Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Potential involvement of root auxins in drought tolerance by modulating nocturnal and daytime water use in wheat

View ORCID ProfileWalid Sadok, Remy Schoppach
doi: https://doi.org/10.1101/530246
Walid Sadok
University of Minnesota;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Walid Sadok
  • For correspondence: msadok@umn.edu
Remy Schoppach
Earth and Life Institute, Universite Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The ability of wheat genotypes to save water by reducing their transpiration rate (TR) under times of the day with high vapour pressure deficit (VPD) has been linked to increasing yields in terminal drought environments. Further, recent evidence shows that reducing nocturnal transpiration (TRN) could amplify water-saving. Previous research indicates that such traits involve a root-based hydraulic limitation, but the contribution of hormones, particularly auxin and abscisic acid (ABA) has not been explored to explain the shoot-root link. In this investigation, based on physiological, genetic and molecular evidence gathered on a mapping population, we hypothesized that root auxin accumulation regulates whole-plant water use during both times of the day. Eight double-haploid lines were selected from a mapping population descending from two parents with contrasted water-saving strategies and root hydraulic properties. These spanned the entire range of slopes of TR responses to VPD and TRN encountered in the population. On those lines, we examined daytime/night-time auxin and ABA contents in the roots and the leaves in relation to hydraulic traits that included whole-plant TR, plant hydraulic conductance (KPlant), slopes of TR responses to VPD and leaf-level anatomical traits. Root auxin levels were consistently genotype-dependent in this group irrespective of experiments and times of the day. Daytime root auxin concentrations were found to be strongly and negatively correlated with daytime TR, KPlant and the slope of TR response to VPD. Night-time root auxin levels significantly and negatively correlated with TRN. In addition, daytime and night-time leaf auxin and ABA concentrations did not correlate with any of the examined traits. The above results indicate that accumulation of auxin in the root system reduces daytime and night-time water use and modulates plant hydraulic properties to enable the expression of water-saving traits that have been associated with enhanced yields under drought.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted January 25, 2019.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Potential involvement of root auxins in drought tolerance by modulating nocturnal and daytime water use in wheat
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
Share
Potential involvement of root auxins in drought tolerance by modulating nocturnal and daytime water use in wheat
Walid Sadok, Remy Schoppach
bioRxiv 530246; doi: https://doi.org/10.1101/530246
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Potential involvement of root auxins in drought tolerance by modulating nocturnal and daytime water use in wheat
Walid Sadok, Remy Schoppach
bioRxiv 530246; doi: https://doi.org/10.1101/530246

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Plant Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (998)
  • Biochemistry (1489)
  • Bioengineering (943)
  • Bioinformatics (6821)
  • Biophysics (2418)
  • Cancer Biology (1784)
  • Cell Biology (2528)
  • Clinical Trials (106)
  • Developmental Biology (1692)
  • Ecology (2564)
  • Epidemiology (1493)
  • Evolutionary Biology (5018)
  • Genetics (3613)
  • Genomics (4625)
  • Immunology (1165)
  • Microbiology (4244)
  • Molecular Biology (1622)
  • Neuroscience (10780)
  • Paleontology (82)
  • Pathology (236)
  • Pharmacology and Toxicology (409)
  • Physiology (555)
  • Plant Biology (1455)
  • Scientific Communication and Education (411)
  • Synthetic Biology (542)
  • Systems Biology (1871)
  • Zoology (259)