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In single molecule localization-based super-resolution imaging, high labeling density or the 

desire for greater data collection speed can lead to clusters of overlapping emitter images in 

the raw super-resolution image data. We describe a Bayesian inference approach to multiple-

emitter fitting that uses Reversible Jump Markov Chain Monte Carlo to identify and localize 

the emitters in dense regions of data. This formalism can take advantage of any prior 

information, such as emitter intensity and density. The output is both a posterior probability 

distribution of emitter locations that includes uncertainty in the number of emitters and the 

background structure, and a set of coordinates and uncertainties from the most probable 

model.  

 In single molecule localization microscopy (SMLM) super-resolution approaches1–4, a 
sparse subset of single fluorescent emitters that label the target structure is activated and the 
position of each isolated emitter is found with a precision much better than the diffraction 
limit. Accumulation of enough label positions allows the reconstruction of images with high 
spatial resolution5.  Dense images with overlapping emitters can be either unavoidable due to 
densely labeled structures, or desired to shorten data collection time. However, improper 
analysis of this data can lead to artifacts, such as a contrast inversion in the super-resolution 
image (dense areas appear sparse) 6. One way to ameliorate this issue is to use multiple-emitter 
fitting approaches6–12, which allow modeling and/or fitting of multiple overlapping emitters.  
Several multiple-emitter fitting methods have been reported including approaches based on 
maximum likelihood6, deconvolution with L1 norm constraints9,10, PSF radial symmetry and 
intermittency11, and using a Bayesian approach to integrate over all possible positions and 
blinking events of emitters7.  
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In this work, we describe a BAyesian Multiple-emitter Fitting (BAMF) analysis that uses 
Reversible Jump Markov Chain Monte Carlo (RJMCMC)13,14. The Bayesian formalism allows the 
inclusion of strong prior information such as the photophysics of the probe and the emitter 
density. RJMCMC allows classification uncertainty, i.e., uncertainty in the true number of 
emitters to be incorporated in the emitter location probability distribution. BAMF also couples 
background estimation and its uncertainty with inference of emitter locations and intensities.  
The result is a posterior probability distribution for emitter positions that considers both prior 
knowledge and sources of uncertainty that are often ignored.    
 Markov Chain Monte Carlo (MCMC) is a computationally efficient method for sampling 
from a multi-dimensional posterior probability distribution15,16.  RJMCMC takes the concept of 
MCMC further and allows jumps between parameter spaces with different numbers or types of 
parameters.  The acceptance probability for inter-space jumps is given by an extension of the 
Metropolis-Hasting formula (Supplementary Note 1)13,14 , resulting in a chain that spends time 
in each space proportional to the posterior probability of that space.  The histogram of the 
returned chain can be interpreted as a probability distribution for the parameters of interest, 
which in the multiple-emitter fitting problem are the emitters’ positions, whereas the other 
parameters and states can be marginalized out.    

The entire BAMF algorithm consists of several steps (Fig. 1 a): (1) converting raw data to 
photon counts, (2) estimation of the intensity prior, (3) division of each image into sub-regions, 
(4) the core RJMCMC algorithm, (5) using the RJMCMC chain to initialize MCMC within the most 
probable space, (6) using the MCMC chain to calculate the parameters and their associated 
uncertainties, and (7) making the final reconstructions by removing the localizations in the 
overlapping areas of the sub regions and combining the results.  

The RJMCMC step is used within a fitting sub-region and calculates a posterior 
distribution to make inferences about a set of parameters.  This requires both a likelihood 
model and prior distributions.  The likelihood is calculated assuming a model consisting of a set 
of emitter positions, a PSF model (2D Gaussian6,17 or provided by the user), a tilted plane as 
unstructured background and Poisson statistics.  The emitters model both apparent emitters 
(signal) or structured background.  Each parameter has a corresponding prior distribution that 
is given in Supplementary Note 1 & Supplementary Table 1.   

We allow three within-space moves (no change in number or type of emitters): 1) A 
single-emitter move that changes the position and intensity of one or more emitter; 2) A group 
move that makes correlated changes in two or more emitters, and 3) A background move, 
which changes the parameters of a tilted plane background model (Supplementary Note 1). We 
permit four pairs of reversible jump types between parameter spaces: (birth, death), (split, 
merge), (generalized split, generalized merge) and (signal, background) (Fig. 1b, c, d, f and 
Supplementary Fig. 1, 5). Birth (death) allows the addition (deletion) of an emitter anywhere in 
the model. Split and merge allows a split and merge between two emitters. Generalized split 
and merge splits or combines N emitters.  Signal (background) converts an emitter from a PSF 
shaped kernel of a background structure to a detected emitter.  
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Figure 1: Data flow, jump types and the chain. (a) The data flow. Boxes show stages of the analysis. (b) From left 

to right, a new spot is detected through a birth event. From right to left, a death event is proposed and an existing 

emitter is removed. (c) From left to right, an existing emitter splits into two emitters. From right to left, two 

adjacent emitters merge into a single one. (d) From left to right, photons are taken from N existing emitters to 

make a new one. Right to left, an existing emitter breaks into N pieces which are added to N nearby emitters. G-

split and G-merge stand for generalized split and generalized merge. (e) Left, the plot of a chain of 8000 jumps, 

where lighter red shows the burn-in part and the darker red shows the chain after convergence. Right figure 

depicts the chain after convergence inside the green box. (f) The conversion jump classifies the detected emitters 

as either signal or background emitters, using the calculated priors on intensities. 
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The output of the RJMCMC step is a parameter chain whose histogram can be interpreted 
as a probability density landscape of the emitters that considers all possible numbers and positions 

of emitters.  For example, a single emitter appears as a blob shaped feature in the histogram 
image of the chain of positions (Fig. 1e), where the width of the blob can be used to calculate 
the standard error for the position estimation. Combining the chains from all the sub-regions, 
we build the posterior image for each time frame and then combine all time frames to produce 
the final posterior reconstruction image. To generate a set of positions and uncertainties from 
the elements of the RJMCMC chain from the most probable model, the Maximum a Posteriori 
model of Number of emitters (MAPN), is either used directly or used to initialize a MCMC chain 
for the MAPN model.  The results are used to calculate the positions and associated 
uncertainties. These returned localizations are then used to reconstruct an image. The posterior 
probability image includes uncertainty over the number of emitters, whereas the MAPN result 
can provide locations and standard errors that can be used in subsequent analysis 
(Supplementary Fig. 2).  

To assess the performance of BAMF, we analyzed several types of synthetic data and 
compared the results with that from FALCON10, SRRF11 and single-emitter fitting17.  Jaccard 
Index (JAC) and localization accuracy are two standard measures to assess the performance of 
SMLM fitting algorithms18. JAC is defined as the ratio of the number of the matched emitters 
from the sets of found and true emitters to the number of the emitters in the union of those 

two sets: JAC=
  

     
 where ME, FE and TE refer to the number of matched emitters, found 

emitters and true emitters, respectively. 
Localization accuracy is given by the mean distance between the matched pairs. We 

used the MAPN result to calculate JAC and accuracy for BAMF. JAC and accuracy were also 
calculated for FALCON and the single-emitter algorithm. SRRF returns images but not 
coordinates and therefore was not included. Figure 2 depicts JAC and localization accuracy for 
the three algorithms. BAMF outperforms the other approaches in both JAC and accuracy.  

We compared the results of these algorithms on simulated sequences of data 
representing two nearby emitters with various separation distances and photons/frame. At 
2000 photons/frame, BAMF could distinguish two emitters down to a separation of about 
0.25σPSF, much better than FALCON and SRRF, which could only recognize the data as two close 
emitters when separated by more than σPSF (Fig. 2 & Supplementary Fig. 3). Here the prior 
information on emitter intensity helps constrains BAMF to the correct number of emitters.  The 
trend continues to lower photon counts, however the effectively wider intensity prior 
distribution gives less constraint and the result is a mix of one and two emitter models.    

We simulated and analyzed sequences of data with circular test structures of four 
different radii. FALCON returned more false emitters in the middle of circles where no true 
emitters reside. SRRF returned disks rather than rings. The single-emitter code returned a circle 
structure, but much fewer emitters (Supplementary Fig. 4).   

To evaluate the ability of these methods to deal with structured background, we 
simulated a dataset with a static ring-like background structure along with in-focus emitters 
randomly distributed over a cross-like structure. BAMF and SRRF were able to distinguish signal 
and background structures, however, FALCON attempted to model the background with 
emitter locations (Supplementary Fig. 5). 
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We tested BAMF performance on dSTORM and DNA-PAINT experimental data (Fig. 3, 
Supplementary Fig. 6 and 7). Figure 3 shows the reconstructions from BAMF, FALCON, SRRF 
and the single-emitter code on actin imaged using dSTORM. In the two bottom rows in Fig. 3, 
the arrows show very fine actin filaments. BAMF reveals these actin filaments much better than 
the other algorithms. The single-emitter algorithm found much fewer localizations in those 
areas.  FALCON does not show as many details as BAMF and has a grid-like artifact that is likely 
due to the grid used in the deconvolution step in FALCON. The reconstruction from SRRF is 
missing much of the fine detail. Supplementary Fig. 6 and 7 shows similar trends in the results 
from BAMF, FALCON and single-emitter algorithm on actin imaged using DNA-PAINT.   

 

 
 

Figure 2: Jaccard index and localization error (accuracy). (a)  Jaccard index, (b) localization errors for BAMF, 

FALCON and single-emitter fitting using 2000 and 500 photons per frame. (c) The intensity priors used to analyze 
the data. To make these plots for BAMF, the MAPN was used from RJMCMC. (d) represents the ability of BAMF, 
FALCON and SRRF to distinguish two nearby emitters with different separations. Row A shows a frame of simulated 
data with different separations. Rows B, C and D result from emitters with 2000 photons, and rows E, F and G show 
the results from 500 photon emitters. The BAMF super-resolved images are the posterior images containing all the 
possible models. The scale bars are σPSF. 
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The BAMF algorithm takes advantage of prior information to improve the classification 
of the number of emitters and includes the effect of uncertainty in both classification of 
number of emitters and the background structure.  BAMF generates both a posterior image 
that contains all sources of uncertainty and a MAPN result that provides coordinates and 
standard errors of the most probable model.  BAMF outperforms other common fitting models 
both quantitatively on synthetic data and subjectively on experimental data. The BAMF concept 
could be extended to include temporal information and/or 3D imaging approaches.    
 

 
 

Figure 3: Reconstructions from BAMF, FALCON, SRRF and single-emitter fitting for dSTORM data of actin 

filaments. Reconstructions from (a) BAMF, (b) FALCON, (c) SRRF, (d) single-emitter fitting. The reconstructions for 
BAMF were made using the MAPN from MCMC. (e-h) Zoom of the top green square. (i-l) Zoom of the bottom 
green square. The blue arrows point to some fine details in the magnified regions. The scale bars are 1 μm. 

Online Methods 

BAMF’s parameters 

The jump sizes for each parameter within the RJMCMC step were adjusted to yield an 

acceptance rate of 25% to 50% (Supplementary Note 1). For the moves in position, intensity, 

and the offset background, jumps were selected from zero-mean normal distributions with the 

sigma ranging from 0.05 to 0.1 pixel, 5 to 10 photons, and 1 photon, respectively.  For the burn-

in chain, 3000 jumps and jump probabilities of (РIn-model, РBirth, РDeath, РSplit, РMerge, РG-split, PG-merge, 

РConversion)=(0.3, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1) were used, while for the post-burn-in chain, we 
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had 2000 jumps and jumps probabilities of (РIn-model, РBirth, РDeath, РSplit, РMerge, РG-split, PG-merge, 

РConversion)=(0.4, 0.05, 0.05, 0, 0, 0.15, 0.15, 0.2). For the JAC measurements and two-emitter 

simulations, the density of emitters required 20000 jumps and 10000 jumps for burn-in and 

post-burn-in respectively, to guarantee the chain convergence.

Implementation 

Image pre-processing and computational analyses were performed in MATLAB by 

employing the image processing, statistics and machine learning and parallel toolboxes 

(MathWorks Inc.). The C++-codes for RJMCMC were compiled into mex-files that could be 

called from inside MATLAB. All codes were CPU based and were parallelized using the MATLAB 

parallel computing toolbox. The single-emitter code was implemented on GPUs using CUDA 

codes compiled into ptx-files that could be called inside MATLAB. An i7, 3.64 GHz CPU with a 

GTX 750 GPU was used to process the simulated data and part of the experimentally acquired 

data. Part of the experimental data was also analyzed in a cluster employing 16 core Intel 

Xenon, 2.6 GHz CPUs, available at the UNM Center for Advanced Research Computing (CARC).  

Synthetic data generation 

To generate synthetic data, emitters were placed in random positions with the uniform 

density ρ, except where mentioned. A trace of the blinking events of each emitter was 

produced using the duty cycle parameters, kon and koff, which are respectively the rate of 

emitters going from off to on and on to off, such that the density of the on-emitters is 

proportional to the ratio of kon to kon + koff. To imitate realistic conditions, random times for the 

emitters to turn on and on-durations were chosen, using exponential distributions with mean 

values of kon + koff and kon, respectively. Next, a uniform background was added to the 

generated data and corrupted with Poisson noise. 

Tests on synthetic data  

Jaccard index (JAC) and accuracy were calculated by making use of synthetic data 

generated in a region of 24x24 pixels, where 2 pixels at the edges were left empty, with the 

pixels of width 100 nm. A ground truth of 1000 emitters per μm2 was generated and the duty 

cycle parameters were adjusted to provide a desired final per-frame density. 40 sequences of 

100 frames of data were generated with an average density of on-emitters ranging from 0.25 to 

10 emitters per μm2 over a uniform background. The width of the PSF and the background 

were, respectively, 1.2 pixel and 20 photons. The intensity of the emitters that were on during 

an entire frame exposure was 2000 photons per frame and less if they were on for a fraction of 

the exposure time.  
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The localization accuracy was measured by the root mean square error (RMSE) to the 

true locations. In order to calculate JAC, matched pairs between the MAPN result (used directly 

from RJMCMC chain) and the true emitters were found. To discover the pairs of the matched 

emitters, the cost matrix of the found emitters with the true emitters were minimized using the 

Hungarian algorithm19, and those pairs where the corresponding cost element was smaller than 

the PSF size (1.2 pixel) were used in the JAC18.  

For the synthetic circles, data sequences of 2000 frames with a size of 10x10 pixels were 

produced with circles of radii of 0.416σPSF, 0.625σPSF, 0.833σPSF and 1.041σPSF, and with a PSF 

width, mean intensity and background of 1.2 pixel, 2000 photons and 20 photons, respectively. 

Uniformly distributed emitters at 1000 per μm were used to generate the circles and then by 

adjusting the duty cycle parameters brought to an average density of 4.5 on-emitters per 

frame. The localizations returned by the single-emitter code, FALCON and BAMF were used to 

reconstruct the final images of circles. SRRF does not return any localizations but does return a 

reconstruction which was included in Supplementary Fig. 4. Since FALCON does not return any 

localization accuracy, the same accuracy (σ=0.06 pixel, which is the mode of localization 

accuracy returned by BAMF) was used to reconstruct the final images for the three algorithms. 

The reconstructions from BAMF with localization accuracy better than 0.25 pixel are also 

included in Supplementary Fig. 4.  

For the two emitters test, two sets of 100 frames of data were synthesized using two 

constantly on emitters for each separation. The PSF width, intensity and background were 1.2 

pixel, 500 or 2000 photons (representing dim and bright emitters in empirical data), and 20 

photons respectively. The priors used for JAC and accuracy measurements with average 

intensities of 500 (dim) and 2000 (bright) photons (Fig. 2) were employed because the two 

emitters were constantly on and heavily overlapped and the single-emitter code was not able 

to estimate their intensities. This is the only exception to the protocol described in the 

supplement to obtain the intensity priors. 

A sequence of data of 2000 frames with size of 32x32 pixels was generated for the test 

of separation of signal emitters from background emitters (Supplementary Fig. 5). The 

structured background was produced by placing 18 constantly on-emitters on positions equally 

spaced on a ring with a radius of 10 pixels. The PSF size and intensity of these emitters were 1.5 

pixel and 400 photons per frame. For the signal, we synthesized 600 uniformly distributed 

emitters per μm2 inside a cross with PSF size and average intensity of 1.2 pixel and 2000 

photons and obtained 6.5 activated emitters per frame by tuning the duty cycle parameters. 

The final data set was produced by adding the two synthesized data sets with an offset 

background of 20 photons corrupted with Poisson noise.    

Experimental data analysis 
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dSTORM actin data: The single-emitter code was used to find the PSF size and the prior 

distribution for the photons/emitter/frame (intensity) parameter. The PSF size was used for 

BAMF and FALCON. DNA-PAINT actin data: The single-emitter code was used to find the 

PSF size and the prior distribution. The provided library function findPSF_SMA (Supplementary 

Note 3) was used to calculate the PSF for BAMF. The found PSF size was used for FALCON.  

The returned coordinates from the single-emitter code and BAMF were then filtered, 

employing the coordinates’ uncertainties, in order to reconstruct the final images. FALCON 

does not return any uncertainty and hence the returned coordinates were used to produce the 

reconstructions directly. SRRF returns neither coordinates nor uncertainties, so only the 

returned reconstructions from it were used. 

Cell lines and reagents 

HeLa cells were cultured in Dulbecco’s Modified Eagle Medium (Life Technologies # 

10313-v021) supplemented with 10% fetal bovine serum (HyClone), penicillin-streptomycin, 

and 2 mM L-glutamine at 37 ˚C and 5% CO2. Actin microfilaments were labeled with 0.56 μM 

Alexa FlourTM 647 Phalloidin (A22287, ThermoFisher Scientific) diluted in PBS. 

Cell fixation and labeling 

dSTORM actin imaging:  All labeling and washing steps were carried out at room 

temperature unless stated otherwise. Cells were seeded onto #1.5 coverslip glass 6 well 

chambers (LabTek) to adhere for 4-24 h. Cells were fixed for 1 hour in a 3% Glyoxal + 20% 

Ethanol+ 0.75% Ascetic Acid in DI water20. pH was adjusted to 5 by adding drops of 1 M NaOH. 

Cells were washed 2x in PBS and kept in NaBH4 for 10 min to reduce background fluorescence, 

followed by 2x wash with PBS. To quench reactive crosslinkers, the samples were kept in 10 

mM Tris for 10 min, followed by 2 washes with PBS. Finally, samples were blocked in 4% BSA + 

0.1% Triton X-100 for 1 hour, followed by 2 more PBS washes. Primary antibody was incubated 

at 2 μg ml-1 in 5% BSA + 0.05% Triton X-100 in PBS for 15 min. Samples were washed 1x with 

PBS and labeled with 0.56 μM Alexa FlourTM 647 Phalloidin for 4 hours.   DNA-PAINT actin 

imaging: Cos7 cells were fixed and labeled with an actin-binding affimer linked to a DNA-PAINT 

docking strand as described previously23.  

Super-resolution imaging 

dSTORM actin imaging:  Imaging was performed in a standard dSTORM imaging buffer21 with 

an enzymatic oxygen scavenging system and primary thiol: 50 mM tris, 10 mM NaCl, 10% w/v 

glucose, 168.8 U/ml glucose oxidase (Sigma #G2133), 1404 U/ml catalase (Sigma #C9322), and 

60 mM 2-aminoethanethiol (MEA), pH 8.5. To mount the samples prepared on 25 mm 

coverslips, an Attofluor cell chamber (A-7816, Life Technologies) was used and 1.5 ml of 
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dSTORM imaging buffer was added. To prevent oxygen permeation into the buffer, a clean 25 

mm coverslip was used to seal the chamber. The sample was mounted on the stage of the 

microscope with a custom designed chamber holder. The imaging system was built on an 

inverted microscope (IX71, Olympus America Inc.). An xyz piezo stage (Mad City Labs, Nano-

LPS100) mounted on a x-y manual stage was installed on the microscope for cell location and 

brightfield registration. A mounted LED with the wavelength of 850 nm (M850L3, Thorlabs) was 

used for brightfield illumination. Brightfield images was collected on a complementary metal-

oxide semiconductor (sCMOS) camera (DCC1545M, Thorlabs) after reflecting by a short-pass 

dichroic beam splitter (FF750-SDi02, Semrock) and passing through a single-band bandpass 

filter (FF01-835/70-25, Semrock). A 638 nm laser was used (collimated from a laser diode, 

L638P200, Thorlabs) coupled into a single mode fiber and focused onto the back focal plane of 

the 1.49 NA objective lens (UAPON 100XOTIRF, Olympus America Inc.). Emission for super-

resolution data was collected through a short-pass dichroic beam splitter (FF750-SDi02, 

Semrock) and a single-band bandpass filter (FF01-692/40-25, Semrock) on an iXon 860 electron-

multiplying charge-coupled device (EM CCD) camera (Andor Technologies, South Windsor, CT). 

The EMCCD gain was set to 90, and frames were 128 × 128 pixels with a pixel size of 0.1192 μm. 

All the instruments were controlled by custom-written software in MATLAB (MathWorks Inc.). 

Imaging was performed with TIRF illumination. Images were acquired at 5 ms exposure time for 

a total of 12000 frames. Brightfield registration was performed to correct for drift after every 

3000 frames as previously described22.  DNA-PAINT actin imaging:  Data was collected with 50 

ms exposure time for 300k frames using 800 pM P1 imager strand concentration and 3.3 

kW/cm2 laser power at 561 nm 23.   
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Supplementary Figure 1: BAMF concept: Schematic description of the BAMF algorithm. The flow of the data is
described and the ten different jump types used in RJMCMC are depicted in the large box.
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Supplementary Figure 2: Comparison of MAPN image and posterior image for dSTORM data of actin filaments from
Hela cells. a and b, respectively, show the MAPN and posterior images of the actin filaments from BAMF algorithm. c
and d are zooms of the green squares. The scale bars are 1 µm.
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Supplementary Figure 3: Plot of found positions for two nearby emitters with different separations and intensities. The
black circles represent the true locations while the blue dots stand for the found positions by BAMF and FALCON.
The true locations of the first, second, third and fourth columns respectively, have separations of σPSF, 3

4σPSF, 1
2σPSF

and 1
4σPSF, where σPSF = 1.2 pixels. Rows a and c show the plots of MAPN from RJCMC for intensities of 2000 and

500 photons, respectively. Rows b and d, respectively, depict the results from FALCON for intensities of 2000 and 500
photons.
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Supplementary Figure 4: Reconstructions for circles of emitters from FALCON, SRRF and the single-emitter code are
depicted in rows c, d and e, respectively. BAMF reconstructions are shown in rows a and b, which are MAPN from
MCMC. Row b represents the circles reconstructed using all the returned localizations, while row a shows reconstructions
from localizations with accuracy better than 0.25 pixel. The circles in the first, second, third and fourth columns,
respectively, have radii of 5

12σPSF, 7.5
12 σPSF, 10

12σPSF and 12.5
12 σPSF. The average density of on-emitters is 4.5 emitters per

frame. The scale bars are σPSF.
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Supplementary Figure 5: Separation of the signal from the structured background. a) Plots of the priors used for signal
and background emitters. b) One frame of the simulated data. c) Noise-free simulated signal. d) Noise-free simulated
structured background. e) Super-resolved reconstruction from BAMF. f) The structured background reconstructed using
the background emitters found by BAMF. g) Super-resolved reconstructions by SRRF. h) Super-resolved reconstructions
by FALCON. Each image was scaled independently.
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Supplementary Figure 6: Actin filaments in Cos7 cells using DNA-PAINT. Reconstructions from BAMF, FALCON and
the single-emitter fitting code for DNA-paint data. (top left) Posterior image from BAMF, (top right) reconstruction
from FALCON, (bottom left) wide field image, (bottom right) reconstruction from the single-emitter fitting code. The
scale bars are 5 µm.
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Supplementary Figure 7: Selected magnified regions from BAMF, FALCON and the single-emitter code reconstructions
in Supplementary Fig. 6. The first, second and third rows display the magnified regions from BAMF, FALCON and
the single-emitter algorithm, respectively. Each column represents the same regions from different fitting procedures.
FALCON and single-emitter code do not reveal as many details as BAMF. FALCON has a grid-like artifact. The scale
bars are 1 µm.

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2019. ; https://doi.org/10.1101/530261doi: bioRxiv preprint 

https://doi.org/10.1101/530261
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Supplementary Note 1: Reversible Jump Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are restricted to problems where the number of the parameters is fixed
[15,16]. Reversible Jump Markov Chain Monte Carlo (RJMCMC) is an extension of MCMC, in which jumps between
parameter spaces with different numbers of parameters are permitted and hence makes inferences about the number of
parameters as well as the parameters themselves [13,14]. In other words, the number of the parameters is one of the
unknowns in RJMCMC. For the multiple-emitter fitting problem that we will address here, the number of parameters
and the parameters correspond to the number of emitters and their locations and intensities, an offset background and
two slopes of the offset plane along the X and Y axes. There are ten different types of jumps in BAMF (Supplementary
Fig. 1). The conversion jump classifies the found emitters as either background or signal. There are three different types
of inside model moves (single-emitter move, group move, background move). These moves make inferences about the
positions and intensities of the emitters and do not hop between different models. The other six jumps allow removing
or adding emitters to the models and jumping to a new model with either one less or one more emitter. The first jump
is split, which tests if there is possibility for an existing emitter to split into two adjacent emitters. Merge is the inverse
of split. It considers the chance of two close emitters to really be a single emitter. Generalized split investigates the
possibility of N nearby emitters to actually be N + 1 emitters. Generalized merge calculates the probability of N + 1
adjacent emitters to consolidate into N emitters. The generalized split and generalized merge jumps are especially useful
in dense super-resolution data. Birth explores different parts of the data to see if a new emitter can be added to the
current model. Death is the opposite of birth and examines the feasibility of eliminating one of the existing emitters from
the current model.

1.1 PSF model, Likelihood, Priors and Posterior

RJMCMC can be used to implement a Bayesian approach that samples from the posterior of a system in order to learn
about that system. The posterior is proportional to the product of the likelihood and priors.

1.1.1 PSF model

Photons from a single emitter have an approximate spatial Gaussian distribution on the camera, where (1) gives photon
counts based on this approximation. For cases where the Gaussian function is not a reasonable approximation, the
PSF can be acquired experimentally and employed to calculate the likelihood numerically (Supplementary Note 4). The
integral of the Gaussian distribution over the kth pixel gives the average number of photons from the ith emitter in that
pixel.

∆k,i =
Ii

2πσPSF
2

∫ xk+0.5

xk−0.5

∫ yk+0.5

yk−0.5
exp

[
(x−xi)

2+(y−yi)
2

2πσPSF
2

]
dy dx (1)

where ∆k,i, σPSF, Ii, xk, yk, xi and yi are, respectively, the number of the photons in the kth pixel from the ith emitter,
the half width of the Gaussian distribution, the total number of the photons from the emitter, the center of the kth pixel
and the position of the emitter.

1.1.2 Likelihood

The total photon count in the kth pixel is the sum of the photons from all the existing emitters and the background.

λk(N) = axx+ ayy + b+
N∑
i=1

∆k,i (2)

where λk, ax, ay, b and N , respectively, denote the total number of the photons in the kth pixel, the slope of the background
along the X and Y axes, the offset background and the number of emitters. Equation (2) yields the average photon counts
for the pixel k for a fixed exposure time. Consequently, the number of the photons in pixel k has a Poisson distribution

Lk(D|θ) =
λk(N)Dke−λk(N)

Dk!
(3)

where D,Dk and θ represent data, the number of the photons in pixel k of the acquired data, and the set of the parameters
(θ = (~x, ~y, ~I,N, b, ax, ay)). Due to the independence of the pixels, the likelihood of the frame is given by the product of
the likelihoods of all the pixels in that frame [6,17]

L(D|θ) =
∏
k

Lk(D|θ) (4)
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Parameter Prior

position uniform
number of emitters Poisson

signal intensity kernel density estimator
background intensity exponential

offset background gamma
offset background slopes normal

Supplementary Table 1: Table of prior functions.

1.1.3 Priors and Posterior

The product of the likelihood with the prior of the parameters P (θ) is proportional to the posterior

p(θ|D) =
L(D|θ)P (θ)

P (D)
(5)

where P (D) is called the evidence. Evidence is the normalization coefficient of the posterior:

P (D) =

∫
L(D|θ)P (θ)dθ (6)

We employ RJMCMC to estimate the positions, the intensities of the emitters, the number of the emitters, the offset
background and its slopes, and therefore their priors have to be included in the calculations. We take the prior on the
positions to be a uniform distribution over the frame. Because there might be some emitters outside the frame but still
close enough to its edges so that portions of the PSFs are still observable on the frame, we allow the detection of emitters
that are located up to 2 pixels away from the edges outside the frame (this can be modified by user). Hence the prior is
a uniform distribution over this extended range. The number of the emitters inside the region of interest has a Poisson
distribution with the mean value ρW 2, where ρ is the density of the emitters per pixel, given by the user as an input,
and W is the width of the region of interest in pixels. The offset background and its slopes have gamma and normal
distributions as priors, respectively. The intensity distribution of the emitters heavily depends on several conditions such
as the on and off rate of the emitters, the labeling method, etc. Therefore, it is not feasible to consider a specific prior
distribution for general data. Because of that, the signal intensity prior should be provided by the user. The signal
intensity prior is given as a numeric array, enabling the code to deal with any intensity distribution. We utilized an
exponential distribution for the background intensity prior. A MATLAB library consisting of several methods is provided
along with the BAMF code that calculates the aforementioned priors; see Supplementary Note 3 and Supplementary
Table 1. In this library, the intensity and background priors are obtained by fitting a smoothed kernel density estimator
and gamma probability function to the intensities and offset background returned by a very fast single-emitter code [17].

1.2 Jump Types

BAMF defines three main types of jumps to sample the posterior of the system in the core RJMCMC algorithm. The
first type of jump is the within model jump, which optimizes the parameters while not changing the number of the
parameters or the number of the emitters. The second type of jump are those that allow the chain to move between
different parameter spaces, varying the number of emitters for the given data. The third type of jump is between the
background and signal states, which sorts the signal emitters out from the background emitters.

1.2.1 Proposing a Jump

In the following, we explain how these jumps are proposed and how we accept or reject them. First, the chain is initialized
to an arbitrary state, containing an arbitrary number of emitters with random locations and intensities. We then pick
a random number from a uniform distribution over the interval [0, 1], and based on this random number propose a
jump. The occurrence probability of each jump is given by the user, which we call PJ , PS , PM , PGS , PGM , PB , PD and
PC respectively for the probabilities of proposing a within model jump, a split, a merge, a generalized split, a generalized
merge, a birth, a death or a conversion (for instance PJ = PS = PM = PGS = PGM = PB = PD = PC = 1/8). Note that
we have

PJ + PS + PM + PGS + PGM + PB + PD + PC = 1. (7)
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A random number rand is taken from the interval [0, 1]. The jump n (where the jumps above are labeled sequentially)
is then proposed if

n−1∑
i=1

Pi ≤ rand <
n∑
i=1

Pi (8)

After proposing the jump, we calculate the model and the acceptance probability. Next, another random number is
picked in the interval [0, 1]. The jump will be accepted if the acceptance probability is larger than this random number;
otherwise it will be rejected.

1.2.2 Within Model Moves

A within model move does not change the number of the emitters or the number of parameters. It only changes the
parameters related to the background, positions and intensities of the existing emitters. The move sizes for different
parameters in BAMF algorithm are taken from normal distributions. The widths of these normal distributions determine
the size of the moves as well as the acceptance rates of the within model moves [23].

Single-emitter Move

An emitter or a set of neighboring emitters is taken from the list of current emitters at random. The new parameters,
which we show by prime, are given by

~x′ = ~x+ ∆~x, ~y′ = ~y + ∆~y, ~I ′ = ~I + ∆~I (9)

where ∆x,∆y and ∆I are taken from normal distributions with centers at the origin and the widths are provided by the
user for determining the jump sizes. The acceptance probability of a move from θ to θ′ for in-model updates is given by

P = min

{
1,
p(θ′|D)

p(θ|D)

}
(10)

where p(θ′|D) and p(θ|D) denote the posterior of the proposed parameters and the current parameters. The ratio in (10)
can be expanded as

p(θ′|D)

p(θ|D)
=

(∏
k

eλk−λ
′
k

(
λ′k(N)

λk(N)

)Dk)( N∏
n=1

P (I ′n)

P (In)

)
(11)

where k and n count the pixels and emitters, respectively. The first parenthesized expression is the ratio of the likelihoods,
while the second one is from the prior intensity in which the position priors are canceled. Note that the evidences cancel,
simplifying the calculations tremendously because obtaining the evidence involves computing very complicated integrals
(6).

Group Move

In a group move, a group of neighboring emitters is found, and then we take a random subset of that group. Next, the
intensities of the chosen emitters are redistributed among themselves, and we move the emitters so that their center of
mass is conserved. In other words, we keep the center of mass and the number of photons conserved in this move. This
jump is especially worthwhile for denser data sets as it helps to escape from local maximums in the dense regions where
a single-emitter move fails. The acceptance probability is calculated utilizing (10,11).

Background Move

A background move does not deal with any of the emitters’ parameters. Instead, it attempts to optimize the offset
background and its slopes along the X and Y axes. The jumps are taken from normal distributions where the step size
in offset background is provided by the user.

b′ = b+ ∆b, a′x = ax + ∆ax, a′y = ay + ∆ay (12)

The acceptance probability is computed as before.

1.2.3 Split and Merge

Split and merge are two complementary reversible mechanisms that allow for exploring the possibility of a different number
of emitters in a local area. Basically, in each step single emitters are allowed to divide into two, or two neighboring emitters
are allowed to combine.
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Split

On proposing a split, an emitter is chosen at random. After splitting this emitter into two emitters, we will have two
sets of parameters rather than one, and thus we choose to calculate these new sets of parameters based on conservation
principles. Our rules for the parameters of the new emitters are that the total intensity (zero moment) and center of
mass (first moment) are conserved.

Ij = Ij1 + Ij2

Ijxj = Ij1xj1 + Ij2xj2

Ijyj = Ij1yj1 + Ij2yj2 (13)

where the subscripts j, j1 and j2 stand for the randomly chosen emitter and the two new emitters after splitting. There
are still degrees of freedom in how to do this, so we generate a random vector ~u whose elements are used to calculate the
specific parameters. Select u1 from Beta(1,1), and u2 and u3 from N(0, σ2

PSF). Solving for the new parameters

Ij1 = Iju1

Ij2 = Ij(1− u1)

xj1 = xj + u2

yj1 = yj + u3

xj2 = xj −
u1u2

1− u1
yj2 = yj −

u1u3
1− u1

(14)

The acceptance probability for a cross-dimensional jump in RJMCMC is [13,14]

P = min{1, A} (15)

where

A =
p(θ′|D)rm(θ′)

p(θ|D)rm(θ)q(u)

∣∣∣∣ ∂(θ′)

∂(θ, u)

∣∣∣∣ (16)

p(θ′|D) is the posterior; D is data; θ is the current parameter set; θ′ means either the deterministic function that calculates
the new parameters θ′(θ, u) or the result of that calculation; rm(θ) is the probability of choosing the move type m when
in state θ; and q(u) is the density function of u. The term on the right is the Jacobian for transforming variables from

(θ, u) to θ′. The ratio p(θ′|D)
p(θ|D) is determined from the details given in Section 1.1, and for split can be written as

p(θ′|D)

p(θ|D)
=

(∏
k

Lk(D|θ′)
Lk(D|θ)

)(∏N+1
n=1 P (I ′n)∏N
n=1 P (In)

)
1

(W + 2)
2

(
ρW 2

N + 1

)
(17)

where k counts the pixels and n indexes the emitters. In addition, Lk is the likelihood given in (3), the second parenthesized
expression gives the ratio of the intensity priors, the third factor is the ratio of the position priors where W is the width
of the given frame in pixels, and the last parenthesized expression is the ratio of the priors for the proposed and current
number of emitters. The number of emitters has a Poisson distribution with mean value ρW 2, where ρ is the density of

emitters and N is the current number of emitters. The ratio rm(x′)
rm(x) is PM

PS
, because the probabilities for proposing a split

and merge are given by PS and PM . q(u) is the probability density of u, that is, p(u1)p(u2)p(u3), where these probabilities

are calculated from the PDFs used to generate ~u. The term
∣∣∣ ∂(θ′)∂(θ,u)

∣∣∣ is written out here. Only the values of θ′ related to

the split have been affected, so all other elements of this 3(N + 1)× 3(N + 1) matrix are diagonal except those relating
to the 6 changed elements of θ′. Putting these elements in the order listed above, θ′ = (..., Ij1 , xj1 , xj2 , Ij2 , yj1 , yj2) and
(θ, u) = (..., Ij , u1, xj , u2, yj , u3). The Jacobian matrix is

∂(θ′)

∂(θ, u)
=



1− u1 0 0 −Ij 0 0
u1 0 0 Ij 0 0
0 1 0 −u2

1−u1
+ −u2u1

(1−u1)2
−u1

1−u1
0

0 1 0 0 1 0
0 0 1 −u3

1−u1
+ −u3u1

(1−u1)2
0 −u1

1−u1

0 0 1 0 0 1

 (18)
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and the determinant is therefore ∣∣∣∣ ∂(θ′)

∂(θ, u)

∣∣∣∣ =
Ij

(1− u1)2
(19)

The complete expression for A is

A =
(∏

k
e−λk(N+1)λk(N+1)Dk

e−λk(N)λk(N)Dk

)
1

(W+2σ)2

∏N+1
n=1 P (I′n)∏N
n=1 P (In)

(
ρW 2

N+1

)
×PMPS (Beta(u1, 1, 1)N(u2, 0, σ

2
PSF)N(u3, 0, σ

2
PSF))−1

Ij
(1−u1)2

(20)

Merge

After proposing a merge, we randomly pick an emitter to combine with one of its neighbors. If the neighboring emitter of
the picked emitter is further than 2σPSF, we reject the proposed merge, otherwise we calculate the acceptance probability
given by

P = min{1, A−1} (21)

where u1, u2, u3 are deterministically calculated from (14) and A is given by (20).

1.2.4 Generalized Split and Merge

Split and merge allow the move from one emitter to two emitters and vice versa. In more dense data sets, a generalized
version of those jumps proved to be pivotal, where they permit moving from N emitters to N +1 emitters and vice versa.
Therefore, we can explore the probability of N nearby emitters to be N + 1 emitters and the opposite. The group of N
nearby emitters are selected by picking an emitter at random and then finding the emitters that are closer than 2σPSF

to it.

Generalized Split

A random group of N adjacent emitters is picked. A new emitter is then formed by taking a few photons from each of
the picked emitters. This takes us to a model with one more emitter. The parameters of the new emitters are calculated
so that the number of photons and the center of mass are conserved.

N∑
i=1

Ii =
N+1∑
j=1

I ′j

N∑
i=1

Iixi =
N+1∑
j=1

I ′jx
′
j

N∑
i=1

Iiyi =

N+1∑
j=1

I ′jy
′
j (22)

where prime indicates the parameters of the proposed emitters. The primed parameters are 3(N + 1) unknowns. The
three equations given in (22) can be used to reduce the degrees of freedom, however, this still leaves 3N degrees of freedom
for the primed parameters. To eliminate these freedoms, we propose the following equations

I ′i = (1− u1)Ii

x′i =
xi − u1

(
1
N

∑N
i=1 xi + u2

)
1− u1

y′i =
yi − u1

(
1
N

∑N
i=1 yi + u3

)
1− u1

(23)

where i = 1, ..., N . The first equation above says that the percentage of photons taken from each existing emitter is
equal. The second and third equations in (23) are derived by assuming that the new emitter lies in the vicinity of the
center of mass of the existing emitters. However, this still leaves 3 degrees of freedom to be set. The random variables
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u1 ∼ beta, u2 ∼ normal, u3 ∼ normal are then introduced to satisfy them. Using these random variables and (22,23), we
can deterministically solve for the parameters of the new emitter

I ′N+1 = u1

N∑
i=1

Ii

x′N+1 =
1

N

N∑
i=1

xi + u2

y′N+1 =
1

N

N∑
i=1

yi + u3 (24)

The acceptance probability for generalized split is given by

P = min{1, A} (25)

where A is given by (16) and the Jacobian can be calculated as follows
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(26)

∣∣∣∣ ∂(θ′)

∂(θ, u)

∣∣∣∣ =

∑N
i=1 Ii

(1− u1)N+1
(27)

Note that the above equations can be reduced to the equations in the split section when N = 1.

Generalized Merge

An emitter is chosen at random and then we pick N random emitters closer that 2σPSF. The picked emitter (emitter
N + 1) is annihilated and its photons are distributed among the set of the neighboring emitters. Note that we jump from
N + 1 emitters to N emitters. The emitters’ parameters and the random u’s may be calculated in a deterministic way

u1 =
IN+1∑N+1
i=1 Ii

I ′i =
Ii

1− u1
x′i = u1xN+1 + (1− u1)xi

y′i = u1yN+1 + (1− u1)yi

u2 = xN+1 −
1

N

N∑
i=1

x′i

u3 = yN+1 −
1

N

N∑
i=1

y′i (28)
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where parameters with the prime represent the parameters associated with the proposed model (one less emitter). The
acceptance probability for this jump is given by

P = min{1, A−1} (29)

where A is described in the previous section.

1.2.5 Birth and Death

Birth and death are complementary reversible processes. They allow addition and subtraction of emitters globally. Birth
inspects the data to find the spots where an emitter might exist. Death removes one of the existing emitters at random
to examine the probability of the model with one less emitter.

Birth

To find a suitable spot for the new emitter, we subtract the current model from the data to obtain the residuum image.
The residuum image can be interpreted as a probability distribution where pixels with higher values indicate higher
probability for a missing emitter. We pick a location at random from this probability distribution for the new emitter.
An alternative approach would be proposing a random location for the new emitter across the image where all the pixels
have the same probability; however most of the proposed births in this procedure would be rejected. The residuum image
scheme facilitates spotting the missing emitters and hence the chain converges faster. The intensity of the new emitter
is chosen from the intensity prior at random and therefore q(u) in (16) contains the intensity prior, which cancels the
intensity prior from the posterior, and so the intensity prior is not involved in the calculations. The acceptance probability
is given by (15), where

A =

(∏
k

e−λk(N+1)λk(N + 1)Dk

e−λk(N)λk(N)Dk

)
1

Pres(W + 2σ)2

(
ρW 2

N + 1

)
PD
PB

(30)

Here, the first factor is the likelihood ratio, the second factor is the location prior ratio with Pres standing for the residuum
image distribution, the third factor is the prior ratio for the number of emitters, and the last factor represents the ratio
of the probabilities to propose a death or a birth.

Death

Proposing a death, we pick one of the existing emitters at random and remove it from the model. This is the opposite of
birth and its acceptance probability is given by

P = min{1, A−1} (31)

where

A =

(∏
k

e−λk(N+1)λk(N + 1)Dk

e−λk(N)λk(N)Dk

)(
ρW 2

N + 1

)
PD
PB

(32)

The ratio of the position priors is missing here because they exert no preference in picking an emitter.

1.2.6 Conversion

We chose an emitter at random and if it is part of the signal, then we will propose it to be a background emitter (Fig.
1f), where the conversion probability is given by

P = min{1, A} (33)

and

A =
PBg(I)

PSignal(I)
(34)

PSignal(I) and PBg(I) represent the signal and background priors (Supplementary Fig. 6a). If the picked emitter is part
of the background, then we propose it to be a signal emitter (Fig. 1f) and the acceptance probability can be obtained as
follows:

P = min{1, A−1} (35)

Note that, the conversion jump is the only jump type where we use both the signal and background intensity prior value
of an emitter in the acceptance probability calculation. In the other jumps, only one of the intensity priors will be used
based on the current state (signal or background) of the emitter.
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1.3 Chain setup and generation

The above jumps are proposed inside an iterative loop for a user specified number of iterations. Larger regions require
more iterations. The chain is built as follows. First, it is initialized to an empty state where there are no emitters and the
offset background initial value is taken as the mode of the prior. Next, we propose random states via the available jumps,
which are embedded in RJMCMC, and allow exploration of all possible states. Calculating the acceptance probability,
which was described above, we either accept or decline the jump. If the jump is accepted, we take it as the next state,
otherwise we take the current state as the next one. The beginning part of the chain before its convergence is called the
burn-in and will not appear in the final reconstruction. The chain makes many random jumps and attempts to spot the
emitters in the given data during the burn-in. The post-burn-in part of the chain is returned by the code and is utilized
to generate the final reconstruction.

1.4 Posterior and MAPN outputs

In the post-burn-in chain, the emitters have been detected and the chain has settled to a near equilibrium. There are
only small deviations from the real values of the parameters, reflecting the uncertainty (Fig. 1e). For each emitter, a
blob is returned, where the width is a measure of the uncertainties in the estimated parameters. RJMCMC returns the
chain and the posterior image. The posterior image is built by placing a dot on the found emitters’ locations in each
jump. The posterior images from each subregion are put together to obtain the final chain reconstruction. This chain
contains the number of emitters, their positions, intensities, offset background and slopes along the X and Y axes, jump
type, likelihood ratio and posterior ratio for each attempted jump. Furthermore, the most repeated model in the chain
(MAPN from RJMCMC) is extracted, and the k-means algorithm is used to find the emitter locations and accuracies.
This step is necessary because the emitters associated with a given model will have slightly different positions and are
ordered arbitrarily in different states. The results are used to initialize an MCMC chain which is employed to calculate
the emitter parameters and their uncertainties, which is MAPN coordinates (see Supplementary Note 3). The locations
and uncertainties returned by the MCMC algorithm are then used to generate the MAPN reconstruction from MCMC.

2 Supplementary Note 2: Noise characterization

Two main types of noise in super-resolution data are read-out noise and shot noise. Shot noise comes from the particle
nature of photons and can be modeled by a Poisson process. Read-out noise comes from the electronics of the camera
and has a Gaussian distribution with the mean value zero. In other words, it is the fluctuations of the detector when
there is no signal. For an EMCCD camera, read-out noise can be ignored (3), however, it has a higher value in the data
acquired using a sCMOS camera and cannot be neglected. The entire noise can be modeled as the convolution of the
shot noise (Poisson distribution) and read-out noise (Gaussian distribution) [25]

Pi(Di) = N

∞∑
q=0

1

q!
e−uiuqi

1√
2πvari

e
− (D−qgi−oi)

2

2vari (36)

where N,D, u, g, o and var are, respectively, the normalization constant, the number of counted photons (Data), the
mean photon count, gain, offset and variance with i counting pixels. In the case of EMCCD, the ratio vari

g2i
is small and

equation (36) approximates to

P (Di) ≈ N ′e−uiu(Di−o)/gi (37)

where N ′ is the normalization constant and gain and offset are the same across the EMCCD camera. We used this
approximation to obtain the likelihood (3). In the case of sCMOS camera, the above approximation is not valid and
one should use the analytical expression which can be computationally expensive. An elegant solution to this problem
is given in [25], where an additional source of signal is added to the problem with the mean intensity of vari

g2i
. Using the

fact that the Gaussian distribution asymptotically goes to a Poisson distribution, the read-out noise can also be modeled
by a Poisson process. Lastly, the likelihood for the data taken by an sCMOS camera is as follows:

Li(D|θ) ≈
(λi(N) + vari/gi)

Die−λi(N)+vari/gi

Di!
(38)

Therefore, adding the term vari/gi to the mean number of the photons in the likelihood will take care of the read-out
noise in sCMOS cameras.
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3 Supplementary Note 3: MATLAB BAMF Library

The RJMCMC algorithm is implemented in C++ as a mex-function which can be called from inside MATLAB. We
developed a MATLAB class consisting of several methods and tools along with a user friendly interface (GUI) to facilitate
using the algorithm. In this section, a detailed description of the data flow and the methods used at different points of the
process are provided. At the end, some of the diagnosis and visualization tools are depicted. Some of the visualization
methods can be used to get more insight into RJMCMC and its jumping processes. We place empty parentheses at the
end of the method names to make it clear that we are referring to a method.

The main class is called RJ. The input parameters required by the RJMCMC algorithm, such as PSF size, jump
sizes, probabilities of proposing different jumps, zoom factor, numerical priors and number of jumps, are all stored in a
structure called RJStruct. To find the intensity and offset background priors, we use a fast single-emitter code which also
needs a few input parameters, like mean number of photons, minimum number of photons and minimum p-value, which
are stored in a structure called SMAStruct. The post-processing of the data consists of thresholding, frame connection
and drift correction. The required parameters for these post-processing steps are stored in structures called Threshold
and FrameConnect. Some other inputs like the gain and offset are properties of the RJ-class too. Moreover, some other
properties give the user the option to use certain tools or return more outputs, usually for diagnosis, such as using the
MATLAB parallel computing toolbox, using a numerical PSF, saving the chain, etc. The structure, ClustInfo, contains
the found positions, intensities and backgrounds. JumpStat stores the statistics of all the accepted jumps. PChain and
Chain are MATLAB cell arrays containing the proposed and accepted chains. Note that the size of the chains can be
tremendously large for real data sets, so the chain should only be saved for small diagnostic simulations.

The user can work with the GUI or write his or her own script to call different functions from the class. The gui
displays eight panels. The DATA-panel has buttons to load the raw data and drifts. The RJStruct-panel tabulates
default values for the RJMCMC parameters, which can be altered by the user. The P Burnin-panel and P Trial-panel
let the user change the probabilities of proposing different jumps in the burn-in part of the chain and the trial portion
afterwards. The SMA-panel displays the parameters required by the single-emitter code. Some input parameters of the
code are included in the Parameters-panel. The Threshold-panel and FrameConnect-panel contain the post-processing
parameters. The post-processing can be disabled by unchecking the boxes next to their panels.

processData()

By pressing the Run-button in the gui, the method processData() is called inside a for-loop which loads a data set in
every iteration and sends it to the analyzeData() method. At the end, it saves all the output structures and the posterior
reconstruction.

analyzeData()

analyzeData() is the main method in the RJ-class from which all the other analysis methods are called. The first function
called inside this method is gainCorrection(), which corrects for the gain and offset noise. Next, findPriors() is called
to find the intensity priors for the signal and background emitters and also the prior for the offset background. Then,
findPSF SMA() calculates the numerical PSF using the raw data. After that, the sequence of the frames are divided into
a number of subsequences equal to the number of parallel workers available on the machine. A parfor-loop is then called
and the workers process each subsequence of the frames individually. The user has the option to use a simple for-loop as
well. The method makeSubRegions() is called inside the for-loop, dividing the frames into subregions for speed purposes.
Next, the subregions are sent to analyzeROIs() to be processed. The subregions overlap to remove artifacts at their
edges, so the found emitters in the overlapping area need to be removed. This task is done by the removeOverlapping()
method. Then, stitchROIs() stitches together all the subregions in a frame, and then assembles the frames to get the
final results for a subsequence. Finally, when the parfor-loop is done, the results are retrieved from the different workers
and collected together.

findPriors()

findPriors() runs a fast single-emitter algorithm [17] to find the emitters’ intensities and the offset background. It then
fits a smoothed kernel density estimator to the found intensities. Because the single-emitter algorithm sometimes fits
two or more very close emitters by a single emitter with higher intensity, we might get smaller peaks at higher intensities
than the main peak, which is unrealistic. To eliminate those following unrealistic peaks in the returned intensity prior,
we calculate the gradient of the prior and use that to remove the spurious smaller peaks described. The resulting
distribution is returned as the numerical prior for signal intensities. The background emitters’ intensity prior is taken
as an exponential distribution with an average equal to the mean of the found intensities divided by a user provided
parameter (BgPriorRatio). Moreover, this method returns a gamma distribution fit to the found offset backgrounds.
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findPSF SMA()

findPSF SMA() calculates the numerical PSF for each subregion. This is important because the PSF might be a function
of the position. It makes use of the single-emitter code to fit a portion of the data after which the outputs are filtered to
find isolated emitters. Next, the PSF is created by shifting and averaging over more than 100 high signal, found single
emitters. A 4× sub-sampled PSF is created by padding the Fourier transform. findPSF SMA() returns a MATLAB cell
containing the numerical PSF model for each subregion.

analyzeROIs()

The subregions and found priors are sent to analyzeROIs() for processing. Inside this function, each subregion is analyzed
individually in every iteration of the for-loop described in analyzeData(). First, the rjmcmc() method is called to
implement the RJMCMC algorithm for a subregion. It returns the chain which is the input to the findMap() method.
Next, findMap() finds the most likely model in the chain and returns the parameters associated with that model. This
model is used next to initialize an MCMC chain inside the mcmc() method. MCMC only tries within model moves to
find more accurate positions and intensities of the found emitters. Finally, the results from mcmc() plus the posterior
image of the subregion are returned as outputs of analyzeROIs().

findMap()

findMap() takes the chain from the rjmcmc() method and uses the histogram of the number of the found emitters
to find the most repeated model. It then extracts the states of the chain corresponding to that model and uses the
k-means algorithm to find the positions, intensities and their associated errors, which are used later to initialize the
MCMC algorithm. The k-means step is necessary because adding and subtracting many emitters from the chain makes
it impossible to recognize a particular emitter in different states of the chain. The assembleResults() method is called
to put together the results from all the different data sets and performs the post-processing. In the following, a short
description of some of the visualization and diagnosis methods are given.

chainAnimation()

chainAnimation() takes the chain and the subregion number plus the true positions (for simulated data). When the
user call this function, a gui pops up, which can then be used to look at different states of the accepted chain and the
proposed chain, the overlay of the data with the model for the accepted and proposed chains, the emitters’ parameters
for both chains and also a plot of the emitters’ positions. It is a very useful tool and can be employed for either diagnostic
purposes or for getting a better grasp of the RJMCMC algorithm.

makeModel()

makeModel() is a method for diagnosis and also for getting better insight into the RJMCMC algorithm. It takes a
subregion and its corresponding chain and makes a 3D stack of images, where each slice of the stack is an overlay of the
data with a model from a different state of the chain. This is a useful tool to look at the overlay of models produced
from different states of the chain with experimental data, where the true positions are not known and the user cannot
use the chainAnimation() method.

4 Supplementary Note 4: Numerical PSF interpolation

In the case of bright emitters, such as that from DNA-PAINT data, the 2D Gaussian approximation or theoretical models
of the microscope PSF are not adequate for multiple-emitter fitting [26]. In these situations, one can use experimentally
acquired PSFs [26–31]. Our approach to estimating the numerical PSF was described in the previous section (find-
PSF SMA()). The N subsampled PSF is stored in a 4D array where the third dimension contains N samples along
the X-axis and the fourth dimension contains N samples along the Y -axis. By linear interpolation along the X and Y
axes and scaling by the number of photons, one obtains the PSF with its center at a desired location. This procedure is
repeated for all the existing emitters to generate the model.
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