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Abstract

Introduction The first line of treatment for people with diabetes is metformin.
However, over the course of the disease metformin may fail to achieve appropriate
glycemic control, and a second-line therapy becomes necessary. In this paper we
introduce Tangle, a timespan-guided neural attention model that can accurately and
timely predict the upcoming need for a second-line diabetes therapy from administrative
data in the Australian adult population. The method could be used to design automatic
therapy review recommendations for patients and their providers without the need to
collect clinical measures.

Data We analyzed seven years of deidentified records (2008-2014) of the 10% publicly
available linked sample of Medicare Benefits Schedule (MBS) and Pharmaceutical
Benefits Scheme (PBS) electronic databases of Australia.

Methods By design, Tangle can inherit the representational power of pre-trained
word embedding, such as GloVe, to encode sequences of claims with the related MBS
codes. The proposed attention mechanism can also natively exploit the information
hidden in the timespan between two successive claims (measured in number of days).
We compared the proposed method against state-of-the-art sequence classification
methods.

Results Tangle outperforms state-of-the-art recurrent neural networks, including
attention-based models. In particular, when the proposed timespan-guided attention
strategy is coupled with pre-trained embedding methods, the model performance
reaches an Area Under the ROC Curve of 90%, an improvement of almost 10 percentage
points over an attentionless recurrent architecture.

Implementation Tangle is implemented in Python using Keras and it is hosted on
GitHub at https://github.com/samuelefiorini/tangle.
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Introduction 1

Diabetes affects around 1.2 million of Australians aged 2 years and over. In the last two 2

decades, the prevalence of the disease almost doubled, reaching 5.1% of the population 3

in 2015 1. In the same year, 85% of the Australians with diabetes reported a Type 2 4

Diabetes Mellitus (T2DM) diagnosis. This type of disease is particularly worrisome as it 5

is the leading cause of more than half of the diabetes-related deaths of 2015 [1]. In order 6

to reach glycemic control in T2DM subjects, Diabetes Australia recommends dietary 7

changes and physical exercise along with administration of metformin, if needed [2]. 8

When metformin is not sufficient anymore to achieve good glycemic control, second-line 9

medications should be added [3]. Failing to do so will lead to worsening conditions and 10

therefore it is important to identify those patients who should be targeted for therapy 11

change, so they can be monitored closely. 12

Thanks to recent advances in the field of machine learning it is becoming possible to 13

design algorithms that exploit medical records to predict and identify those patients 14

who benefit from specific interventions [4]. 15

In this paper we describe a predictive algorithm that looks at the administrative 16

medical records history of a patient and estimates the likelihood that they will need 17

second-line medication in the next future. This method could be used to design an 18

automatic system for patients and/or their providers that notifies them that a change in 19

therapy might be worth considering. From a machine learning point of view this means 20

that we build a classifier where the samples are sequences of medical events and the 21

binary labels identify subjects that added a second-line medication. 22

The medical events we consider in this paper are any of the events reported for 23

administrative purposes in the Medicare Benefits Schedule (MBS), that records the 24

utilization of primary care services such as visits to GPs and specialists, diagnostic and 25

pathology testing as well as therapeutics procedures. While using actual clinical records 26

seems an appealing, albeit more complex, option and might results in better predictions, 27

we have not considered it because an integrated system of health records has not been 28

implemented yet at national level. MBS records, instead, are not only routinely 29

collected at federal level for administrative purposes, but are also, to some extent, 30

available for data analysis. 31

Background 32

In this paper we focus on learning a classification function for sequences, i.e. ordered 33

lists of of events, that are encoded by symbolic values [5]. A major challenge with this 34

type of data is how to map them in a numerical representation suitable to train a 35

classification model. Standard vector representations, adopted for instance in natural 36

language processing, can be either dense (i.e. most of the elements are nonzero) or 37

sparse (i.e. with only few nonzero elements). A popular sparse representation method 38

for symbolic elements, or categorical features, is called One-Hot-Encoding (OHE) and 39

consists in directly mapping each symbolic element to a unique binary vector [6]. 40

Although frequently used, this representation acts at a local level and it is therefore 41

necessary to adopt some feature aggregation policy to achieve a global representation of 42

a given input sequence. Another sparse representation strategy is multidimensional 43

Bag-of-words (BOW), where each dimension represents the number of occurrences of a 44

given n-gram in the sequence [7]. 45

Nowadays, word embeddings are the most popular dense representation for sequence 46

learning problems. In this approach, to each element wi of the sequence s (i.e. word of 47

1 Source Australian Government - Department of Health: https://bit.ly/2Njqidp (last visited on
January 2019).
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Fig 1. LSTM for sequence classification. A visual representation of a simple
bidirectional LSTM for sequence classification model. This architecture is used in this
work for the sake of comparison, and it is referred to as baseline. In this work we
adopted LSTM recurrent cells, in order to exploit their ability to learn long-time
relationship in the sequences. However, similar architectures can be devised with vanilla
RNN, Gated Recurrent Units (GRU) [17] or other types of temporal architectures.

the document) one associates a real-valued dense vector xi ∈ X . The semantic vector 48

space X is designed to have “interesting” properties: e.g. neighboring vectors may 49

correspond to words having similar meaning or sharing similar contexts. The two most 50

popular word embeddings models proposed in literature are called word2vec [8] and 51

Global Vectors for Word Representation (GloVe) [9]. 52

Once a suitable encoding strategy is defined, a machine learning problem can be 53

posed. In this context, standard sequence classification models can be linear, e.g. 54

Logistic Regression (LR) and Support Vector Machines [10], or nonlinear, e.g. Random 55

Forests [11] and Boosting [12]. These approaches usually are not as computationally 56

expensive as other methods such as deep learning techniques and can be used in 57

combination with feature selection schemes to promote interpretability of the 58

results [13]. However, this class of techniques suffer from a major drawback: i.e. their 59

predictive performance is heavily influenced by the discriminative power of the adopted 60

sequence representation. 61

In the recent past, deep learning methods showed remarkable performance in solving 62

complex prediction tasks, such as visual object and speech recognition, image 63

captioning, drug-discovery and so on [14]. In the plethora of deep learning models, 64

Recurrent Neural-Networks (RNN) [14] is the class of architectures specifically designed 65

to work with sequential inputs. They consecutively process each element keeping a 66

hidden state vector that can memorize information on the past history. Although 67

designed to learn long-term dependencies, empirical evidence show that vanilla RNN fail 68

in this task. On the other hand, Long Short-Term Memory (LSTM) networks [15], a 69

particular class of RNN, are specifically designed to solve this issue. LSTMs have 70

special memory cells that can work as information accumulator together with a system 71

of input, output and forget gates. These networks empirically showed that they can deal 72

well with both short and long-time relationship among the elements of input sequences. 73

RNN, and deep learning models in general, can also easily inherit the representational 74

power of pre-trained word embeddings, heavily increasing their classification 75

performance [6]. A schematic representation of how RNN-based models can be used to 76

solve a sequence classification task is presented in Fig. 1. 77

Two major shortcomings of these architectures is that: (i) in order to achieve their 78

top performance they need to be trained on large datasets, hence requiring high 79

computational time and (ii) when applied in health care-related settings the learned 80

representations hardly align with prior (medical) knowledge [16]. For a comprehensive 81

overview of the most widely adopted deep learning models see [14] and references 82

therein. 83

Throughout this paper, real-valued variables are indicated with lowercase letters (e.g. 84

a), unidimensional vectors with lowercase bold letters (e.g. a) and matrices, or tensors, 85

with capital letters (e.g. A). To avoid clutter, sample subscripts are omitted where not 86

strictly needed. 87

Neural attention mechanism 88

Neural attention [18] is a recently proposed strategy to promote interpretability and to 89

improve prediction performance of deep learning methods for document 90
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Fig 2. Neural attention model. A visual representation of the attention mechanism
for sequence classification. When λ = 1 this corresponds to a standard bidirectional
attention model for sequence classification, whereas when λ 6= 1 the timespan sequence
τ1, . . . , τT can guide the model to focus on the most relevant elements of the sequence.
We call Tangle the case in which the value of λ is jointly learned during the training
process. The dashed line highlights the timestamps attention guiding mechanism.

classification [19], machine translation [18], prediction from sequential Electronic Health 91

Record (EHR) [16,20,21] and so on. The intuition behind attention mechanism is that 92

not all elements of the sequence are equally relevant for the prediction task and that 93

modeling their interactions helps to find the most relevant patterns. 94

Neural attention mechanism can be seen as a strategy to find weights (α) that can
emphasize events occurring at some point in the sequence, with the final aim to improve
the prediction performance. A possible adopted solution to find such weights is via
Multi-Layer Perceptron (MLP) [18,19,21]. We can summarize the attention mechanism
in the next three steps.

ut = tanh(htWt + b) (1)

αt =
exp(uTt wα)∑T
t=1 exp(uTt wα)

(2)

c =

T∑
t=1

αtht (3)

Vectors ht ∈ RH (for t ∈ [1, T ]) are a sequence of hidden representations obtained by a 95

recurrent architecture from an input sequence of events, such as health service claims or 96

visits. These representations are fed to a one-layer MLP with hyperbolic tangent 97

activation to obtain ut ∈ RU , a hidden representation of ht (Eq. 1). Then, a relevance 98

measure of each element in the sequence (αt) is estimated with a Softmax-activated 99

layer (Eq. 2). The weight matrix Wt ∈ RH×U and the weight vector wα ∈ RU are 100

jointly learned in the training process. Finally, a context vector c can be estimated by 101

computing a weighted sum of the hidden representations ht, with weights αt (Eq. 3). 102

The context vector can then be further transformed by deeper layers, in order to better 103

approximate the target label [19,20]. A schematic representation of the attention 104

mechanism is summarized in Fig. 2. 105

The use of neural attention models for health-related predictions is extensively 106

explored in literature. For instance, in [21] the authors introduce Dipole, a bidirectional 107

recurrent architecture that exploits neural attention to perform sequential EHR 108

forecasting. Moreover, in [16] the authors propose GRAM, a graph-based neural attention 109

model that exploits medical ontologies to guide the α-estimation step. Finally, in [20] 110

the authors introduce RETAIN, a neural attention model for prediction from sequential 111

EHR. RETAIN is probably the most relevant work for our purposes. Such model uses two 112

attention levels which separately learn two attention weights vectors that are eventually 113

combined to obtain the context vector. This model achieves good performance when 114

used to predict future diagnosis of heart failure. Although, as the authors claim, it is 115

not capable of exploiting the information hidden in the timestamps of each element of 116

the sequence, which are simply concatenated to each visit embedding 2. 117

2 See RETAIN supplemental material [20].
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Data 118

In this work, we analyzed seven years of deidentified records (2008-2014) of the 10% 119

publicly available linked sample of Medicare Benefits Schedule (MBS) and 120

Pharmaceutical Benefits Scheme (PBS) electronic databases of Australia [22]. 121

MBS-PBS 10% sample dataset keeps track of Medicare services subsidised by the 122

Australian government providing information on about 2.1 millions of Australians, who 123

are representative of the full population [23]. The two datasets are linked, meaning that 124

it is possible to track over time the same individual across MBS and PBS claims. 125

MBS-PBS 10% dataset also keeps track of other information such as patients’ gender, 126

state of residence and year of birth. PBS data consist of pharmacy trasactions for all 127

scripts of drugs of the PBS schedule which are dispensed to individuals holding a 128

Medicare card. In PBS, diabetes controlling drugs are identified by 90 item codes 129

grouped in two categories: insulin and analogues and blood glucose lowering drugs, excl. 130

insulins, the latter including metformins. A difficulty that arises when using this 131

dataset to extract MBS claims trajectories for a given subject is a rule called episode 132

coning. According to it, only the items corresponding to the three most expensive 133

pathologies in an episode of care can be contextually claimed and, therefore, can be 134

extracted from the dataset. The rule does not apply to pathology tests requested for 135

hospitalised patients or ordered by specialists. 136

Methods 137

This section provides a detailed definition of the experimental designed followed for the 138

analysis of MBS-PBS 10% dataset, as well as an accurate description of model 139

development, validation and comparison. 140

Data preprocessing and representation 141

In this work, we used PBS data to extract the subject IDs corresponding to the 142

population of interest. We first identified all the subjects that make habitual use of 143

diabetes-controlling pharmaceuticals such as: Insulins, Biguanides, Sulfonamides and so 144

on. Moreover, as PBS did not record medications of non-concessional subjects before 145

2012, we restricted our analysis to subjects having a concessional card which is used at 146

least for the 75% of the observational years and, in such time interval, for at least 75% 147

of their annual PBS items claims. Such inclusion criteria allowed us to focus on a stable 148

cohort of concessional individuals with diabetes. From this cohort we also identified and 149

excluded records corresponding to subjects with gestational diabetes. 150

Finally, we labeled with yi = 1 all the subjects that at first were using only 151

Metformin to manage their diabetes and successively were prescribed to a second-line 152

therapy based on a different drug. This includes both patients that stopped using 153

Metformin at all and patients that associated it with another drug. Conversely, we 154

labeled with yi = 0 patients that, during the observational time, did not change their 155

Metformin-based diabetes control therapy. This led us to an imbalanced dataset with 156

26753 subjects which ≈ 22% are positive. 157

For each subject in our cohort we used the MBS dataset to extract the
corresponding trajectory of Medicare service claims, which can be represented as the
following sequence of tuples

(w1, τ1), . . . , (wT , τT )

where w ∈ RV and τ ∈ N. The vectors wt are V -dimensional OHE representations of 158

MBS items and the scalars τt represent the timespan between two subsequent MBS 159

items, measured in number of days. In our dataset, V = 2774 is the vocabulary size (i.e. 160
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Table 1. Summary table of the most frequent MBS items (2.048.502 in total). Items
with almost identical meaning are grouped together.

% MBS items Short description
0.237 10990, 10991 Management of bulk-billed services
0.187 23, 36, 5020, 5040 General practitioner attendances
0.059 73928, 73929, 73938 Collection of one or more specimens
0.037 66503, 66506, 66512, 66515, 66509 Quantitation of substances in body fluids
0.035 74995 Bulk-billing incentive
0.023 65070 Haematology
0.014 10962, 10964 Podiatric or chiropratic health service
0.014 128, 116 Consultant physician attendances
0.014 66551 Quantitation of Hba1c
0.013 105, 108 Specialist attendances

Table 2. Summary table of the extracted dataset Pre and Post matching.

Pre Post
# Subjects 26753 11744
Label (% Class 1) 22.02 50.00
age (years) 66.15± 14.99 66.35± 11.49
gender (% Female) 55.83 49.22
sequence length (# MBS items) 430.05± 364.90 347.86± 275.31

pin state

% ACT+NSW 39.49 35.87
% VIC+TAS 26.15 28.73
% WA 8.67 8.65
% NT+SA 8.99 9.40
% QLD 16.70 17.35

the number of unique MBS items) and T = 445 is the sequence length. Sequences 161

shorter than T are zero-padded at their beginning, to prevent samples from having 162

inconsistent representations. The first few entries of a prototypical MBS-timespan 163

sequence can look like 164

23 1 10990 0 23 13 . . . 165

where w1 = OHE(23), w2 = OHE(10990), w3 = OHE(23) while τ1 = 1, τ2 = 0 and 166

τ3 = 13. The 10 most frequent MBS items of our dataset are summarized in Table 1. 167

Dealing with this kind of data, we shall keep in mind that different MBS items may 168

have almost identical meaning. For instance, items 23 and 5020 both apply for general 169

practitioner visits, but the second is dedicated to after-hour attendances. This can be a 170

confounding factor that we will address in the model development process with the help 171

of a pre-trained word embedding. 172

In order to cope with class imbalance, we matched positive and negatives samples by 173

age (average on the observational time), gender, last pin state and sequence 174

length via Coarsened Exact Matching (CEM) [24]3. Table 2 is a summary table of the 175

matched variables statistics before and after CEM matching. 176

Model development 177

Tangle is a two-inputs/one-output recurrent architecture which, given a set of 178

MBS-timespan sequences, returns the corresponding class probability. A pictorial 179

representation of the model can be seen in Fig. 2. In Tangle, the joint MBS-timespan 180

3 We used the R package cem Version 1.1.19.
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sequence is decoupled in two homogeneous sequences wt (for t = 1, 3, 5, . . . ) and τt (for 181

t = 2, 4, 6, . . . ) which are used as separate inputs of the network. The vectors wt are 182

V -dimensional OHE representations of MBS items. At the first layer of the network 183

these representations are projected on a E-dimensional semantic space, as in Eq. 4, 184

where xt ∈ RE and We ∈ RV×E . 185

xt = wtWe (4)

The vocabulary size V is defined as the number of unique MBS items observed (plus a 186

dummy entry for the padding value), while the size of the semantic space E is a free 187

parameter of the model. In this work we tested two options for the initialization of We: 188

uniform random and based on the popular word-embedding GloVe [9]. More details on 189

this second choice will be provided in the next section. 190

Hidden representations of the two input sequences, x1, . . . ,xT and τ1, . . . , τT , are
then achieved by two bidirectional LSTM layers [15] (see Eq. 5).

→
hx1 , . . . ,

→
hxT

= LSTM(x1, . . . ,xT )
←
hxT

, . . . ,
←
hx1

= LSTM(xT , . . . ,x1)

Hx = [
→
hx1

, . . . ,
→
hxT

,
←
hxT

, . . . ,
←
hx1

]

→
hτ1 , . . . ,

→
hτT = LSTM(τ1, . . . , τT )

←
hτT , . . . ,

←
hτ1 = LSTM(τT , . . . , τ1)

Hτ = [
→
hτ1 , . . . ,

→
hτT ,

←
hτT , . . . ,

←
hτ1 ]

(5)

Let Hx ∈ RT×2H be the MBS bidirectional hidden representation, where H is the 191

number of LSTM units. Similarly, Hτ ∈ RT×2H is the bidirectional hidden 192

representation of the timespan sequence. For ease of notation, we define hxt and hτt , 193

for t = 1, . . . , T as generic 2H-dimensional vectors belonging to the matrices Hx and 194

Hτ , respectively. 195

The timespan-guided neural attention mechanism adopted in Tangle can be
described by the following steps.

uxt
= tanh(hxt

Wx + bx) (6)

uτt = tanh(hτtWτ + bτ ) (7)

vt = λuxt
+ (1− λ)uτt (8)

αt =
exp(vtWα)∑T
t=1 exp(vtWα)

(9)

ωt = hxt
�αt (10)

Following the standard attention mechanism, uxt and uτt are hidden representations of 196

the sequences hxt
and hτt (for t = 1, . . . , T ). These two vectors are achieved by a 197

one-layer MLP having hyperbolic tangent activation (Eq. 6 and 7). Then, the two 198

hidden representations are merged together in a convex combination vt ∈ RU (Eq. 8), 199

where the mixin parameter λ is jointly learned at training time. This is the first novel 200

contribution introduced by the proposed attention mechanism, with respect to the 201

state-of-the-art. 202

The sequence of vt is then used to obtain the weights αt ∈ R2H via 203

Softmax-activated one-layer MLP (Eq. 9). Finally, the attention contribution to each 204

input element ωt ∈ R2H is expressed as the element-wise product between 205

MBS-sequence hidden representations and the corresponding attention weights (Eq. 10). 206

Interestingly, in our case Wα ∈ RU×2H , which is the weight matrix of the Softmax layer, 207

plays also the role of projecting the data back to a 2H-dimensional space, compatible 208

with LSTM hidden representations. So, each entry of the vectors hxt
and hτt (i.e. the 209

output of each LSTM unit) is individually weighted. This is the second original 210

contribution introduced by the proposed attention mechanism with respect to 211

state-of-the-art attention. While the same scalar weight is usually associated to each of 212
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the 2H entries of the hidden representation ht, Tangle is more general as it estimates 213

for each element in the sequence a 2H-dimensional attention weights vector. 214

The context vector c̄ ∈ RE is eventually computed in two steps: first by multiplying
along the temporal dimension the contribution matrix

ΩT = [ω1, . . . ,ωT ]T ∈ R2H×T

with the input MBS-items sequence matrix

X = [x1, . . . ,xT ] ∈ RT×E

and secondly by average-pooling the 2H hidden representations (Eq. 11). 215

c̄ =
1

2H

2H∑
j=1

(
ΩT ·X

)
j

(11)

In the proposed architecture, the average context vector c̄ is fed as input to a two-layers 216

fully connected MLP and trained with Dropout [25]. The first fully connected layer has 217

Rectified Linear Units (ReLu) activation [26], while the output probability is achieved 218

by sigmoid σ(·) (Eq. 12). 219

ŷ = σ[ ReLu(c̄W0 + b0)W1 + b1 ] (12)

Tangle is trained minimizing the Cross-entropy loss (Eq. 13), where y ∈ {0, 1} is the 220

binary label associated with the two classes and N is the number of samples. 221

L(y, ŷ) = − 1

N

N∑
i=1

[
y log(ŷ) + (1− y) log(1− ŷ)

]
(13)

Tangle is implemented in Python using Keras [27] and its source code is publicly 222

available on GitHub at https://github.com/samuelefiorini/tangle. 223

Embedding weights initialization 224

As previously anticipated, we need to define a protocol to initialize the embedding 225

matrix We (see Eq. 4), which is further optimized in the training phase. The goal of 226

this matrix is to project each MBS item in a semantic space where neighboring points 227

correspond to MBS claims with similar meanings (see Table 1), hence working around 228

the problem of synonym sequence elements. 229

We first obtained a brief textual descriptions for all the 2774 MBS items by querying 230

the Australian Department of Health website: http://www.mbsonline.gov.au. Then, we 231

cleaned each text corpus from punctuation and stop words and we split the resulting 232

descriptions in 1-grams. For instance, the word list associated to item 66551 is the 233

following. 234

[quantitation, glycated, haemoglobin, performed, management, 235

established, diabetes, item, subject, rule] 236

Then, we associated to each word of the list the corresponding E-dimensional glove.6B 237

embedding vector, which has 4× 105 words and it is trained on Wikipedia 2014 + 238

Gigaword 5 datasets [9]. As of today, glove.6B comes in four increasing dimensions: 239

50, 100, 200, 300. In our experiments we used E = 50. Empirical evidences showed that 240

larger embedding dimensions did not significantly increase Tangle prediction 241

performance. Finally, we averaged all the single word representations, achieving an 242

E-dimensional vector for each MBS item. A pictorial representation of this procedure is 243

depicted in Fig. 3. To demonstrate the effectiveness of our approach, we also tested 244

Tangle with uniformly random initialized embedding matrix We. 245
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Fig 3. MBS item embedding. A schematic representation of our GloVe-based
strategy to achieve meaningful representations of MBS items. To each word of the
textual description is associated the corresponding GloVe vector. The final MBS item
representation is achieved by averaging.

Model comparison and analysis 246

Performance of Tangle are evaluated against three different predictive solutions. 247

1. `1-penalized LR (see Eq. 14) fitted on a n-BOW representation, where n controls 248

the number of n-grams. 249

ŵ = argmin
w∈Rd

1

N

N∑
i=1

log(1 + e−yix
T
i w) + γ |w|1 (14)

In this case, xi represents the n-BOW representation of the i-th patient and d, 250

the dimensionality of the LR weights, (w) depends on the number of considered 251

n-grams. 252

2. Baseline attentionless recurrent model with bidirectional LSTM (see Fig. 1). 253

3. State-of-the-art neural attention model with bidirectional LSTM (see Fig. 2). 254

In order to present a fair model comparison, each tested recurrent model has the 255

same depth, and the only difference is the attention strategy used. Performance of the 256

tested models are evaluated via 10-split Monte Carlo cross-validation [28]. We estimated 257

mean (µ) and standard deviation (σ) of prediction accuracy, sensitivity, specificity and 258

Area Under the Receiver Operating Characteristics Curve (ROC AUC) [29]. The same 259

10 Monte Carlo extraction are used for every model. In each Monte Carlo extraction, 260

the matched dataset (with N = 11744 samples) is split in two chunks, namely learning 261

(60%) and test (40%). The learning set is then further split in training (90%) and 262

validation (10%). This is led us to extract 6341 training, 705 validation and 4698 test 263

samples for each Monte Carlo split. Training sets are used to learn the weights of every 264

model; whereas, validation sets are used by recurrent methods to define the early 265

stopping iteration, and by `1-LR to optimize the hyperparameter γ, which is chosen 266

from a grid of 10 values spanning from 10−5 to 1 in logarithmic scale. Model predictive 267

performance are then evaluated on each previously unseen test samples. 268

Results 269

We tested three increasing values for n : [1, 2, 3]. Choosing n = 1 yields the best 270

performance, so results obtained with n 6= 1 are not shown. The grid-search schema 271

used to tune the regularization parameter γ of `1-LR typically resulted in choosing 272

γ̂ ≈ 10−3. Unpenalized LR was also tested, consistently achieving worse performance. 273

The methods performance is measured in terms of ROC AUC, overall accuracy, 274

sensitivity and specificity [29]. For each performance measure we estimated mean (µ) 275

and standard deviation (σ) across 10 Monte Carlo samplings. Results of the 276

experiments are summarized in Table 3. 277

Focusing on recurrent methods, Tangle outperforms baseline and state-of-the art 278

neural attention architectures. It is interesting to notice how the proposed GloVe-based 279

initialization protocol of the embedding matrix (starred∗ rows in Table 3) consistently 280

improves on every recurrent model to achieve higher ROC AUC and better classification 281

accuracy. We therefore assume that initializing the embedding weights using GloVe 282
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Table 3. Summary table comparing the performance of linear and recurrent models.
∗GloVe initialization of the embedding weight matrix. Bold digits highlight best results.

ROC AUC Accuracy Sensitivity Specificity
µ σ µ σ µ σ µ σ

`1-LR 1-BOW 0.82 4.9e-3 0.74 4.8e-3 0.67 1.5e-2 0.81 1.1e-2
Baseline 0.81 8.4e-3 0.74 7.7e-3 0.61 4.4e-2 0.86 4.0e-2
Attention 0.84 1.1e-2 0.76 1.2e-2 0.72 4.4e-2 0.80 5.0e-2
Tangle 0.87 7.8e-3 0.78 9.9e-3 0.71 2.6e-2 0.85 2.7e-2
Baseline∗ 0.84 9.0e-3 0.76 9.0e-3 0.67 5.8e-2 0.84 5.2e-2
Attention∗ 0.86 1.2e-2 0.77 1.1e-2 0.71 3.9e-2 0.83 3.9e-2
Tangle∗ 0.90 6.0e-3 0.82 8.4e-2 0.79 3.1e-2 0.86 3.3e-2

Fig 4. Average ROC curves. ROC curves obtained averaging the 10 Monte Carlo
cross-validation iterations for best and worst method: i.e.Tangle and `1-LR 1-BOW
respectively. Shaded area corresponds to ±3σ, where σ is the standard deviation.

ameliorates the issue of synonym MBS items. Fig. 4 shows the average ROC curve 283

obtained by Tangle and `1-LR that are top and worst performing model, respectively. 284

An intuitive visualization of the discriminative power of the representation achieved by 285

Tangle can be seen in the 3D scatter plot of Fig. 5 which was obtained by estimating a 286

3-dimensional t-SNE embedding [30] on the final sample representation learned by 287

Tangle. The figure clearly shows that the learned features are able to discriminate 288

between the two classes, explaining the good performance shown in Table 3. 289

A visual representation of the attention contribution estimated by Tangle on the test 290

set can be seen in the Manhattan plot of Fig. 6. The horizontal axis corresponds to the 291

MBS items sequence, while their average attention contribution ω̄t = 1
2H

∑2H
j=1 ωtj is on 292

the vertical axis. For ease of visualization only the last 250 MBS claims are represented. 293

MBS-items with high attention weight are defined as the ones having |ω̄t| > ω99, where 294

ω99 corresponds to the 99-th percentile of the |ω̄t| distribution (for t = 1, . . . , T ). From 295

Fig. 6 we can see that for both classes high attention weights are more frequently falling 296

on the last 13 MBS-items of the sequence, which corresponds to the last 78 days 297

(median value) before the second-line therapy transition. Moreover, we can appreciate 298

how the specific attention weight pattern is different between the two classes. 299

Discussion 300

Our analysis confirms the predictive potential of recurrent models that use neural 301

attention. Interestingly using standard RNNs alone did not substantially outperform 302

simple linear models while requiring a significant computational effort. However, adding 303

the attention mechanism makes the additional computational requirement worth it, 304

since it leads to improved performance. In addition, the proposed timespan-guided 305

attention strategy leads to even better performance, especially if coupled with 306

pre-trained embedding initialization of the weight matrix. Overall, thanks to the 307

available software implementation based on modern deep learning libraries, using Tangle 308

does not require significant additional coding effort. 309

Fig 5. t-SNE embedding. 3D scatter-plot of a random extraction of 500 samples
projected on a low-dimensional embedding, estimated by t-SNE [30], from the sample
representation learned by Tangle. Samples belonging to the two classes, represented
with green circles and red triangles, can be seen as slightly overlapping clusters.
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Fig 6. Attention contribution. Manhattan plot of the attention contribution ω
estimated by Tangle on the test set. As we can see, the model correctly focuses its
attention on the most recent claims, which have nonzero contributions. From this plot
we can also appreciate the different representations learned for the two classes.

Another advantage of the attention mechanism is that it allows to get an 310

understanding of which portion of the sequence might be more important. For example, 311

in our case we found that the last 13 MBS claims,which take place in ≈ 78 days, are the 312

most relevant for the current prediction task. 313

Overall, given that sensitivity and specificity of Tangle are at or above 80%, it seems 314

that it could become the basis of an alert system for patient and providers. Clearly, 315

before Tangle can be used in practice one would have to understand at which point of 316

the ROC curve of Fig. 4 one should operate. This would require a careful analysis of the 317

relative costs of false positives and false negative alert. 318

It is important to underscore that there is nothing specific to diabetes in Tangle. 319

The modeling strategy and the embedding method could be applied to any problem of 320

sequence classification, providing an easy-to-use method to represent and classify 321

sequences composed of discrete event codes. For example one could apply this method 322

to the analysis of hospital data, where instead of MBS items one has ICD codes, or to 323

more complex data sets, such as the Electronic Health Record collection MIMIC-III [31], 324

that contains clinical codes as well as clinical measures and doctors’ notes. 325
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