 the	 approach	 is	 FACS-based,	
measuring	 metabolites,	 which	 are	 labile,	 would	 be	 compromised	 by	 the	 substantial	
incubation	 periods	 involved	 in	 the	 protocol59.	 Nevertheless,	 it	 will	 be	 interesting	 to	 apply	
spatial	 sorting	 to	 explore	 additional	 zonated	 hepatocyte	 features,	 including	 chromatin	
modifications,	 DNA	 methylations,	 three-dimensional	 chromosomal	 conformations,	 DNA	
mutation	spectra	and	chromosomal	aberration.	Such	measurements	will	resolve	hepatocyte	
cell	identity,	regulatory	mechanisms	and	susceptibility	to	damage	in	each	zone.		
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Methods	

Animal	 experiments.	Mouse	 experiments	were	 approved	 by	 the	 Institutional	 Animal	 Care	
and	Use	Committee	of	the	Weizmann	Institute	of	Science	and	performed	in	accordance	with	
institutional	 guidelines.	 Sorting	 experiments	 were	 conducted	 on	 five	 three	 months	 old	
C57BL/6	male	mice,	obtained	from	Harlan	laboratories.	Mice	were	fed	ad	libitum	and	were	
kept	in	a	reverse	light-dark	cycle.	Mice	were	anaesthetized	with	Ketamine	(100 mg	kg−1)	and	
Xylazine	(10 mg	kg−1)	dissolved	in	1xPBS	and	injected	intraperitoneally	6h-9h	after	lights	off	
(ZT	18-21).		

For	imaging	experiments,	livers	of	3m	old	wt	male	mice	were	harvested	and	fixed	in	cold	PFA	
for	3h	at	4oC	followed	by	overnight	fixation	in	cold	PFA	+	30%	sucrose	at	4oC	while	revolving.	
Livers	were	embedded	in	OCT	(Tissue-Tek)	the	next	morning.	Blocks	were	kept	at	-80oC.			

Immuno-Fluorescence.	OCT	 embedded	mouse	 liver	 blocks	were	 sectioned	 into	 7um	 thick	
slices.	Slices	were	fixed	with	cold	Methanol	 for	20min.	After	 three	5min	washes	with	PBST	
(1X	PBS,	1%	BSA	+	0.1%	Tween),	sections	were	permeabilized	by	10min	incubation	at	room	
temperature	with	PBSTX	solution	(1X	PBS,	0.25%	Triton	100X	and	1%	BSA).	Slices	were	then	
washed	 again	 as	 before	 and	 were	 incubated	 for	 1h	 at	 room	 temperature	 with	 blocking	
solution	 (1x	 PBS,	 0.1%	 Tween	 and	 5%	 Goat/Normal	 Horse	 Serum).	 Slices	 were	 next	
incubated	with	the	antibody	solution	(blocking	solution	with	1:50	antibody	in	a	total	reaction	
volume	 of	 150ul)	 at	 4	 oC	 overnight.	 Antibodies	 used	were	 Alexa	 Fluor	 647	 rat	 anti-mouse	
CD73	(BD,	cat:	561543)	and	Alexa	Fluor	555	mouse	anti-Ecadherin	(BD,	cat:	560064).	On	the	
next	 day,	 slices	were	washed	with	 PBST	 3	 times.	Nuclei	were	 stained	with	DAPI	 (1:100	 in	
PBS,	 10mis).	 Imaging	 of	 liver	 porto-central	 axis	 was	 performed	 on	 a	 Nikon-Ti-E	 inverted	
fluorescence	microscope	with	a	100×	oil-immersion	objective	and	a	Photometrics	Pixis	1024	
CCD	camera	using	MetaMorph	software	using	the	scan	stage	option.	

Z-projected	images	of	lobule	scans	(8	scans,	3	mice)	were	analyzed.	Membrane	segments	of	
hepatocytes	were	measured	for	the	intensity	of	Alexa	Fluor	555	(E-cadherin)	and	Alexa	Fluor	
647	 (CD73).	Background,	set	as	 the	paired	cytoplasmic	 intensity	 for	each	membrane	signal	
was	 subtracted.	 Segments	 were	 then	 binned	 into	 eight	 groups	 representing	 eight	 lobule	
layers	 (1	 =	 pericentral,	 8	 =	 periportal),	 according	 to	 their	 radial	 distance	 from	 the	 central	
vein.	Median	intensity	of	the	segments	from	each	lobule	layer	was	calculated	and	averaged	
over	 the	 different	 lobules	 (Fig.	 2b-c).	 Values	 were	 scaled	 from	 0	 to	 1	 and	 the	 plot	 was	
smoothened	with	a	sliding	window	of	3.		 				
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Liver	 Perfusions	 and	 hepatocytes	 dissociation.	 Once	 anaesthetized,	 mice	 livers	 were	
perfused	as	previously	described60,	with	a	few	adjustments.	A	27G	syringe,	connected	to	the	
perfusion	line	and	pump,	was	inserted	into	the	vena	cava.	25ml	of	pre-warmed	to	37oC	EGTA	
buffer	followed	by	25ml	of	pre-warmed	to	37oC	EBS	buffer	with	2.3U	of	Liberase	Blendzyme	
3	recombinant	collagenase	(Roche	Diagnostics)	were	cannulated	into	the	vena	cava.	Shortly	
after	the	beginning	of	the	perfusion,	the	portal	vein	was	cut	to	allow	drainage	of	the	blood.		

After	 perfusion,	 livers	were	 explanted	 into	 a	 Petri	 dish	with	 25ml	of	 pre-warmed	EBS	 and	
gently	 minced	 using	 forceps.	 Dissociated	 liver	 cells	 were	 collected	 and	 filtered	 through	 a	
100um	 cell	 strainer.	 Cells	 were	 spun	 down	 at	 30rcf	 for	 3	 min	 at	 4oC	 to	 get	 hepatocytes	
enriched	pellet.	Pellet	was	resuspended	in	25ul	cold	EBS.		

Cells	 Staining.	To	 discard	 dead	 hepatocytes,	 22.5ml	 Percoll	 (Sigma)	mixed	with	 2.5ml	 10x	
PBS	was	added	to	the	cells.	Cells	were	centrifuged	at	600rpm	for	10	minutes.	Supernatant	
containing	the	dead	cells	was	aspirated	and	cells	were	resuspended	in	pre-warmed	Hoechst	
buffer	 (DMEM	+	 10%	 FBS	 +	 10mM	Hepes).	 After	 counting,	 concentration	was	 adjusted	 to	
2x106	 cells	 in	 1ml.	 To	 determine	 ploidy	 of	 hepatocytes,	 DNA	 was	 stained	 with	 Hoeschst	
(15ug/ml).	 Resperine	 (5uM)	 was	 also	 supplemented	 to	 the	 cells	 to	 prevent	 Hoechst	
expulsion	from	the	cells.	Cells	were	incubated	30min	at	37oC.	Hepatocytes	were	centrifuged	
for	 5min	 in	 1000rpm	at	 4oC	 and	 supernatant	was	discarded.	Next,	 cells	were	 stained	with	
Alexa	 fluor	 488	 Zombie	 green	 (BioLegend)	 to	 later	 enable	 the	 detection	 of	 viable	 cells	 by	
FACS.	Cells	were	 resuspended	 in	cold	PBS	 in	a	concentration	of	106	cells	 in	100ul.	Zombie-
green	was	 added	 in	 a	 dilution	 of	 1:500.	 Cells	 were	 kept	 in	 a	 rotator	 in	 the	 dark	 at	 room	
temperature	for	15min.	After	spinning	down	(1000rpm,	5min,	4oC),	cells	were	resuspended	
in	FACS	buffer	 (2mM	EDTA	pH	8	and	0.5%	BSA	 in	1xPBS),	 in	a	concentration	of	106	cells	 in	
100ul.	 Cells	were	 stained	with	PE-anti-E-cadherin	 (BioLegend,	 cat:	 147304),	APC-anti-CD73	
(BioLegend,	 cat:	 127210),	 PE-Cy7-anti-CD31	 (BioLegend,	 cat:	 102418)	 and	 APC-Cy7-anti-
CD45	(BioLegend,	cat:	103116),	in	a	dilution	of	1:300.	FcX	blocking	solution	(BioLegend)	was	
added	in	a	dilution	of	1:50.			

Flow	 Cytometry	 and	 sorting.	 Cells	 were	 sorted	 by	 SORP-FACSAriaII	 sorter	 (BD)	 using	 a	
130 μm	 nozzle	 and	 1.5	 natural	 density	 (ND)	 filter.	 Lasers	 compensation	 was	 corrected	
manually.	 In	 order	 to	 collect	 eight	 populations,	 each	 enriched	 with	 spatially-stratified	
hepatocytes	 with	 equal	 viability	 and	 ploidy	 levels,	 events	 were	 screened	 through	 the	
following	five	nested	gates	(Fig.	3a-b):	(1)	hepatocytes	gate	from	all	events	–	set	by	plotting	
FSC-A	against	SSC-A	and	excluding	 large	clusters	and	small	debris;	 (2)	 singlets	FSC	–	set	by	
excluding	the	margins	of	FSC-A	and	FSC-W	plot;	(3)	singlets	SSC	–	excluding	upper	margins	of	
SSC-W	when	plotted	against	SSC-A;	(4)	live	cells	gates	according	to	the	Zombie-488	negative	
cells,	 comparable	 to	 unstained	 cells;	 (5)	 hepatocytes	 only,	 by	 depleting	 CD31	 and	 CD45,	
NPCs	 markers,	 and	 (6)	 tetraploid	 hepatocytes,	 inferred	 by	 Hoechst	 histogram	 (Fig.	 3a-b,	
Supplementary	 Fig.	 1b-c).	 Hepatocyte	 size	 and	 overall	 protein	 content	 scale	with	 ploidy61,	
thus	 creating	 spurious	 correlations	 between	 the	 zonated	 surface	markers	 (Supplementary	
Fig.	 1).	 Sorting	 without	 ploidy	 stratification	would	 result	 in	 inclusion	 of	 hepatocytes	 from	
different	lobule	layers,	reducing	spatial	accuracy	(Supplementary	Fig.	1).	
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We	 then	 plotted	 PE-intensity	 for	 E-cadherin	 staining	 and	 APC-intensity	 for	 CD73	 staining.	
The	positively	stained	cells	were	determined	by	measuring	the	intensities	for	unstained	cells.	
The	highest	 intensity	 for	 unstained	 cells	was	 the	 threshold	 for	 the	positively	 stained	 cells.	
Each	 population,	 CD73	 positive	 and	 E-cadherin	 positive,	 was	 further	 gated	 to	 four	 equal	
subpopulations,	representing	graded	intensities	of	the	marker.	Thus,	subpopulations	1,	2,	3	
and	4	had	equal	amount	of	events,	1	had	the	highest	APC-CD73	intensity	while	2,	3,	4	have	
gradually	decreasing	intensities	of	APC.	Likewise,	subpopulations	5,	6,	7	and	8	were	equally	
distributed,	8	has	the	highest	PE-E-cadherin	intensity	while	7,6,5	have	gradually	decreasing	
PE	 intensities.	Populations	4	and	5	contained	cells	 from	below	positive	 intensity	threshold,	
to	 accurately	 resemble	 mid	 lobule	 hepatocytes,	 in	 which	 both	 CD73	 and	 E-cadherin	
abundances	 are	 very	 low	 (Fig.	 2).	 All	 gates	 were	 set	 for	 each	 of	 the	 five	 experiments	
independently,	with	a	large	overlap.	

10,000	 hepatocytes	 from	 each	 gate	 were	 sorted	 into	 Dynabeads	mRNA	 DIRECT	Micro	 Kit	
lysis	buffer	(Invitrogen)	for	RNA	sequencing.	After	sorting,	cells	were	spun	down	and	frozen	
at	 -80oC	 until	 processing.	 100,000	 hepatocytes	 from	 each	 population	 were	 collected	 into	
FACS	 buffer,	 and	 resuspended	 twice	with	 PBS	 to	wash	 away	 serum	proteins.	 Pellets	were	
flash	frozen	and	sent	to	Mass-spectrometry	proteomics	measurements	(The	Smoler	Protein	
Research	 Center,	 Technion,	 Israel).	 Additional	 50,000	 cells	 were	 collected	 for	 microRNA	
microarray.	Total	RNA	was	isolated	using	Direct-zol	RNA	microprep	kit	(Zymo	Research).		

RNA	sequencing.	10,000	hepatocytes	from	each	sorted	population	were	collected	for	library	
preparation.	Cells	were	sorted	into	Lysis	buffer	supplied	in	Dynabeads	mRNA	Purification	Kit	
(Invitrogen,	 cat:	61006).	RNA	was	extracted	by	 the	kit	 according	 to	 the	provided	protocol.	
2ul	 of	 the	 extracted	mRNA	 from	 each	 sample	were	 used	 for	 libraries.	 Library	 preparation	
was	 done	 with	 mcSCRBseq	 protocol62.	 The	 cDNA	 was	 pre-amplified	 with	 10-15	 cycles,	
depending	on	 cDNA	concentration	 indicated	by	qPCR	quality	 control.	 2ng	of	 the	amplified	
cDNA	was	converted	 into	sequencing	 library	with	the	Nextera	XT	DNA	Library	kit	 (Illumina,	
FC-131-1024),	according	 to	 supplied	protocol.	Quality	 control	of	 the	 resulting	 libraries	was	
performed	with	an	Agilent	High	Sensitivity	D1000	ScreenTape	System	(Agilent,	5067-	5584).	
Libraries	 were	 loaded	 with	 a	 concentration	 of	 2.2pM	 on	 75	 cycle	 high	 output	 flow	 cells	
(Illumina,	FC-404-2005)	and	sequenced	on	a	NextSeq	500	(Illumina)	with	the	following	cycle	
distribution:	 8bp	 index1,	 16	bp	 read1,	 66	bp	 read2	 (no	 index2	needed).	 Total	 40	 libraries,	
eight	sorted	populations	for	five	different	mice	were	sequenced.		

Sequencing	analysis	pipeline.	 Illumina	output	 files	were	demultiplexed	with	bcl2fastq	2.17	
and	the	resulting	fastq	files	of	mRNA	sequencing	experiments	were	analyzed	with	the	zUMIs	
pipeline63.	Reads	were	aligned	using	STAR	to	a	transcriptome	index	of	the	GRCm38	release	
84	(Ensembl)	and	exonic	UMI	counts	per	million	(CPM)	were	calculated	with	pipeline	default	
settings	 and	 TMM	 normalization64	 implemented	 in	 EdgeR65.	 14,027	 transcripts	 were	
identified	in	the	experiment	over	the	40	libraries.	Data	were	further	normalized	by	dividing	
each	sample	by	its	sum	of	CPM.	Two	out	of	the	40	libraries	failed	to	reach	over	200K	reads	
and	were	discarded	(m2_2_cpm	and	m3_5_cpm	samples	in	Supplementary	Table	1).	

Mass	 spectrometry.	 Fourty	 samples	 (five	mice,	 eight	 populations	 each)	 were	 digested	 by	
trypsin	and	analyzed	by	LC-MS/MS	on	Q	Exactive	plus	(Thermo).	The	data	was	analyzed	with	
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MaxQuant	 1.5.2.866	 against	 the	mouse	 Uniprot	 database.	 Data	 were	 quantified	 using	 the	
same	software.	We	retained	proteins	with	FDR	<0.01	in	at	least	2	samples	in	one	of	the	eight	
groups,	identified	by		at	least	2	peptides	across	all	samples.	3,210	proteins	were	identified.	
For	 each	 sample,	 LFQ	 intensities	 for	 each	 peptide	 were	 normalized	 by	 the	 sum	 of	 all	
intensities	–	yielding	expression	fraction	out	of	the	total	protein	detected.		

MiRNA	Microarrays.	Total	RNA	(100ng),	 isolated	from	bulk	populations	of	50,000	spatially-
sorted	hepatocytes	(n	=	3)	per	FACS	gate,	was	 labeled	with	Cy3	during	transformation	 into	
cDNA	 using	 an	 RNA	 Agilent	 miRNA	 Labeling	 Kit	 (Agilent,	 UK)	 and	 Spike	 Kit	 (Agilent,	 UK).	
cDNAs	were	hybridized	to	Mouse	miRNA	Microarray,	Release	21.0,	8x60K	(v21)	microarray	
slides	 (Agilent,	 UK)	 according	 to	 Agilent	microRNA	Hybridization	 Kit	 protocol	 (Agilent,	 UK)	
and	 scanned	 using	 Agilent	 G2505B	 array	 scanner.	 Data	 were	 extracted	 using	 the	 Feature	
Extraction	software	(Agilent,	UK)	with	default	parameters.		

qRT-PCR.	Total	RNA,	isolated	from	bulk	populations	of	50,000		spatially-sorted	hepatocytes	
(n	=	3)	per	FACS	gate,	was	diluted	to	5	ng/µL,	and	cDNA	was	reverse-transcribed	using	the	
miRCURY	LNA	RT	Kit	(Qiagen,	cat.	no.	339340)	according	to	the	manufacturer’s	instructions	
on	 an	 Applied	 BioSystems	 ProFlex	 PCR	 System.	 Plates	 were	 prepared	 using	 the	miRCURY	
SYBR	 Green	 PCR	 Kit	 (Qiagen,	 cat.	 no.	 339346)	 with	 custom	 miRCURY	 LNA	 PCR	 primers	
(Qiagen	cat.	no.	339306,	Supplementary	Table	7).	Each	10	µL	reaction	volume	contained	5	µL	
2x	miRCURY	SYBR	Green	Master	Mix,	0.5	µL	ROX	reference	dye,	1	µL	PCR	primer	mix,	0.5	µL	
RNAse-free	water	and	3	µL	of	cDNA	sample	diluted	1:60.	qPCR	reactions	and	measurements	
were	 performed	 on	 a	 StepOne	 Real-Time	 PCR	 System	 (Thermo	 Fisher,	 cat.	 no.	 4376357)	
according	to	the	manufacturer’s	instructions.	Relative	expression	levels	were	calculated	as	

𝑀!,! = 2!!!! !,! 	,	

where	𝑀!,!	is	the	relative	expression	of	miR	𝜇	in	FACS	gate	𝑧,		Δ𝐶! 𝜇, 𝑧 = 𝐶!,! − 𝐶!,!,	𝐶!,!	is	
the	𝐶! 	(threshold	cycle)	of	miR	𝜇	in	FACS	gate	𝑧	and	𝐶!,!	is	the	𝐶!	value	of	miR-103-3p	in	
FACS	gate	𝑧	(isolated	from	the	same	mouse).		

Center	 of	mass	 calculation.	The	 center	 of	mass	 (COM)	 of	 an	 expression	 profile	𝑥	 (spread	
over	𝑧 = 1: 8	FACS	gates)	was	calculated	as:	

𝐶𝑂𝑀 𝑥 =
𝑧 ∗ 𝑥!!

!!!

𝑥!!
!!!

	

This	 formula	 yields	 a	 number	𝐶𝑂𝑀 ∈ [1,8]	 that	 indicates	 around	which	 gate	most	 of	 the	
expression	is	distributed.	

Comparing	bulk	mRNA	with	published	scRNAseq.	Spatial	sorting	produces	sub-populations	
of	hepatocytes	that	are	enriched	for	specific	lobule	layers,	however	each	FACS	gate	includes	
several	 lobule	 layers.	 To	 compare	 the	 bulk	 mRNA	measurements	 of	 the	 FACS-gated	 sub-
populations	to	the	zonation	measurements	previously	reconstructed	using	spatially-resolved	
single	cell	 transcriptomics5	we	 thus	computationally	estimated	 the	center	of	mass,	namely	
the	 weighted	 average	 of	 all	 single	 cells	 represented	 by	 each	 gate.	 To	 this	 end,	 we	
implemented	 Cibersort	 (https://cibersort.stanford.edu/67,	 to	 estimate	 the	 relative	
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abundances	 of	 each	 lobule	 layer	 in	 the	 sorted	 subpopulations.	 We	 extracted	 a	 gene	
signature	 list	 for	 each	 layer	 from	 the	 scRNA	 seq	 data5.	 A	 total	 of	 17	 genes	 with	 mean	
expression	greater	than	5x10-5,	zonation	FDR	smaller	than	0.01	and	dynamic	range	of	at	least	
10-fold	between	the	mean	of	the	two	periportal	layers	and	the	mean	of	the	two	pericental	
layers	was	used	 for	 the	 analysis.	 The	means	of	 five	mice	of	 the	 zonation	profiles	 of	 these	
genes	 across	 the	 eight	 sorted	 gates	 were	 used	 as	 the	 mixed-populations	 data	 set.	 The	
relative	abundances	of	 each	of	 the	nine	 layers	 in	each	of	 the	eight	 sorted	population	was	
calculated	(with	‘Disable	quantile	normalization’	option	checked).	Fig.	3c	presents	the	mean	
expression	in	each	FACS	gate	over	five	mice	(blue)	and	mean	expression	in	scRNA	seq	data5,	
weighted	by	the	relative	abundances	of	each	layer	in	each	FACS	gate	(yellow). 

Comparing	proteins	and	RNA.	Out	of	the	3,210	proteins	(Supplementary	Table	1)	detected	
in	 Mass-spectrometry	 and	 14,027	 mRNAs	 (Supplementary	 Table	 2)	 detected	 in	 RNA-
sequencing,	 3,051	 were	 found	 in	 both	 datasets	 (Supplementary	 Table	 3).	 The	 median	
expression	 fraction	 of	 five	 mice	 was	 calculated	 for	 each	 gate	 in	 each	 measurement.	 We	
scatter-plotted	 the	 averages	 over	 all	 gates	 of	 the	 eight	mRNA	medians	 and	 eight	 protein	
medians	for	every	gene	and	found	a	Spearman	correlation	r=	0.50	(0.48-0.50	per	each	gate	
independently).	 In	order	 to	better	characterize	mRNA	and	protein	 ratios	 in	different	KEGG	
pathways68,	we	plotted	the	regression	line	of	protein	by	mRNA.	The	residual	of	the	proteins	
from	the	regression	 line	was	calculated	and	grouped	according	to	KEGG	pathways	(Fig.	4b,	
Supplementary	Fig.	2).		

Computing	 zonation.	 For	 each	 of	 the	 3,051	 common	 proteins	 and	mRNAs,	 Kruskal-Wallis	
test	was	 performed	 to	 check	 for	 variability	 between	different	 sorted	 gates.	 To	 correct	 for	
multiple	hypotheses,	we	performed	 the	Benjamini–Hochberg	procedure	 to	obtain	 the	FDR	
for	each	hypothesis.	We	classified	proteins	as	 zonated	 if	 they	had	FDR	<	0.05.	1,672	were	
significantly	zonated.	To	produce	the	protein	zonation	heatmap	(Fig.	5a),	we	first	removed	
all	proteins	which	have	a	median	of	LFQ	=	218	in	any	of	the	eight	gates	(479	proteins).	Next,	
we	normalized	all	protein	profiles	to	their	maximum	across	all	FACS	gates	and	sorted	them	
by	their	center	of	mass	(Fig.	5a).			

Statistical	 analysis	of	miR	data.	Microarray	data:	 only	miRs	 that	were	annotated	as	 “high	
confidence”	in	miRBase26	v22	(downloaded	30/10/18)	were	kept	for	analysis.	The	raw	signal	
for	each	miR	in	each	FACS	gate	and	in	each	array	was	normalized	by	the	total	signal	per	gate	
per	 array.	 Only	 miRs	 present	 in	 all	 three	 biological	 replicates	 were	 retained	 for	 further	
analysis,	 and	 their	 initial	 normalized	 signal	 was	 averaged	 over	 all	 arrays.	 	 Finally,	 the	
averaged	signal	was	divided	again	by	the	total	signal	in	each	gate	(this	operation	amounted	
to	dividing	by	a	number	very	close	to	1,	since	only	miRs	with	very	low	expression	were	not	
present	in	only	some	of	the	replicates)	.	MiR	zonation	was	inferred	using	the	Kruskall-Wallis	
test	 (for	 each	miR,	 comparison	 of	 8	 gates,	 with	 each	 having	 3	 replicates),	 and	 applying	 a	
Benjamini-Hochberg	correction	on	the	p-values	obtained	from	the	KW	test.	MiRs	with	FDR	≤	
0.2	were	classified	as	zonated.		

Differential	zonation	of	miR-122-5p	targets:		

Targets	of	miR-122-5p	were	taken	from	ref.28.	146	of	the	targets	listed	were	expressed	in	our	
liver	 zonated	 transcriptome	data.	The	mean	COM	was	calculated	 for	 these	 targets	and	 for	
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1,000	 random	 samplings	 (with	 replacement)	 of	 146	 liver-expressed	 genes	 (genes	 with	
maximal	expression	over	all	gates	that	was	at	least	4x10-6	of	transcriptome).	We	performed	
a	Wilcoxon	rank-sum	test	for	the	COMs	of	the	target	genes	vs.	COMs	of	randomly	sampled	
genes,	yielding	p	=	0.018.	

MiR-target	network	construction,	randomized	networks	and	genes	more	anti-correlated	with	
their	 cumulative	 miR	 profiles	 than	 random:	 all	 miR-target	 interaction	 predictions	 were	
downloaded	 from	TargetScanMouse	 v7.232	 (data	 released	 8/2018,	 downloaded	 24/10/18),	
including	 conserved	 and	 non-conserved	 sites.	 Predicted	 edges	were	 filtered	 for	 only	 liver-
expressed	 miRs,	 annotated	 “high	 confidence”	 in	 miRBase	 v22,	 weighted	 context++	 score	
percentile	 ≥	 95	 and	 genes	 expressed	 with	 maximum	 fraction	 (over	 gates)	 of	 total	
transcriptome	 ≥	 4x10-6).	 The	 resulting	 network	 included	 33,672	 interactions	 between	 131	
miRs	 and	6,650	 genes.	 For	 each	 gene	𝑔	we	 constructed	 the	 cumulative	 expression	profile	
𝑀!(𝑧)	of	all	miRs	𝜇! 𝑧 , 𝑖 ∈ 1,2,… ,𝑁! , 𝑧 = {1,… 8}	predicted	to	target	it:	

𝑀! 𝑧 = 𝜇!(𝑧)

!!

!!!

 	

and	calculated	the	Spearman	correlation	between	the	expression	profile	𝑋!(𝑧)	of	each	gene	
𝑔	 and	𝑀!(𝑧).	 We	 then	 created	 1,000	 networks	 with	 randomized	 edge	 assignment	 using	
mfinder69	 with	 the	 command	 mfinder	 -r	 1000	 -ornet.	 We	 took	 into	 account	 miRs	 that	
regulate	 the	 same	 target	 genes	 at	 multiple	 sites,	 and	 for	 the	 purpose	 of	 network	
randomization,	 these	 were	 considered	 as	 separate	 edges	 by	 creating	 “virtual”	miR	 nodes	
that	 were	 collapsed	 back	 to	 the	 original	 miR	 after	 randomization.	 For	 each	 randomized	
network,	we	calculated	again	the	cumulative	miR	profile	for	each	of	the	6,650	genes	and	the	
corresponding	 Spearman	 correlation.	 We	 then	 calculated	 for	 each	 gene	 the	 fraction	 of	
randomized	networks	 in	which	 the	 anti-correlation	 of	 the	 gene	 and	 the	 original	 predicted	
cumulative	miR	expression	profiles	is	smaller	than	the	anti-correlation	of	the	gene	with	the	
cumulative	 profiles	 generated	 with	 the	 randomized	 networks,	 generating	 an	 empirical	 p-
value	𝑝.	We	manually	 corrected	 genes	 with	𝑝 = 0	 to	𝑝 → 𝑝! = 1/𝑁,	 with	𝑁	 =	 1,000	 the	
number	of	networks	generated.	FDR	values	using	the	Benjamini-Hochberg	procedure	were	
calculated	 for	 all	 p-values	 and	 genes	 with	 FDR	 ≤	 0.2	 were	 deemed	 “significant”	
(Supplementary	Table	6).	

Regulation	of	Wnt	pathway	components:	we	examined	all	edges	in	our	miR-target	network	
that	included	genes	which	are	involved	in	Wnt	signaling	transduction70,	and	that	were	anti-
correlated	with	individual	miRs	regulating	them	with	a	Spearman	coefficient	of	-0.5	or	less.	
The	genes	were	Apc,	Axin2,	Ctnnb1,	Ctnnbip1,	Dvl1/2,	Fzd1-10,	Gsk3,	Lgr4/5/6,	Lrp5/6,	
Rnf43,	Tcf7,	Tcf7l1/2	and	Znrf3.	
	
Network	visualization:	the	miR-Wnt	pathway	component	network	was	visualized	using	
Cytoscape	v3.771.	All	detected	Wnt	pathway	components	with	miRs	predicted	to	regulate	
them	(see	“miR-target	network	construction”),	and	the	Spearman	correlations	between	
them,	were	used	as	input.		
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Supplementary	Figures	

	

	

Supplementary	Fig.	1	|	Surface	markers	candidates	for	spatial	sorting	and	ploidy	gating	in	
FACS.	 a,	 Surface	 markers	 zonation	 profiles.	 Data	 from	 5.	 Expression	 is	 normalized	 to	 the	
maximal	level	for	each	gene.	Genes	are	sorted	by	expression	center	of	mass.	b-c,	Gating	by	
ploidy	levels.	b,	Histogram	of	cells	according	to	Hoechst	stains,	proportional	to	DNA	content,	
each	peak	represents	a	different	ploidy	class	with	different	proportions	 in	the	hepatocytes	
population.	Red	–	diploid	cells,	orange	–	tetraploid	cells,	blue	–	octoploid	cells.	c,	distribution	
of	hepatocytes	according	 to	E-cadherin	and	CD73	 intensities,	 stratifies	by	ploidy	class.	Red	
and	green	rectangles	are	1	and	8	gates	selected	for	the	4n	hepatocytes.	
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Supplementary	Fig.	2	|	Comparisons	of	proteomic	dataset.		a,	Scatter	plot	of	log10(LFQ)	of	
mean	proteins	over	all	FACS	gates	for	5	mice	and	log10(LFQ)	of	previously	published	mouse	
hepatocytes	 mass-spec.	 measurements	 12.	 Red	 dashed	 line	 marks	 the	 regression	 line,	
Spearman’s	 r=0.76.	 Number	 of	 proteins	 =	 2831.	 	 b,	 Protein	 to	 mRNA	 residuals	 from	
regression	 line,	 bar	 represent	median	of	 genes	belonging	 to	 the	KEGG	pathway.	 See	main	
Fig.	4.	
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Supplementary	Fig.	3	|	Zonation	of	hepatocyte	proteome	by	KEGG	pathways.	Median	log2	
of	ratio	between	periportal	and	pericentral	gates	of	proteins	belonging	to	the	selected	KEGG	
families.	Colored	bars	 represent	KEGG	pathways	with	FDR	<	0.2	of	 single	sample	sign	 rank	
test	p-values	 for	each	of	 the	KEGG	pathways.	Red	represent	negative	 log2	ratio,	 indicating	
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pericentral	 enrichment,	 and	 green	 represent	 positive	 values,	 indicating	 periportal	
enrichment.	

	

	

Supplementary	 Fig.	 4	 |	 Selected	 anti-correlated	 target	 genes	 of	miR-122-5p.	MiR-122-5p	
was	 found	 to	 be	 anti-correlated	 with	 some	 of	 its	 canonical	 targets	 (following	 28,72).	
Expression	is	normalized	to	the	sum.	
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Supplementary	 Fig.	 5|	 Individual	 expression	profiles	of	 select	 genes	and	 their	 regulating	
miRs.	Expression	is	normalized	to	the	sum.	
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Supplementary	Tables	

Supplementary	Table	1	-	mRNA	UMI	counts	

Eight	 sorted	populations	 (1-8)	 from	 five	different	mice	 (m1-m5)	were	collected	and	mRNA	
libraries	were	prepared	according	to	mcSCRB-seq	protocol	62,	and	zUMIs	pipeline	63.	Exonic	
UMI	counts	were	normalized	using	TMM	64	 implemented	 in	EdgeR	 65.	The	 table	values	are	
the	normalized	CPM	(UMI	counts	per	million).	Note	that	in	our	analyses,	we	have	discarded	
m2_2	and	m3_5	as	their	number	of	reads	were	less	than	200K.	

Supplementary		Table	2	-	Proteins	MS/MS	quantification	

Eight	 sorted	 populations	 (1-8)	 from	 five	 different	 mice	 (m1-m5)	 were	 collected	 and	
extracted	proteins	were	processed	by	 LC-MS/MS.	Data	were	analyzed	and	quantified	with	
MaxQuant	 1.5.2.8	 66	 against	 the	 mouse	 Uniprot	 database.	 Table	 Values	 are	 log2(LFQ)	 –	
relative	 label-free	 quantification	 of	 proteins	 across	 samples.	 Table	 also	 shows	 sequence	
coverage,	 Razor+Unique	 peptides	 and	MS/MS	 spectral	 count	 for	 each	 sample,	 as	 well	 as	
protein	identifiers.		

Supplementary	Table	3	–	mRNA	and	proteins	of	spatially-sorted	hepatocytes	

Shown	 are	 the	 data	 for	 3,051	 genes	 with	 matched	 transcriptomic	 and	 proteomic	
information.	The	mean	and	SEM	of	the	five	repeats	 in	each	FACS	gate,	normalized	to	their	
sample	 sum,	were	 calculated	 for	both	mRNA	and	protein.	 	Kruskal-Wallis	p-value	and	FDR	
was	assigned	to	each	of	the	mRNAs/proteins.	

Supplementary	Table	4	–	Zonation	profiles	of	detected	high-confidence	miRs	

Shown	are	the	mean	and	SEM	of	the	sum-normalized	expression	of	miRs	for	each	FACS	gate,	
p-value	 for	 zonation	 (Kruskall-Wallis	 test),	 false	 discovery	 rate	 (FDR,	 using	 Benjamini-
Hochberg	procedure)	and	visualization	of	zonation	profiles.	

Supplementary	Table	5	–	Zonation	profiles	of	high-confidence	miR-target	pairs		

Includes	 expression	 level	 per	 FACS	 gate	 (as	 fraction	 of	 total)	 of	 miRs	 and	 their	 regulated	
genes,	 	 and	 Spearman	 correlation.	 Predicted	 interactions	 were	 obtained	 from	 TargetScan	
7.2,	with	weighted	context++	score	percentile	≥	95.	

Supplementary	 Table	 6	 –	 Zonation	 profiles	 of	 target	 genes	 and	 their	 cumulative	 miR	
profiles	

Includes	 expression	 level	 per	 FACS	 gate	 of	 genes	 and	 their	 cumulative	 miR	 profiles,	
Spearman	correlation,	p-value	for	the	 interaction	as	obtained	by	the	network	analysis	 (see	
Methods),	FDR	and	visualization	of	gene	and	cumulative	miR	zonation	profiles.	

Supplementary	Table	7	-	Primer	sequences	used	for	miR	qRT-PCR	 	
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