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0. Abstract 

The application of time-resolved multivariate pattern classification analyses (MVPA) to 

EEG and MEG data has become increasingly popular. Traditionally, such time series data are 

high-pass filtered before analyses, in order to remove slow drifts. Here we show that high-

pass filtering should be applied with extreme caution in MVPA, as it may easily create 

artifacts that result in displacement of decoding accuracy, leading to statistically significant 

above-chance classification during time periods in which the source is clearly not in brain 

activity. This is particularly problematic in paradigms that have long trial durations, such as 

working memory experiments with long retention intervals, where the signal of interest 

may reside in low parts of the frequency spectrum and thus is more likely to be affected by 

high-pass filters. In both real and simulated EEG data, we show that spurious decoding may 

emerge with filter cut-off settings from as modest as 0.1 Hz. We provide an alternative 

method of removing slow drift noise, referred to as robust detrending (de Cheveigne & 

Arzounian, 2018), which, when applied in concert with masking of cortical events does not 

result in the temporal displacement of information. We show that temporal generalization 

may benefit from robust detrending, without any of the unwanted side effects introduced 

by filtering. However, we conclude that for sufficiently clean data sets, no filtering or 

detrending at all may work sufficiently well. Implications for other types of data are 

discussed, followed by a number of recommendations. 
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1. Introduction 

Recent years have seen an upsurge in the application of time-resolved multivariate 

pattern classification analyses (MVPA) – also referred to as decoding – to electro- and 

magnetoencephalographic data (EEG/MEG; see Table 1 for an extensive list of references).  

MVPA allows researchers to uncover the active sensory and mnemonic representations 

underlying cognitive processes as wide-ranging as perception, attention, categorization, 

language, working memory, and long-term memory. Many researchers therefore now 

prefer the information-rich multivariate approach over traditional univariate event-related 

potential (ERP) or event-related field (ERF) analyses based on signals averaged over epochs. 

Moreover, toolboxes have recently emerged to facilitate these types of analyses (e.g. Bode, 

Feuerriegel, Bennett, & Alday, 2018; Fahrenfort, van Driel, van Gaal, & Olivers, 2018; Hanke 

et al., 2009; Meyers, 2013; Oosterhof, Connolly, & Haxby, 2016). 

However, as the field is making the transition from univariate to multivariate 

approaches, some of the standard data processing procedures remain, raising the question 

whether these procedures are actually optimal, or perhaps even harmful, for decoding. One 

of the most common processing steps is high-pass filtering. Given the slow drifts in 

especially EEG data (less so in MEG data), high-pass filtering has become a crucial 

component in extracting ERPs and improving signal-to-noise. However, it is well known that 

high-pass filtering can lead to artifacts. Specifically, too high cut-off values (typically 0.1 Hz 

or more) may cause the signal enhancement to result in spurious local ringing effects1 

around the event-related responses – artifacts which may be misinterpreted as real 

components in the event-related signal (Acunzo, MacKenzie, & van Rossum, 2012; 

Kappenman & Luck, 2010; Luck, 2005; Tanner, Morgan-Short, & Luck, 2015; Tanner, Norton, 

Morgan-Short, & Luck, 2016; Widmann, Schroger, & Maess, 2015). Nevertheless, high-pass 

filtering is generally still considered a crucial step for extracting meaningful ERPs (for which 

drift correction is necessary), and therefore continues to be part of the recommendations 

with regards to EEG data preprocessing (with appropriate cut-off values,  e.g. Maess, 

Schroger, & Widmann, 2016; Tanner et al., 2016; Widmann & Schroger, 2012; Widmann et 

al., 2015).  

                                                             
1 Ringing effects are rippling artifacts near sharp edges as a result of filtering out high-frequency 

information 
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Perhaps less well known is that, depending on the specific cut-off value and frequency of 

the ERP, high-pass filtering may also lead to quite diffuse, but still spurious, activity 

differences both well before and well after the event-related response (Tanner et al., 2016). 

Even with modest cut-off settings, these slower components may emerge as subtle overall 

baseline shifts. A not uncommon step for ERP researchers is to correct for these shifts 

(whether apparent or real), thus potentially obscuring any artifacts. Thus, although 

sufficiently powered ERP studies could still show such artifacts, subtle baseline differences 

are often thought to be remedied by ensuing baseline corrections in ERP analyses (though 

see Tanner et al., 2016). However, multivariate analyses may be more sensitive to 

spuriously transposed information present in the topographical landscape. So far, little is 

known about the effects of high-pass filtering on multivariate pattern classification, and to 

what extent it leads to artifacts in decoding. 

The potential for spurious temporal displacement of information is particularly 

worrisome when testing hypotheses on neural activity in the absence of stimulation, for 

example in the field of working memory. Indeed, after extensively analyzing one of our own 

EEG-based working memory experiments, we had to conclude that the above-chance 

decoding of the memoranda during the blank delay period was at least partly caused by the 

(modest) high-pass filter applied during preprocessing. As Table 1 shows, we have not been 

the only ones applying high-pass filtering prior to MVPA, as filtering has remained part of 

the pre-processing pipeline in a wide range of studies. Moreover, the same table also shows 

a wide range of cut-off values used when high-pass filtering is applied, from as low as 0.03 

Hz to as high as 2 Hz, with 0.1 Hz being the most typical2. We thus decided to conduct a 

systematic exploration of high-pass filtering-related artifacts in MVPA, the results of which 

are presented here. First, we show how high-pass filtering led to clear signs of spurious 

decoding in one of our own EEG experiments, which involved a working memory task 

illustrated in Figure 1. The task contained an initial presentation of a cue, a blank delay 

period during which the cue had to be retained, and a test stimulus in which observers 

                                                             
2 Note that Table 1 is only intended to illustrate the wide-ranging use of high-pass filters in EEG/MEG, 

and not to suggest that anything is necessarily wrong with these studies. For example, different studies may 
use different filter types: online (causal) or offline (either causal or acausal), Finite Impulse Response (FIR) or 
Infinite Impulse Response (IIR), different filter lengths and so forth, and each of these filter types may have 
different effects on the data that do not necessarily have to be problematic in the scientific context in which 
they are applied. Here we investigate only one particular common type of high-pass filter to assess its 
influence on MVPA of EEG. We return to this issue in the discussion. 
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searched for the cued object. To uncover the cause of the artifacts, and because empirical 

data does not come with a ground truth, we subsequently chose to create a simulated data 

set that allowed us to assess how decoding of filtered signals compares against decoding a 

known raw signal. 

In addition to testing the effects of high-pass filtering, we tested an alternative method 

of detrending the data that was recently advocated by de Cheveigné and Arzounian (2018), 

and is referred to as robust detrending. Robust detrending involves fitting an nth order 

polynomial to the data and subtracting the fit, thereby removing slow-fluctuating drifts. 

Because the fit can be sensitive to either meaningful (ERPs, oscillations) or meaningless 

deviations (glitches) from the slow trend, ringing artifacts may also occur here. 

Furthermore, overfitting with a higher-order polynomial may result in the removal of the 

meaningful effects, thus obscuring real effects in an attempt to remove artifacts. In robust 

detrending, one therefore first presets a mask on parts of the data that are deemed to 

contain relevant events and thus should not be captured by the polynomial fit. In addition, 

through an iterative weighting procedure, outliers to the polynomial trend, such as glitches, 

are masked as well. We show that robust detrending leads to modest improvements in 

decoding, but more importantly, it does so without the artifacts. 
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Figure 1. Example trial for the real experiment. Observers remembered a cued house, face or 

letter target for a subsequent visual search task presented after a 3000 ms blank retention interval. 

Observers then indicated with one of two button presses whether the memorized target was 

present or absent in a visual search display which also contained a number of nontarget objects. The 

faces in the search display were replaced with downsampled versions in this illustration to make 

them unidentifiable for reasons of privacy. 

 

2. Methods 

For both the real and the simulated data set, stimuli, data, code and analyses scripts are 

available from the Open Science Framework, at https://osf.io/t9rkz/ 

 

2.1. Real data 

We report data from an experiment that is illustrated in Figure 1. On every trial, 

observers were presented with a face, house, or letter (the cue), which they had to 

remember for a visual search task presented 3 seconds later. The task was to determine the 

presence or absence of the cued target. The experiment included other conditions, but to 

simplify matters here we report on the condition that best serves the current purpose. 

2.1.1. Participants. Twenty-five students from the Vrije Universiteit Amsterdam 

participated for course credits or monetary payment (€9 per hour). All subjects reported 
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normal or corrected to normal vision. The protocol complied with ethical guidelines as 

approved by the Scientific and Ethical Review Committee of the Faculty of Behavioural and 

Movement Sciences, and with the Declaration of Helsinki. Data of two subjects were 

removed from further analyses, one due to excessive high frequency noise reflecting muscle 

artifacts, and another due to a very strong but poorly understood artefact in the ERPs that is 

most likely due to equipment failure.  

2.1.2. Stimuli and task. Subjects were asked to memorize at each trial a briefly presented 

picture (250 ms), which could be of the category face, house or letter (width: ~4° visual 

angle; height: ~5°). After a retention interval of 3 seconds (with only a white dot at the 

center of the screen as fixation point), a search display appeared, consisting of six pictures 

(two exemplars of each category; ~2.5° in size) randomly arranged along a hexagon array 

(radius of 4.5°; three pictures per hemifield; white fixation dot remained at the center of the 

screen). Subjects were asked to indicate whether the target picture they memorized at the 

start of the trial was present (left index finger) or absent (right index finger) by pressing a 

button on a button box connected to the EEG acquisition computer via a parallel port. 

Probability of target present/absent was 50%. The search array disappeared upon the 

subject’s response (which changed the color of the fixation dot to black for 500 ms), or 

when 5 seconds had passed (after which the warning “respond faster!” appeared at the 

center of the screen for 500 ms). The inter-trial interval was set to 1 second ± 500 ms jitter. 

Low-level image properties of face and house pictures were controlled with the SHINE 

toolbox (Willenbockel et al., 2010). Subjects performed a short practice block of 12 trials 

with feedback on accuracy (words “correct!” and “wrong…” presented centrally for 500 ms), 

after which EEG recording started for 252 trials (84 per picture category), without feedback 

(except for slow responses). Prior to participating, subjects signed an informed consent 

form. Each unique picture within a category was only presented once as target, while it 

could be used more than once as distractors within the search arrays. Furthermore, when 

the target was a face, the two face stimuli in the search display were of same gender, 

encouraging subjects to memorize facial features rather than category. We randomly 

selected face stimuli out of 100 face pictures (from Endl et al., 1998, 50 male, 50 female). 

Similarly, when the target was a letter, the two letter stimuli in the search display where of 

same identity and capitalization, encouraging subjects to memorize the specific font. House 
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stimuli were randomly sampled from 100 exemplars of pictures used in Egner, Monti, and 

Summerfield (2010).  

2.1.3. Data acquisition. EEG data from 64 Biosemi ActiveTwo (biosemi.com) electrodes 

placed according to the 10-20 positions were acquired at 512 Hz sampling rate. The 

ActiveTwo system is DC-coupled, and thus has no online (hardware) high-pass filter. On such 

DC-coupled systems, drifts are common due to non-brain artefacts such as sweating. 

Further, the data was down-sampled offline to 256 Hz and re-referenced to the average of 

signals recorded from both earlobes. Error trials, trials without a response, or with 

responses slower than 3 seconds were not included in the analyses. Continuous, raw data 

was first inspected for malfunctioning electrodes, which were interpolated after the below 

preprocessing steps. We did not perform any oculomotor artifact correction. 

 

2.2. Simulated data 

We describe the creation of an artificial dataset for a task with a similar but simplified 

structure, involving the presentation of a to-be-remembered stimulus, a retention phase, 

and a test stimulus. 

2.2.1. Creating class-specific topographical patterns. Figure 2A illustrates the creation of 

the underlying spatial pattern of evoked responses. The features fed into a linear 

discriminant classifier are typically activity values at a given time point (or averaged over a 

time window) for each of N electrodes that cover the scalp or part thereof. Here we 

simulated activity of 64 electrodes with positions placed according to the international 10-

20 system. From these we selected a fixed set of electrodes to represent one stimulus class, 

and another, partially overlapping set of electrodes to represent another stimulus class. 

Stimulus-related class-specific activity was thus associated with different multivariate spatial 

patterns, such that multivariate classification trained and tested on the channel features 

over time would be able to reproduce the stimulus-related activity. 

To simulate stimulus-related activity assigned to these sets of electrodes, we first 

created an event-related potential (ERP, shown in Figure 2B) that mimicked three phases of 

a working memory task: encoding the stimulus into the visual system, retaining a 

representation of the stimulus in working memory, and recognizing the stimulus upon the 

presentation of a probe. A “trial” consisted of an array of data containing the entire ERP, 

and lasted from -2 seconds to 4.5 seconds surrounding the “event” (what would be the 
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onset of the to-be-encoded stimulus). Starting at t = .05 seconds, we used a Weibull 

function to create a typical encoding response with a steep rising slope and a shallower 

falling slope, returning to baseline around t = 0.5 seconds. To mimic memory maintenance 

during the retention interval, shortly after encoding, activity increased again with a steep 

logistic curve (starting at 0.5 seconds, then plateaued for about 0.7 seconds, after which it 

dropped with a shallower logistic curve to baseline at around t = 2 seconds). The response 

to the final memory probe display was simulated with a similar Weibull function as for 

encoding. After about 2.5 seconds, the event-related activity remained at baseline for the 

remainder of the trial. Note that each of the different phases (encoding, retention, recall) 

returned to baseline before entering the next phase. 

 
Figure 2. Creation of simulated data. A) Two different electrode topographies representing the two 

stimulus classes, plus their difference. Red as positive, blue as negative. B) The underlying simulated 

ERP time series as injected into each electrode of the topographical patterns. C) A fuzzy decision 

boundary was then created by different degrees of warping between the two patterns. D) Example 

time course of 1/f pink noise slow drift as was added to the data (left panel), and its spectral content 

(right panel). 

 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 13, 2019. ; https://doi.org/10.1101/530220doi: bioRxiv preprint 

https://doi.org/10.1101/530220
http://creativecommons.org/licenses/by-nc/4.0/


10 
 

2.2.2. Decision boundary. We created one class of patterns by injecting the ERP into each 

of the electrodes in one of the two sets described above for 100 trials, and another class by 

injecting the ERP to each of the electrodes in the other set for 100 trials, thus creating two 

different underlying spatiotemporal landscapes of activity. Trial order was randomized 

before injecting noise, and again before training and testing the classifier. With such two 

highly different patterns, a classifier would produce nearly perfect classification accuracy. To 

avoid such a ceiling effect, we created a “decision boundary space” by warping one spatial 

pattern into the other pattern in 80 linearly spaced transitions, where transitions 40 and 41 

are closest to the exact middle between the two patterns. Figure 2C illustrates the warping 

in seven steps. This warping resulted in non-overlapping channels now showing a relatively 

stronger ERP for one stimulus class than the other (where this was binary prior to warping). 

Another way of describing the effect of this warping procedure is that the multivariate 

patterns of the two stimulus classes become more similar, thereby moving them closer to 

the decision boundary of a multivariate classifier. For the three working memory stages of 

the trial, we selected different degrees of warping: for the encoding phase we used 

relatively divergent patterns (transition 31 vs transition 50); for the retention phase we used 

a near-complete mixture of the two patterns (transition 39 vs transition 42); for the recall 

phase, we used a warping-degree in between encoding and retention (transition 35 vs 

transition 46). Note that these simulated ERPs and spatial distributions were purely meant 

to illustrate decoding under different degrees of separability, and not intended as an exact 

model of brain mechanisms of working memory. At the same time, the classification result 

yielded a pattern that can be observed in real data (e.g. Myers et al., 2015; Wolff, Ding, 

Myers, & Stokes, 2015): A transient sweep of high decoding accuracy during encoding, low 

(yet significant) sustained accuracy during retention, and high (yet somewhat reduced) 

accuracy during recall/search.  

2.2.3. Adding low-frequency pink drifts. As high-pass filtering and robust detrending are 

used to remove low-frequency non-stationary drifts, the next step was to add such drifts to 

the simulated activity, as illustrated in Figure 2D. To this end, we created different time 

series of pink noise (1/f, power spectral density is inversely related to frequency) for each 

electrode separately. Specifically, we first created Fourier coefficients of random phase 

angles multiplied by random amplitudes that showed an exponential decay over frequency. 

The real part of the inverse fast Fourier transform of this simulated power spectrum 
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produced “continuous data” of low frequency noise, with length equal to 500 concatenated 

trials of 4.5 seconds, plus 10 seconds before and after as buffer zones for filtering edge 

artifacts. In our main analyses, power was relatively strong for the lowest (<0.01 Hz) ultra-

slow frequencies, and reduced to roughly zero at around 0.1 Hz. Figure 2D shows an 

example 100 second snippet of the time series of one channel, together with its spectral 

content. The channel-specific ERPs created in the previous step were then added to the 

simulated drift in varying ratios. In supplementary analyses, we also investigated a shallower 

decay setting, in wich there was still observable power around 0.25 Hz (Supplementary 

Figure 4C and 4D). The rationale for the slow and fast decay setting was that the speed of 

drifts/noise will typically differ between datasets, and cannot be known a-priori. A typical 

cut-off of 0.1 Hz might not remove all fast drifts, yet a more rigorous cut-off of 0.5 Hz might 

also affect frequencies in which there was no drift at all (i.e. between ~0.25 and 0.5 Hz).  

In addition, we also explored a broad range of signal-to-noise (SNR) ratios between ERP 

and drift by multiplying the normalized drift between 1 (weak noise; high SNR) and 20 

(strong noise; low SNR) times with 20 integer steps (SNRs from 1:1 to 1:20). This larger SNR 

parameter space yielded no qualitatively interesting results, so these too are presented as 

Supplementary material. We randomly generated 24 subjects using the above procedure, so 

as to be able to run a standard group analysis using the ADAM toolbox (Fahrenfort et al., 

2018). 

 

2.3. Data preprocessing and analyses 

Before applying MVPA analyses, slow drifts were either not removed at all ('raw data'), 

or removed through either high-pass filtering, or robust detrending, both of which are 

described in more detail below. 

2.3.1. Removing low-frequency drift noise with high-pass filtering. To investigate the 

effect of drift removal using high-pass filtering, we high-pass filtered the continuous data 

(both the simulated and the re-referenced real time series) according to typical M/EEG 

preprocessing pipeline settings.  We used a two-way sinc FIR filter with a Kaiser window 

type, with a maximum passband deviation of 0.1% (recommended by Widmann et al., 

2015), by using EEGLAB’s pop_firws() function (Delorme & Makeig, 2004), with all 

parameters set to default except filter order, which was set to correspond to 3 cycles of the 

cut-off frequency. In case of the real data, we show the decoding of "raw" unfiltered data, 
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as well as the effect of high-pass filters on decoding for three cut-off values: 0.05 Hz, 0.1 Hz, 

0.25 Hz and 0.5 Hz. In case of the simulated data, we show the decoding of the “raw” 

unfiltered simulated data as well as the effect of cut-off frequency on decoding in 9 semi-

logarithmically spaced steps of 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.25 and 0.5 (so 10 

steps in total when including the raw unfiltered data).  

2.3.2. Removing low-frequency drift noise with robust detrending. In a second 

procedure, we applied an alternative to high-pass filtering, which involves fitting an nth 

order polynomial to the data and subtracting the fit, thereby detrending the data to remove 

slow-fluctuating drifts (de Cheveigne & Arzounian, 2018). Because the fit can be sensitive to 

sudden deviations from the slow trend (“glitches”; muscle, motion or electrode-specific 

artifacts; but also sharp, transient ERPs or synchronized oscillations such as posterior alpha 

band), two unwanted side effects of detrending can occur. First, the glitch can impose 

ringing artifacts, similar to what happens in filtering. Second, if a signal of interest is largely 

or fully captured by a high-order polynomial, one risks removing real effects in an attempt 

to remove artifacts. A solution is robust detrending, where first a pre-set mask can be set on 

parts of the data that are deemed to reflect experimentally relevant (e.g. cognitive) events 

and thus should not be captured by the polynomial fit (for an illustration of the procedure 

see Figure 3, for an illustration on real data of a representative subject, see Supplementary 

Figure S1); second, through an iterative weighting procedure other parts of the data, which 

are recognized as outliers of the polynomial trend, are masked as well (see de Cheveigne & 

Arzounian, 2018, for details). The final fit is then done on the non-masked data, and 

subtracted from all data (masked and non-masked). For the simulated dataset we used a 

pre-set mask to remove the ERPs occurring in current trial from the detrending operation, 

so including the encoding, retention and recall phases (i.e. we set a mask that runs from t = 

0 to t = 2.5 seconds); all other surrounding data were left unmasked. Similarly, for the real 

dataset we used a pre-set mask to remove the current trial from the fit, going from stimulus 

onset (t = 0 seconds) until 0.75 seconds after the response, as to not include any meaningful 

perceptual, cognitive and/or motor-related dynamics into the polynomial fit.   
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Figure 3. Illustration of the procedure for removing low-frequency drift noise with robust detrending 

based on simulated data. Top panel: raw data for three electrodes: Fp1 (no ERP), C3 and F1 (both of 

which contain an ERP). Also shown as dotted lines are the polynomial fits on the raw data from 

which the trial events were masked out (grey panels in the background). Middle panel: data after 

removing 1st order polynomials fits from the top panel. Also shown are the 10th order polynomial fits 

on these data, from which the trial events were masked out (grey panels in the background). 

Bottom: data after removing the 10th order polynomial fits. Finally, the middle trial is segmented out 

for further analysis. Note that this figure serves as illustration only. The width of the time window of 

data on which the polynomials were fitted was much wider than what is shown in this illustration. 

Further, depending on the length of the intertrial interval one may choose to mask out only the trial 

that will be epoched trial (as was done in the analyses presented in this paper), or also mask out 

neighboring trials (which may also work well, as was done in the above illustration). Finally, the 

robust detrending algorithm will iteratively mask out additional sharp transients from the data that 

otherwise disturb smooth fits, see main text as well as (de Cheveigne & Arzounian, 2018) for details. 

A similar figure is produced for real data when using the detrending function included in the ADAM 

toolbox, an illustration of which can be found in Supplementary Figure S1.  
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High-pass filters are usually applied to continuous data with sufficient buffer zones 

before and after the experimental recording, because a low-frequency cut-off results in long 

lasting edge artifacts that may enter the task-related data. However, robust detrending of a 

whole recording session of typically more than an hour can be suboptimal: the non-

stationary slow trend may be too complex, requiring a high polynomial order that is difficult 

to select a priori. Although de Cheveigné and Arzounian provide no clear recommendation 

as to how long data epochs should be for optimal detrending, the examples given in their 

paper show segments in the range of a few hundreds of seconds. Because we did not know 

a priori what the length of the drifts were in our experimental data, we segmented into 

liberal (wide) padded epochs of 207.5 seconds (i.e. trial-related epochs of 7.5 seconds with 

100 seconds of trial data pre-/post-padded). To be able to include all trials, the continuous 

data were symmetrically mirror-padded with 100 seconds prior to segmentation.  For the 

simulated data, we segmented into less extensive 56.5 second epochs, each consisting of 

the duration of one trial padded with 25 seconds on both sides, approximately coinciding 

with the length where the injected drift power was maximal. Note however, that the 

duration of a padded trial during detrending does not directly impinge on the frequency of 

the drift that can be removed (as is the case for filter lengths), as a polynomial can easily fit 

onto a small portion of an oscillation. Preliminary testing showed that detrending on 

padded windows as small as 50 seconds seems to work quite well. 

Similar to varying the cut-off frequency for filtering, we varied the polynomial order for 

detrending in 9 steps, using the orders: 1, 2, 3, 4, 5, 10, 15, 20 and 30 in case of the 

simulated data (so 10 steps in total when including the raw data). For the real data, we ran 

four detrending procedures with 1st order only, 10th order, 20th order, and 30th order. For all 

polynomial orders higher than 1, the data were first detrended with a 1st order polynomial 

(i.e. in fact removing a linear trend over the entire epoch) to improve the fit of the higher 

order polynomial (as recommended by de Cheveigne & Arzounian, 2018), also see Figure 3 

for an illustration of the procedure from top to bottom for a 10th order polynomial. Because 

of the robust, iterative fitting procedure, the first detrending step also updates the mask 

with additional time-channel-specific outliers; this updated mask is then used as a pre-mask 

for the next detrending step. As can be observed in electrode C3 in Figure 3, the fit is not 

necessarily perfect (middle panel) and the drift is not perfectly removed (bottom panel). 

Detrending is not guaranteed to produce perfect fits, as noise can occur in many frequency 
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spectra that are not necessarily always captured by a polynomial of a given order. For this 

reason, it can be advantageous to try out different filter orders during drift removal. 

However, by the analytic logic of the mask procedure, the fit cannot be affected by the ERP 

(the signal) that occurs in the current trial. Therefore, any remaining effect on MVPA can be 

regarded as imperfect noise removal, which by the same logic is evenly distributed across 

trials and conditions. 

Robust detrending was done with the Noise Tools toolbox 

(http://audition.ens.fr/adc/NoiseTools), using the nt_detrend() function. Note that we have 

also added a detrending function to version 1.06 of the ADAM toolbox (Fahrenfort et al., 

2018) that allows one to easily perform a detrending and epoching operation on EEG data in 

EEGLAB format while masking out 'cognitive' events, by internally making use of the 

nt_detrend function. The ADAM function is called adam_detrend_and_epoch(), and takes as 

inputs EEG data, a specification of the epoch window, the window in which event take place 

that should be masked out, and some other parameters. Its output can then be used 

directly for MVPA first level analyses. The function also produces a plot of the detrending 

procedure on a trial in the middle of the dataset, using some illustrative channels with 

strong drifts, as well as a butterfly plot of the ERP data before and after detrending. An 

example of such a plot can be found in Supplementary Figure S1. See the help of 

adam_detrend_and_epoch for further details on how to execute the function.  

2.3.3. MVPA Analyses. We performed multivariate pattern analyses (MVPA) on both the 

real and the simulated data, with the use of version 1.06 of the ADAM toolbox (Fahrenfort 

et al., 2018) – a freely available script-based Matlab analysis package for both backward 

decoding and forward encoding modeling of M/EEG data. The latest release of the toolbox is 

available from Github, through http://www.fahrenfort.com/ADAM.htm. A linear 

discriminant classifier was trained and tested on each time point either using 10-fold cross-

validation (real data) or 2-fold cross-validation (simulated data). As classification accuracy 

metric we used the Area Under the Curve (AUC), in which the curve refers to the Receiver 

Operating Characteristic (ROC, Hand & Till, 2001).  

For the real dataset, the three image categories of faces, houses and letters were used 

as classes to train the classifier. As features we pre-selected 9 occipital channels (PO7, PO3, 

O1, Iz, Oz, POz, PO8, PO4, and O2) to increase the signal-to-noise ratio (Fahrenfort, van 

Leeuwen, Olivers, & Hogendoorn, 2017). Classes comprised the three balanced picture 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 13, 2019. ; https://doi.org/10.1101/530220doi: bioRxiv preprint 

https://doi.org/10.1101/530220
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

categories (Fahrenfort et al., 2018). Prior to MVPA, EEG data were down-sampled to 32 Hz 

sampling rate using MATLAB's resample function, and baseline-corrected using a window of 

-0.2 to 0 s. Here we tested the classifier not only on the same time point at which it was 

trained (as we did for the simulation analysis), but also across all other time points. This 

generates temporal generalization matrices, which are informative as to whether a pattern 

of neural activity underlying classification performance is stable, or whether it dynamically 

evolves over time (King & Dehaene, 2014). In the context of the current analyses they are 

informative with respect to the degree to which patterns are artificially distorted over time. 

At the group level, subject-specific AUC as accuracy measure of multivariate classification 

was statistically compared against chance for the raw data, as well as for the different cut-

offs and polynomial order values using t-tests. We corrected for multiple comparisons using 

cluster-based permutation (p<0.05). 

For the simulated dataset, all 64 channels served as features, and the condition labels 

assigned to the trials as described in section 2.2.1 served as classes. Prior to MVPA, data 

were down-sampled to 25 Hz using MATLAB's function resample. We tried out various pre-

stimulus baseline windows for baseline correction to determine whether this could explain 

spurious decoding effects throughout the trial window. The reported results were obtained 

using a –0.5 to –0.25 s pre-stimulus interval as baseline, but other baseline windows 

produced near identical results. Other than that, analyses were identical for the simulated 

and the real data. 

 

3. Results  

3.1. Empirical EEG data 

Figure 4 shows classifier performance for the working memory task. We were able to 

reliably dissociate multivariate patterns of broadband EEG activity across the nine included 

occipital channels, during encoding, retention, and the search period for the face, house and 

letter stimuli. Classification increased transiently during the presentation of the initial target 

cue, after which it decreased yet remained at above chance levels for up to two seconds 

during the delay period, before it dropped to near-chance levels. Classifier accuracy then 

increased again during presentation of the search display, presumably upon selecting the 

target category. Moreover, Figure 5 shows that the multivariate pattern was relatively 
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stable during the encoding/retention phase (outlined by the dotted square), but for the raw 

data did not significantly cross-generalized across time to the search phase. 

Important for the present purpose, Figure 4A reveals how decoding accuracy was 

affected by different high-pass filter cut-off values. Most notably, filtering contributed little 

to overall decoding accuracy during the encoding/retention phase, except towards the cut-

off of 0.5 Hz, where decoding appeared to improve considerably during the WM delay 

period. However, we have no way of ascertaining whether this improvement is real or a 

displacement of information from other periods in the trial. In fact, it is likely to be spurious, 

since similar effects emerged prior to cue onset and after search offset – suggestive of 

artificial increases in decoding accuracy in periods in which one expects baseline activity. To 

further underpin how small spurious effects of filtering can be missed, we also computed 

the uncorrected plots, which can be found in Supplementary Figure S2. Here one can 

observe significant decoding in the baseline period already at 0.25 Hz. 

Figure 5B (left panel at a cutoff of 0.25 Hz and 0.5 Hz) shows how these filter-related 

artifacts may also lead to suggestions of very stable representations that generalize across 

time. Here too, cross-generalization to the pre- and post-trial baseline periods indicates that 

these patterns are spurious. It can be easy to miss the ostensibly spurious nature of such 

classification performance if the plotted baseline period is too narrow, missing the fact that 

above chance performance also occurs prior to stimulus onset. For example, note that 

classification performance during the baseline period just prior to t=0 neatly drops to 

chance (plausibly due to baseline correction), while this correction does not resolve or 

correct for the spurious performance that was introduced to other (generalization) periods 

in the trial. To highlight once more how small spurious effects of filtering can be missed, we 

also computed uncorrected temporal generalization plots which can be found in 

Supplementary Figure S3, showing above chance classification performance in the baseline 

window for values as low as 0.1 Hz. 

Figure 4B shows results for the same classification, but now after robust detrending, at 

three levels of complexity (i.e. 1st, 10th, 20th and 30st order).  Here too, as the raw data was 

relatively clean to begin with, the detrending actually contributed relatively little to overall 

decoding accuracy, compared to decoding of the raw signal. However (and more important 

in the current context), there were no signs of any artifacts, as the detrending results follow 

the decoding of the raw signal. The same is true when we assessed temporal generalization, 
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as shown in Figure 5C. The overall pattern of generalization was the same across different 

orders of detrending, and remained comparable to raw, although it did appear to convey 

some benefits with respect to temporal generalization both within the encoding/retention 

phase as well as in the generalization from the encoding phase to the search phase. In 

contrast to high-pass filtering, these improvements occurred without similar increases 

during baseline periods.  

 
 
 

 
Figure 4. Results for empirical data from a working memory guided search task. A) Decoding 

performance (AUC) at each time point for different high-pass filter cut-off frequencies (shades of 

orange), and for raw data (black). All thick colored lines denote p<0.05 under cluster-based 

permutation testing. Note the marked above-chance decoding prior to stimulus onset, after filtering 

at 0.5 Hz. This in turn raises doubts about the above-chance decoding during the delay period. A 

similar artifact already emerges with cut-off values at 0.25 Hz, showing above chance decoding after 

the search display (between 5000 and 6000 ms). The spurious effects of filtering at 0.25 Hz can be 

seen even more strongly when inspecting the temporal generalization plots (see Figure 5B) or when 

inspecting the uncorrected plots in Supplementary Figure S2 in which effects also occur in the 

baseline window. B) The same, but now after robust detrending at various polynomial orders. Here 

no artifacts occur. Colored bars indicate reliable difference from chance. 
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Figure 5. Temporal generalization results for the empirical data. A) Temporal generalization plot for 

the raw data. Significance was evaluated using cluster-based permutation (p<0.05, saturated colors, 

non-significant as non-saturated colors). The regions outlined by the dotted square indicates various 

phases (referred to by numbers using the in-figure legend). These suggest a relatively stable 

representation during roughly the first two seconds after stimulus onset but which does not 

significantly generalize to the end of the retention phase (1), or to the search phase (3 and 4).  B) 

Temporal generalization, but now after high-pass filtering at three different cut-off levels. Note that 

the encoding phase generalizes better to the search phase (for all frequencies). Worryingly though, 

strong and ostensibly spurious generalization to these and other time windows occurs after a slightly 

more rigorous filter of 0.25 Hz and even more strongly so at a filter of 0.5 Hz, so that we cannot be 

sure that anything observed at lower cutoffs is real or (partly) spurious. When inspecting the 
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uncorrected temporal generalization plots in Supplementary Figure S3, one can see spurious 

decoding in the baseline window at the even lower cutoff of 0.1 Hz. C) The same temporal 

generalization analyses, but now after robust detrending at different orders. Here, there is no sign of 

spurious generalization, while still obtaining better generalization of the encoding to the retention 

phase, as well as generalization from the encoding to the search phase when compared to raw. 

 

Thus, we found that high-pass filtering can result in clear artifacts in decoding, while 

contributing little to overall decoding accuracy. In contrast, robust detrending showed no 

clear artifacts, while it did modestly enhance temporal generalization across time. For subtle 

cognitive and/or perceptual phenomena, such a small yet significant increase may be very 

valuable. However, without a ground truth, one may always wonder whether observed 

improvements are real or spurious. We therefore turned to simulated data, as described 

next. 

 

3.2. Simulated data 

Figure 6A illustrates the effect of filtering (left panel) and robust detrending (right panel) 

on a simulated single trial ERP, for three different cut-offs (0.05, 0.1 and 0.5) and orders (1, 

10, 30) respectively. This clearly shows attenuated drift for higher level removals. However, 

filtering with higher cut-off values also comes with ringing artifacts surrounding the ERPs, 

some of which extend up to seconds prior to and after the events (cf. Tanner et al., 2015; 

Tanner et al., 2016). As with high-pass filtering, the removal of drift by detrending is clearly 

better for higher orders. Importantly, it did not contain the typical filtering artifacts. As 

discussed next, this difference between filtering and detrending has consequences for 

decoding too. 

Figure 6B shows how decoding performance follows the simulated ERP, for the various 

high-pass filtering steps. This was true even when no preprocessing at all was applied to 

remove the drift. In fact, the drift appears to have relatively little negative effects on 

decoding of the raw signal (black line), unless the classes are relatively close to the decision 

boundary (as during the retention phase). The red to yellow colored lines show how filtering 

affects decoding. Figure 6C shows the same, but now after robust detrending of the data 

with the various polynomial orders. Neither method has much to add to the encoding phase 

of the trial, where raw decoding was already at 100%. But both methods lead to clear and 
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substantial improvements for the weaker signals underlying the later phases of retention 

and recall, where accuracy improved moderately to strongly for the highest levels of drift 

removal.  

However, and importantly, while decoding after detrending correctly returned to 

baseline in between the different task-related phases of the trial, high-pass filtering led to 

artificially elevated decoding (~70%) throughout the trial, including the episodes of null 

activity prior to, between, and after the different phases. These vivid artifactual increases in 

classifier performance emerged for cut-offs starting at 0.1 Hz. When plotting the 

topographical maps of the forward-transformed classifier weights for the most extreme 

cases of filtering (0.5 Hz and 30th order polynomial, Figure 6D), we observed that after 

filtering the differential patterns of the two classes was indeed temporally displaced onto 

pre- and post-trial time points (left panel), while this did not occur after robust detrending 

(right panel).  

However, these results may partially be caused by relatively low SNR levels and/or by 

the fact that so far we have only inspected simulated data that contain very slow drifts (<.1  

Hz), rather than fast drifts. Therefore, we also explored the extent to which drifts in 

different frequency spectra and for different SNR levels are affected by different filter and 

polynomial settings. The results of these analyses are shown in Supplementary Figure S4. 

This figure contains two analyses: one containing the low frequency drifts that are reported 

in Figure 6 (Figure S4A and S4B), and one containing faster drifts (Figure S4C and S4D). The 

graphs in S4A and S4C show drifts for illustration purposes (left panel) and the spectral 

profile of these drifts (right panel). The graphs in S4B and S4D explore the relationship 

between the degree of noise on the x-axis (SNR: low to high) and filter cutoff / polynomial 

order on the y-axis, and color shows the difference between decoding performance in raw 

EEG and decoding performance. This is shown for all relevant periods in a trial (pre-stim, 

encoding phase, retention and so forth). These analyses provide two clear results: (1) 

somewhat unsurprisingly, the spurious effects of high-pass filtering in the pre-stim window 

occur for lower filter settings when the drifts are slower (compare figure S4B to S4D) and (2) 

spurious effects seem to occur across a wide range of SNR values. Especially the second 

finding is relevant, as it shows that even under relatively high SNR, high-pass filtering can 

potentially produce spurious effects in for example pre-stimulus or retention time windows. 
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In sum, the simulations show that the topographical information on which the classifier 

performance relies can inadvertently be transposed onto baseline time windows when 

applying high-pass filters prior to decoding, thus resulting in artificially inflated and 

extended “above chance decoding” epochs, and that this occurs for a wide range of noise 

frequency spectra and SNR values. We found that artifacts potentially already start 

emerging at the often-used cut-off of 0.1 Hz. Robust detrending does not suffer from such 

displacements when the ERPs are masked out. Instead, it comes with few artifacts and 

improves decoding for components where there is a real underlying signal. 

 
Figure 6. Results for simulated data. A) Average single-trial ERPs as a function of three different high-

pass filter cut-offs (left panel), or different polynomial orders of detrending (right panel). B) 

Classification over time for raw versus high-pass filtered data, for 9 different cut-off values. Thick 

colored lines denote p<.05 under cluster-based permutation testing. Note the spurious above-

chance decoding at activity-silent intervals pre-stimulation for cut-off values as low as 0.1 Hz, and 
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post-stimulation as low as 0.04 Hz. C) Classification over time for raw versus robustly detrended data 

for 9 different orders of polynomial fit (see methods for details). Note that no spurious classification 

occurs. D) Average class-separability maps for different time points in the trial (pre-stimulus, delay, 

post-trial) for data that was high-pass filtered at 0.5 Hz (left panel) and detrended using 30th order 

polynomials (right panel). Individual subject patterns were spatially z-scored prior to averaging, color 

denotes z-value. Thick black dots indicate significant clusters under cluster-based permutation 

testing at p<.05. Clear class-related topographical patterns emerge after high-pass filtering during 

time windows when there was actually no information. Note that these are shown for illustration 

purposes only, not to claim that effects of similar strength can also be obtained in empirical data.  

 

 

4. Discussion 

For a long time, high-pass filtering has been a standard step in processing EEG and MEG 

data, as it has clear benefits when analyzing event-related potentials. However, we show 

here that one should be careful, if not distrustful, when applying any high-pass filtering in 

service of multivariate pattern classification, because it can easily lead to spurious above-

chance decoding effects. We demonstrate these artifacts to clearly emerge for both real 

EEG and simulated data, and from cut-off values as low as 0.04 Hz (in the simulated data) 

and 0.1 Hz (in the uncorrected empirical data). As Table 1 indicates, 0.1 Hz remains a 

popular cut-off value in cognitive neurophysiology studies, with only six out of 38 studies 

using a lower threshold. 

It is important to point out that the enhancement of decoding accuracy was particularly 

strong for time windows where the real underlying signals were actually weak, in particular 

the “delay period activity” of our (simulated) working memory task. In working memory 

experiments, this is an interval during which the memorandum is no longer present, and the 

classifier is supposed to pick up on purely mnemonic representations. Any enhancement of 

such EEG- or MEG-based “mind-reading” capabilities would be very attractive to 

researchers, and thus extra caution is necessary. We show that above-chance decoding can 

easily extend to time points where there was actually no signal, not only during the delay 

period between phases where the simulated signals contained no information, but also 

during pre-stimulus and post-trial intervals. Combine this with the fact that the reverse may 

also happen (i.e. high-pass filtering may actually destroy a real sustained signal, de 
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Cheveigne & Arzounian, 2018), and the risk of drawing false conclusions on the presence or 

absence of sustained mental representations becomes more than real. 

The cause of the spurious decoding appears to lie in small yet reliable artifacts caused by 

the interaction between the filter and the ERPs (Acunzo et al., 2012; Kappenman & Luck, 

2010; Tanner et al., 2015; Widmann et al., 2015). Depending on the nature of the ERPs and 

filter settings, these artifacts may have quite diffuse effects, extending for seconds prior to 

and after the relevant events. Although these issues have been pointed out before in the 

context of ERP analyses, the problem becomes even more salient when performing 

decoding analyses, as classifiers may be sensitive enough to pick up on subtle, distributed 

patterns of displaced information that might only be noticed in averaged univariate ERPs 

when a study has sufficiently high power. The difference between the filtering effects on 

ERPs and on decoding becomes especially apparent when considering what may be seen as 

“baseline shifts”, which are then often corrected for in standard ERP analyses. While quite 

subtle in our simulated ERPs, these shifts actually led to very strong above-chance decoding 

prior to stimulus onset. Baseline correction does not help here, since the baseline applies to 

the average of an idiosyncratically chosen pre-stimulus period. This may abolish the 

(displaced) average multivariate pattern within a certain temporal region, but this is not 

guaranteed to capture and remove all displaced information, as can clearly be seen in Figure 

4A, which shows remaining pre-baseline decoding artefacts despite baseline correction and 

correction for multiple comparisons. Similarly, the simulations show that even within the 

baseline period itself, the average may not capture and remove all local (sample-by-sample) 

multivariate patterns, as can be seen in figure 6B. Here, filter cutoffs as low as 0.1 Hz result 

in spurious classification accuracy throughout the entire pre-stimulus time window 

(including the baseline), despite subtracting the average baseline activity from every sample 

and electrode in the trial. This is a clear warning that relatively subtle artifactual effects in 

ERP studies can have large undesirable effects on decoding. 

The reason for these artefacts lies in the nature of the filtering operation. When filtering 

the data, one assumes that the noise (drifts) that one attempts to remove through the 

filtering operation occur in a different part of the frequency spectrum than the signals of 

interest. However, in practice this is often an unwarranted assumption, especially when 

trials have a long duration (as for example in working memory experiments that have a 

retention interval). In such cases, the frequency spectrum in which the signal resides may 
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overlap with the frequency range in which the filter operates. As a result, the filter may end 

up distorting the signal of interest and displacing information to periods where nothing 

occurred in reality.  

A better way to remove slow trends from the data appears to be robust detrending (de 

Cheveigne & Arzounian, 2018), in concert with carefully defined masks that remove 

potentially relevant (cortical) sources of information from the fits. This method is 

advantageous when low frequency noise contributions that occur in the same frequency 

spectrum as the signal of interest can still be separated temporally. In such cases the signal 

of interest cannot affect the denoising operation because it is masked out. We found that 

robust detrending led to reliable improvements in decoding, while avoiding the artifacts 

that come with high-pass filtering. Nevertheless, here too there are choices to make, and 

pitfalls to avoid. One important drawback is the search space for optimally detrending the 

results, where polynomial order and data segment length seem to interact in ways that in 

turn depend on the spectral content of the noise one wants to remove. In real data, this will 

often be unpredictable and highly study- and subject-specific, further complicating choices 

as to which detrending options to employ. Moreover, too high an order polynomial might 

result in increased risks of fitting effects of interest. Masking important epochs will prevent 

this, but relies on additional assumptions as to which time windows are important. For our 

particular empirical data set, the improvement achieved with robust detrending, relative to 

the raw data, was relatively modest, and may not outweigh the extra decisions and 

assumptions. Of course, this depends on the quality of the data and the conclusions one is 

after. 

Our findings may have wider implications beyond those for EEG decoding analyses. First 

and foremost, although here we focused on both simulated and real EEG data, our 

demonstrations may naturally apply to MEG data too, given its similar time series structure. 

Although slow-drift is usually much less of a problem in MEG, similar high-pass filtering 

procedures are typically being applied (see Table 1). Second, the spurious displacements of 

information patterns will not only affect MVPA-based decoding of EEG or MEG data, but 

also analyses using inverted or forward encoding models that rely on the same type of 

information (e.g. Herbst, Fiedler, & Obleser, 2018). Finally, there may be important 

implications for fMRI analyses too. Here is where MVPA took off, with numerous studies 

demonstrating sustained mental representations beyond the initial stimulus presentation. 
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High-pass filtering is a standard step also in preprocessing fMRI data, and although event-

related BOLD responses evolve at a much slower scale than typical EEG or MEG responses, 

high-pass filter cut offs are scaled accordingly. Notably, where in EEG or MEG typically 

combine trials with event structures in the order of about 2 seconds with high-pass cut-off 

values in the order of 0.1 Hz, in fMRI event structures are typically in the order of 20 

seconds, while cut-offs used are in the order of 0.01 Hz. Interestingly, after pointing out 

disadvantages of high-pass filtering in fMRI time series (unrelated to decoding), Kay et al. 

(2008) similarly proposed detrending through polynomial regressors as a solution. 

We also note that the decision on whether and how to apply high-pass filtering adds to a 

list of design and data processing factors that may all affect decoding results, including 

transformation into source space, dimensionality reduction, subsampling, aggregating 

signals across time, artifact rejection, trial averaging, specific classifier selection, and the 

specific cross-validation design  used (Grootswagers, Wardle, & Carlson, 2017). Most 

notably within the current context, Grootswagers et al. argued for caution when applying 

low-pass filtering (see also Vanrullen, 2011). With too low cut-off values, low-pass filtering 

too can cause significant decoding to emerge when in fact no signal exists in the original 

data.  

Further, it may be the case that some filters are more problematic than others, 

depending on the scientific context (i.e. paradigm, research question, and outcome 

measure). Here we have explored the impact of a two-way sinc FIR filter with a Kaiser 

window, but other options, such as the common 4th order Butterworth filter (Tanner et al., 

2015), may produce different results. In doing so, we have also not considered fundamental 

differences between filter types. Causal filters for example (such as online filters) only take 

samples from the past and the present into consideration. Naturally, these can never lead to 

displacement of information backward in time as observed here, although they can still lead 

to displacement forward in time. Acausal filters on the other hand (such as the offline filter 

we used here), take into account information from the future and the past. These types of 

filters are particularly popular when filtering EEG, because they are able in principle to filter 

the data without changing the underlying phase of the signal (such filters that combine 

forward and backward filtering are also called zero-phase filters). However, as we have seen 

here, the promise not to affect the phase of the signal can come at a significant cost, which 

is that the causal chain of events that the EEG signal attempts to capture can be 
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compromised. How problematic various filter types are in the context of MVPA remains a 

question for future research, and depends on the research question that one is trying to 

answer. 

In conclusion, filtering of neural time series data may be problematic in more than one 

respect, but here we show that it becomes particularly troublesome in the advent of 

modern decoding methods, as it can create widespread displacement of information onto 

time points where no information was present. We also show that while robust detrending 

provides a solution, no detrending at all may often be good enough. Based on our current 

findings we therefore recommend extreme caution with regards to high-pass filtering EEG 

and MEG time series data for MVPA purposes, in particular when using slow paradigms such 

as found in working memory tasks, and in particular when looking at temporal 

generalization where spurious results were very pronounced in our empirical dataset. More 

specifically, we recommend the following steps: 

 

1. Assess the general data quality (unspecific to condition differences). If the quality 

is good, consider not doing any form of detrending at all – whether through high-

pass filtering or other methods (Luck, 2005). As our own results show, when the 

data is good baseline correction is often sufficient, so that decoding is likely to 

work just fine without removing slow trends. 

2. This might not be sufficient when the relevant signal extends over longer periods 

of time. In working memory tasks for example, the retention interval is relatively 

long, and therefore easily affected by slow drifts. In such cases, one might 

consider the method of robust detrending (de Cheveigne & Arzounian, 2018) 

while masking out the ERP and other potentially cognitive events such as an 

ensuing retention interval. When signal and noise are likely to reside in the same 

(low) frequency bands, explicitly masking out the signal during detrending 

precludes the risk that the detrending operation is affected by it, as would 

certainly be the case when high-pass filtering on the continuous signal. A related 

advantage is that this decreases the risk of throwing out real effects. Using this 

method, we found a modest improvement in decoding accuracy compared to 

decoding the raw data, in particular when looking at temporal generalization. 
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Still, this method requires one to be aware of several parameters that may affect 

the results. 

3. If there are good reasons to dismiss steps 1 and 2 and to still prefer standard 

high-pass filtering, then systematically explore the cut-off parameter space to 

assess when spurious enhancement of decoding starts to emerge, and pick a cut-

off value well below that (see also Tanner et al., 2015; Tanner et al., 2016). Given 

that we found artifacts emerging with cut-off values as low as 0.1 Hz, our choice 

would be in the range of 0.05 and lower, but this may be different for different 

event structures and spacing, as there may also be interactions with the inter-

trial interval (a topic that we chose not to explore in the current study). But even 

under conservative filter settings, one should be aware not to overinterpret the 

precise timing of decoding onsets and offsets when using any kind of filter. 
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Table 1. A non-exhaustive list of EEG and MEG studies that have used MVPA decoding 
techniques after applying band-pass filtering. High-pass and low-pass cut-off values are 
provided. Note this table is only intended illustrate the wide-ranging use of high-pass filters 
in EEG/MEG, and not to suggest that anything is necessarily wrong with these studies. For 
example, different studies may use different filter types: online (causal) or offline (either 
causal or acausal), Finite Impulse Response (FIR) or Infinite Impulse Response (IIR), different 
filter lengths and so forth, and each of these filter types may have different effects on the 
data that do not necessarily have to be problematic in the scientific context in which they 
are applied. 
 
Publication EEG MEG High pass  

cut-off (Hz) 
Low pass  

cut-off (Hz) 
(Alizadeh, Jamalabadi, Schonauer, Leibold, & Gais, 2017) •  0.1 40 
(Bae & Luck, 2018) •  0.1 80 
(Bae & Luck, 2019) •  0.1 80 
(Barragan-Jason, Cauchoix, & Barbeau, 2015) •  0.1 40 
(Borst, Ghuman, & Anderson, 2016)  • 0.5 50 
(Borst, Schneider, Walsh, & Anderson, 2013) •  0.5 30 
(Brandmeyer, Farquhar, McQueen, & Desain, 2013) •  1 25 
(Carlson, Hogendoorn, Kanai, Mesik, & Turret, 2011)  • - - 
(Carlson, Tovar, Alink, & Kriegeskorte, 2013)  • 0.1 200 
(Cauchoix, Barragan-Jason, Serre, & Barbeau, 2014)   0.1 40 
(Chan, Halgren, Marinkovic, & Cash, 2011) • • 0.1 200 
(Cichy & Pantazis, 2017) • • 0.03 300 
(Cichy, Pantazis, & Oliva, 2014)  • 0.03 330 
(Cichy, Ramirez, & Pantazis, 2015)  • 0.03 330 
(Clarke, Devereux, Randall, & Tyler, 2015)  • 0.03 40 
(Correia, Jansma, Hausfeld, Kikkert, & Bonte, 2015) •  0.1 100 
(Fahrenfort, Grubert, Olivers, & Eimer, 2017) •  0.1 - 
(Fahrenfort, van Leeuwen, et al., 2017) •  0.1 - 
(Herrmann, Maess, Kalberlah, Haynes, & Friederici, 2012)   • 2 10 
(Hogendoorn & Burkitt, 2018) •  - - 
(Hogendoorn, Verstraten, & Cavanagh, 2015) •  - - 
(Isik, Meyers, Leibo, & Poggio, 2014)  • 2 (0.01) 100 
(Kaiser, Azzalini, & Peelen, 2016)  • 1 330 
(Kaiser, Oosterhof, & Peelen, 2016)  • 1 300 
(King, Pescetelli, & Dehaene, 2016)  • 0.1 30 
(LaRocque, Lewis-Peacock, Drysdale, Oberauer, & Postle, 2013) •  1 55 
(Marti & Dehaene, 2017)  • 0.1 30 
(Marti, King, & Dehaene, 2015)  • 0.1 330 
(Mohsenzadeh, Qin, Cichy, & Pantazis, 2018)  • 0.03 330 
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(Mostert, Kok, & de Lange, 2015)  • - 30 
(Myers et al., 2015) • • 0.03 300 
(Nemrodov, Niemeier, Mok, & Nestor, 2016) •  0.1 40 
(Nemrodov, Niemeier, Patel, & Nestor, 2018) •  0.1 40 
(Peters, Bledowski, Rieder, & Kaiser, 2016)  • 0.1 150 
(Rose et al., 2016) •  1 60 
(Simanova, van Gerven, Oostenveld, & Hagoort, 2010) •  1 30 
(Sudre et al., 2012)  • 0.1 50 
(Trubutschek et al., 2017)  • 0.1 330 
(Turner, Johnston, de Boer, Morawetz, & Bode, 2017) •  0.1 70 
(Wardle, Kriegeskorte, Grootswagers, Khaligh-Razavi, & 
Carlson, 2016) 

 • 0.1 200 

(Wolff et al., 2015) •  0.1 40 
(Wolff, Jochim, Akyurek, & Stokes, 2017) •  0.1 40 
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SUPPLEMENTARY FIGURES 
 

Figure S1. Example figure of a representative subject of the empirical data, generated by the function 

adam_detrend_and_epoch. The MATLAB function adam_detrend_and_epoch that is included with 

the ADAM toolbox (Fahrenfort et al., 2018) is able to detrend and epoch continuous data in 

EEGLAB format. For every subject, it produces a plot like the above. The top three panels show the 

results of the detrending operation for a trial in the middle of the dataset, for five electrodes that 

show the largest deviation from center. These three panels are analogous to the panels that are 

shown in Figure 3 of the main manuscript, but now for empirical data. The bottom two panels 

show a butterfly plot of the ERPs before robust detrending (left panel) and after robust detrending 

(right panel). 
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Figure S2. Results for empirical data from a working memory guided search task. This figure shows 

the same results as in Figure 4 of the main manuscript, but now showing the uncorrected 

significance values prior to cluster-based permutation. 
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Figure S3. Temporal generalization results for the empirical data. This figure shows the same 

results as in Figure 5 of the main manuscript, but now showing the uncorrected significance values 

prior to cluster-based permutation. Note that artefacts emerge with high-pass filtering already for 

the 0.1 Hz cutoff (B, leftmost panel). Detrending (C) does not results in these artefacts and the 

pattern resembles more closely the results for the raw data (A). Moreover, a clear performance 

benefit can be observed in the retention interval when comparing decoding after 30th order 

polynomial removal to decoding on the raw data (better generalization). 
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Figure S4. Slow and fast drifts in simulated data. A) Example time course of 1/f pink noise slow 

drift as was added to the data (left panel), and its spectral content (right panel). B) The relationship 
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between slow drift signal to noise ratio (on the x-axis), filter cutoff / detrending polynomial (on the 

y-axis) and decoding (in color). C) Example time course of 1/f pink noise fast drift as was added to 

the data (left panel), and its spectral content (right panel). D) same as in B, but now for fast drifts. 

Note that the graphs in B and D show the difference in decoding between raw data and 

filtered/detrended data.  
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