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Abstract	

	 Non-small	 cell	 lung	 cancer	 is	 a	 leading	 cause	 of	 cancer	 death	 worldwide,	 and	

histopathological	 evaluation	 plays	 the	 primary	 role	 in	 its	 diagnosis.	 However,	 the	

morphological	 patterns	 associated	 with	 the	 molecular	 subtypes	 have	 not	 been	

systematically	 studied.	 To	 bridge	 this	 gap,	 we	 developed	 a	 quantitative	 histopathology	

analytic	framework	to	identify	the	gene	expression	subtypes	of	non-small	cell	lung	cancer	

objectively.	 We	 processed	 whole-slide	 histopathology	 images	 of	 lung	 adenocarcinoma	

(n=427)	and	lung	squamous	cell	carcinoma	patients	(n=457)	in	The	Cancer	Genome	Atlas.	

To	establish	neural	networks	for	quantitative	image	analyses,	we	first	build	convolutional	

neural	network	models	to	identify	tumor	regions	from	adjacent	dense	benign	tissues	(areas	

under	the	receiver	operating	characteristic	curves	(AUC)	>	0.935)	and	recapitulated	expert	

pathologists’	diagnosis	 (AUC	>	0.88),	with	 the	results	validated	 in	an	 independent	cohort	

(n=125;	 AUC	 >	 0.85).	 We	 further	 demonstrated	 that	 quantitative	 histopathology	

morphology	features	identified	the	major	transcriptomic	subtypes	of	both	adenocarcinoma	

and	squamous	cell	carcinoma	(P	<	0.01).	Our	study	is	the	first	to	classify	the	transcriptomic	

subtypes	 of	 non-small	 cell	 lung	 cancer	 using	 fully-automated	machine	 learning	methods.	

Our	 approach	 does	 not	 rely	 on	 prior	 pathology	 knowledge	 and	 can	 discover	 novel	

clinically-relevant	 histopathology	 patterns	 objectively.	 The	 developed	 procedure	 is	

generalizable	to	other	tumor	types	or	diseases.	
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Introduction	

	 Non-small	cell	 lung	cancer	accounts	for	85%	of	lung	cancer[1],	with	more	than	1.4	

million	 newly	 diagnosed	 patients	 per	 year	 worldwide[2,3].	 Histopathology	 analysis	 by	

trained	 pathologists	 is	 the	 gold	 standard	 for	 diagnosing	 non-small	 cell	 lung	 cancer	 and	

defines	the	cancer	types[4].	It	is	crucial	to	delineate	lung	malignancy	from	its	morphologic	

mimic	 as	 specific	 treatment	 modalities	 (including	 surgical	 resection,	 chemotherapy,	

radiotherapy,	and	targeted	therapy)	can	limit	the	progression	of	the	disease	and	improve	

the	 survival	 outcomes	 of	 the	 patients[1].	 In	 addition,	 the	 distinction	 between	 lung	

adenocarcinoma	and	squamous	cell	carcinoma,	 the	two	most	common	types	of	non-small	

cell	 lung	 cancer,	 is	 critical	 for	 selecting	 the	optimal	 treatment:	 a	 few	clinically	actionable	

genetic	 variations[5,6]	 are	 almost	 exclusively	 observed	 in	 adenocarcinoma	 patients[4],	

whereas	 patients	 with	 squamous	 cell	 carcinoma	 respond	 better	 to	 gemcitabine[7]	 but	

could	 suffer	 from	 life-threatening	 hemoptysis	 when	 treated	 with	 bevacizumab[8,9].	

Therefore,	accurate	histopathology	diagnosis	 is	crucial	 for	 formulating	optimal	 treatment	

plans	for	lung	cancer	patients[10].	

	

	 However,	 the	 current	 clinical	 process	 of	 histopathology	 assessment	 is	 not	

perfect[11,12].	Previous	 studies	 showed	 that	 there	 is	a	 slight	 to	moderate	 inter-observer	

variation	 in	 classifying	malignant	 and	benign	 lung	 tissues	 (κ=0.65-0.81)[13].	To	estimate	

the	 diagnostic	 agreement	 for	 adenocarcinoma	 and	 squamous	 cell	 carcinoma,	 a	 group	 of	

researchers	 conducted	 an	 independent	 pathology	 review	 of	 668	 lung	 cancer	 cases	 and	

showed	 that	 the	 inter-observer	 agreement	 is	moderate	 (κ=0.48-0.64)[11].	Another	 study	

suggested	 that	 the	 overall	 agreement	 for	 classifying	 adenocarcinoma	 and	 squamous	 cell	
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carcinoma	 on	morphologic	 criteria	 alone	 (in	 the	 absence	 of	 immunohistochemistry)	was	

associated	 with	 expertise	 in	 pulmonary	 pathology	 (κ=0.41-0.46	 among	 community	

pathologists,	 κ=0.64-0.69	 among	 expert	 lung	pathologists	 from	 the	Pulmonary	Pathology	

Society),	 and	 the	 diagnosis	 agreement	 did	 not	 reach	 the	 target	 for	 minimal	 clinical	 test	

reproducibility	 (κ=0.7)	 set	 by	 the	 investigators[12].	 Further	 investigations	 on	 the	

histological	 patterns	 associated	 with	 lung	 adenocarcinoma	 subtypes	 showed	 that	 the	

overall	 inter-observer	agreement	 (in	kappa	value)	 for	stage	 IA	 tumors	 is	0.52,	while	 that	

for	stage	IB	tumors	is	0.48[14].	Erroneous	classification	can	lead	to	suboptimal	treatment	

and	loss	of	quality	of	life	in	patients.	

	

	 In	 addition,	 the	 relations	 between	 histopathology	 morphology	 and	 the	

transcriptomics	 subtypes	 of	 lung	 adenocarcinoma	 and	 squamous	 cell	 carcinoma	 are	 not	

systematically	 studied.	 Transcriptomics	 subtypes	 of	 lung	 cancer	 are	 defined	 by	 the	

expression	 levels	of	 a	 subset	of	 genes	 related	 to	 the	growth	and	differentiation	of	 tumor	

cells[15,16].	 It	 is	not	known	whether	 the	dysregulation	of	 these	key	genes	would	 impact	

the	microscopic	morphology	of	the	tumor	tissues.	Through	the	systematic	identification	of	

transcriptomic-histopathology	 association,	 we	 can	 pinpoint	 the	 morphological	 changes	

linked	with	gene	expression	and	dysregulation,	thereby	understand	tumor	cell	morphology	

at	the	molecular	level[5].	

	

Computer	vision	algorithms,	 including	convolutional	neural	networks,	have	shown	

exceptionally	 good	 performance	 for	 image	 classification[17].	 These	 algorithms	 have	

demonstrated	 expert	 performance	 in	 several	 clinical	 domains	 including	 screening	 for	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 25, 2019. ; https://doi.org/10.1101/530360doi: bioRxiv preprint 

https://doi.org/10.1101/530360


	 6	

diabetic	 retinopathy[18],	 identifying	malignant	 dermatological	 lesions[19],	 and	 detecting	

cancer	cells	 in	pathology	images[20,21].	With	the	recent	availability	of	digital	whole	slide	

histopathology	image	in	large	cohorts[22,23],	we	can	profile	millions	of	tumor	cells	from	a	

patient	 simultaneously	 and	 quantify	 the	morphological	 differences	 in	 tumor	 cells	 among	

patients[24-26].	 Leveraging	 terabytes	of	microscopic	 tissue	 image	data,	we	 can	 fine-tune	

the	 parameters	 of	 the	 neural	 networks	 to	 achieve	 optimal	 performance[27].	 As	 the	

diagnosis	of	lung	cancer	is	established	by	the	morphological	features	of	tumor	cells	and	the	

diagnostic	 accuracy	 is	 positively	 associated	 with	 the	 evaluator’s	 experience[12],	 we	

hypothesize	 that	 convolutional	 neural	 networks	 trained	 on	 millions	 of	 histopathology	

image	patches	 can	distinguish	malignancy	 from	benign	 tissues,	 differentiate	 tumor	 types	

and	 identify	 the	 distinctive	 histopathology	 patterns	 of	 cancer	 cells.	 Moreover,	 the	

extensively	 documented	 transcriptomic	 distinctions	 between	 tumor	 subtypes[15,16,28]	

allow	 us	 to	 analyze	 the	 correspondence	 between	 transcriptomic	 differences	 and	 the	

morphologically-driven	 classifications.	 Here	 we	 used	 state-of-the-art	 computer	 vision	

methods	 to	 uncover	 the	 associations	 between	 transcriptomic	 subtypes	 and	 tumor	 cell	

morphology.	The	integrative	transcriptomic-histopathology	analysis	will	shred	insight	into	

the	morphological	changes	related	to	molecular	dysregulations.	

	

In	 this	 study,	 we	 built	 convolutional	 neural	 network	 models	 to	 distinguish	 the	

histopathology	 and	 molecular	 subtypes	 of	 lung	 adenocarcinoma	 and	 squamous	 cell	

carcinoma.	To	 ensure	 the	 generalizability	 of	 our	methods,	we	validated	 the	 classification	

models	 in	 an	 independent	 cohort.	 We	 further	 identified	 the	 previously-unrecognized	

associations	between	 tumor	 tissue	morphology	and	 transcriptomic	profiles.	Through	 this	
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fully	 automated	 computational	 method,	 we	 can	 identify	morphological	 differences	 in	 an	

unbiased	 fashion,	 which	 could	 be	 applied	 to	 provide	 decision	 support	 to	 clinicians	

encountering	atypical	histopathology	changes[29,30],	leverage	quantitative	morphology	to	

study	 the	macroscopic	 implications	of	 transcriptomic	patterns,	and	 thereby	contribute	 to	

precision	cancer	medicine[31,32].	

	

Methods	

Histopathology	Images	of	Non-Small	Cell	Lung	Cancer	

Whole-slide	 histopathology	 images	 of	 lung	 adenocarcinoma	 (n=427)	 and	 lung	

squamous	 cell	 carcinoma	 (n=457)	 patients	 in	 The	 Cancer	 Genome	 Atlas	 (TCGA)	 cohort	

were	 obtained	 from	 the	 National	 Cancer	 Institute	 Genomic	 Data	 Commons[33,34].	 To	

ensure	the	generalizability	of	our	methods,	an	independent	dataset	from	the	International	

Cancer	Genome	Consortium	(ICGC)	cohort	(87	lung	adenocarcinoma	and	38	lung	squamous	

cell	 carcinoma	 patients)	was	 acquired	 from	 the	 ICGC	 data	 portal[35].	 All	 histopathology	

images	were	collected	 from	primary,	untreated	 tumors.	Patients’	 clinical	profiles,	 such	as	

age,	 gender,	 race,	 ethnicity,	 tumor	 stage,	 the	 anatomical	 subdivision	 of	 the	 neoplasm,	 as	

well	 as	 the	 accompanying	 pathology	 report	 were	 also	 obtained.	 The	 pulmonary	

pathologists’	 evaluation	 from	 the	 TCGA	 and	 ICGC	 study	 consortiums	 were	 used	 as	 the	

ground	truth	for	the	diagnostic	classification.	Although	a	few	samples	in	the	TCGA	dataset	

were	collected	more	than	ten	years	ago,	the	major	diagnostic	criteria	for	identifying	tumor	

from	 benign	 tissues	 did	 not	 experience	 significant	 changes	 in	 the	 past	 decades[36].	 The	

whole-slide	 images	were	 broken	 into	 tiles	with	 1000x1000	 pixels.	 Since	 the	 denser	 tiles	

contain	more	 cells	 for	 further	 analysis,	 the	 200	 densest	 tiles	 for	 each	 whole	 slide	 were	
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selected	 with	 the	 OpenSlide	 application	 programming	 interface	 (API)[37].	 The	 resulting	

image	tiles	were	rescaled	for	analysis	by	convolutional	neural	networks.	

	

Convolutional	Neural	Networks	for	Diagnosis	Classification	

Convolutional	 neural	 networks	 were	 built	 using	 the	 Caffe	 platform[38].	 We	

evaluated	 several	 convolutional	 neural	 network	 implementations,	 including	 AlexNet[39],	

GoogLeNet[40],	 VGGNet-16[41],	 and	 the	 Residual	 Network-50	 (ResNet)[42]	 because	 of	

their	superior	performance	in	prior	image	classification	challenges[43].	AlexNet	has	a	very	

efficient	network	design	and	employed	non-saturating	neurons	to	reduce	training	time[39].	

The	design	of	the	GoogLeNet	architecture	is	largely	based	on	the	Hebbian	principle	and	has	

increased	 the	 depth	 and	width	 of	 the	 network	with	 a	 budgeted	 computational	 cost[40].	

VGGNet	possesses	a	deep	and	homogeneous	convolution	structure	and	demonstrates	that	

the	depth	of	a	neural	network	is	a	crucial	factor	of	its	performance,	and	VGGNet-16	is	the	

winner	 of	 the	 2014	 ImageNet	 Large	 Scale	 Visual	 Recognition	 Competition	 (ILSVRC)	

classification	 and	 localization	 task.	 [41].	 ResNet	 is	 significantly	 deeper	 than	 VGGNet	 but	

lowered	 its	 model	 complexity	 by	 residual	 learning,	 and	 ResNet-50	 is	 a	 50-layer	

implementation	of	ResNet[42].	Classification	models	for	histopathology	images	were	fine-

tuned	from	pre-trained	ImageNet	classification	models	based	on	these	frameworks.	

	 	

	 Three	 diagnostic	 classification	 tasks	 were	 performed:	 (1)	 to	 classify	 lung	

adenocarcinoma	 from	 adjacent	 dense	 benign	 tissues,	 (2)	 to	 classify	 lung	 squamous	 cell	

carcinoma	 from	 adjacent	 dense	 benign	 tissues,	 and	 (3)	 to	 classify	 lung	 adenocarcinoma	

from	squamous	cell	carcinoma.	The	 tiled	 images	were	 the	 inputs	 to	 the	classifier	and	the	
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probabilities	that	the	images	belong	to	each	category	were	the	outputs	of	the	convolutional	

neural	network	models.	

	

Evaluation	of	the	Non-Small	Cell	Lung	Cancer	Diagnostic	Classifiers	

	 To	evaluate	the	performance	of	the	classifiers,	the	TCGA	set	was	randomly	divided	

into	 a	 training	 set	 (80%	 of	 the	 patients	 in	 the	 TCGA	 set)	 and	 a	 held-out	 test	 set	 (the	

remaining	20%	of	the	patients).	There	was	no	overlap	between	patients	in	the	training	set	

and	 those	 in	 the	 test	 set,	 and	 the	 80-20	 split	 was	 guided	 by	 the	 machine	 learning	

literature[44].	 The	 convolutional	 neural	 network	 models	 were	 trained	 and	 all	 hyper-

parameters	 were	 finalized	 through	 cross-validation	 on	 the	 training	 set.	 Through	 this	

process,	 the	 optimized	baseline	 learning	 rate	was	 identified	 to	 be	 0.001	 for	AlexNet	 and	

GoogLeNet,	 0.0005	 for	 VGGNet,	 and	 0.01	 for	 ResNet.	 Momentum	was	 set	 to	 0.9	 and	 L2	

regularization	was	used	in	all	four	architectures.	The	finalized	models	were	first	applied	to	

the	untouched	TCGA	test	set	and	the	predicted	classification	for	each	image	was	compared	

to	 the	 pathologists’	 label.	 Receiver	 operating	 characteristics	 (ROC)	 curves	 of	 test	 set	

predictions	 were	 plotted	 and	 the	 areas	 under	 ROC	 curves	 (AUCs)	 were	 calculated.	 The	

AUCs	of	different	 classification	 tasks	were	 compared.	To	ensure	 that	 the	 reported	model	

performance	 on	 the	 TCGA	 held-out	 test	 set	was	 not	 due	 to	 a	 fortuitous	 training-test	 set	

partition,	 the	 training-test	 set	 partition	 and	 the	model	 training	 processes	were	 repeated	

three	times.	Note	that	each	time	we	retrained	the	model	and	re-optimized	all	parameters	

from	scratch,	to	ensure	the	robustness	of	the	results.	The	models	trained	and	finalized	by	

the	TCGA	training	set	were	first	validated	by	the	TCGA	test	set	and	further	evaluated	by	an	

independent	 validation	 set	 of	 histopathology	 images	 from	 the	 ICGC.	 The	 misclassified	
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images	by	the	machines	were	first	examined	by	a	physician-scientist	(K.-H.	Y.)	in	a	blinded	

setting	and	independently	reviewed	by	a	pulmonary	pathologist	with	more	than	27	years	

of	experience	in	lung	pathology	diagnosis	(G.	J.	B.).	

	

Visualization	of	the	Convolutional	Neural	Network	Models	

	 In	order	 to	 interpret	 the	 convolutional	neural	network	models,	 gradient-weighted	

class	activation	maps	(Grad-CAM)	were	used	to	visualize	the	regions	of	importance	in	the	

classification	process[45].	The	Grad-CAM	method	identifies	the	gradient	of	the	output	from	

the	pre-dense	layer	with	respect	to	the	input	image,	thereby	characterizing	the	importance	

of	the	input	pixels	to	the	classification	results[45].	For	model	visualization,	the	images	with	

>	99.9%	prediction	confidence	were	retrieved	and	visualized.	The	Grad-CAM	of	models	that	

distinguish	 lung	 adenocarcinoma	 from	 adjacent	 dense	 benign	 tissue,	 lung	 squamous	 cell	

carcinoma	 from	 adjacent	 dense	 benign	 tissue,	 and	 lung	 adenocarcinoma	 from	 lung	

squamous	cell	carcinoma	were	examined.	

	

Non-Small	Cell	Lung	Cancer	Transcriptomics	Subtypes	and	Classifications	

	 Previous	 research	 has	 described	 the	 transcription-based	 subtypes	 for	 both	 lung	

adenocarcinoma	and	lung	squamous	cell	carcinoma[15,16].	Level	3	publicly-available	gene	

expression	data	of	the	patient	cohorts	were	acquired	from	the	National	Cancer	Institute's	

Genomic	 Data	 Commons	 and	 the	 methods	 described	 in	 the	 TCGA	 Consortium	

articles[33,34]	were	used	 to	determine	 the	 transcriptomics	 subtypes	of	 the	patients.	The	

samples	with	available	gene	expression	data	were	randomly	divided	into	an	80%	training	

set	and	a	20%	held-out	test	set[44].	The	associations	between	histopathology	patterns	and	
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the	 transcriptomic	 subtypes	 were	 investigated	 by	 building	 and	 fine-tuning	 a	 multi-class	

VGGNet	convolutional	neural	network	model	using	the	training	set.	In	the	test	phase,	data	

from	the	held-out	 test	set	were	 inputted	 to	 the	VGGNet	model,	and	the	output	of	 the	 last	

layer	 of	 the	 VGGNet	was	 obtained	 and	 transformed	 using	 principal	 component	 analysis,	

with	 the	 first	 two	 principal	 components	 visualized.	 In	 addition,	 pair-wise	 subtype	

classification	models	were	trained	on	the	subtypes	with	a	sufficient	number	of	cases	(>	270	

cases	 in	 the	 two	subtypes	combined)	using	 the	80%	training	set,	and	the	performance	of	

the	classification	models	was	evaluated	by	their	AUCs	in	the	20%	held-out	test	set.		

	

Patients	with	the	same	transcriptomic	subtype	nonetheless	have	variations	in	their	

transcriptomic	 signature.	 To	 evaluate	 the	 correlations	 between	 the	 variations	 in	 the	

transcriptomic	 signature	 that	 defined	 tumor	 subtypes	 and	 the	 histopathology-predicted	

subtypes	 in	 the	 test	 set,	 Spearman’s	 correlation	coefficients	were	 calculated	between	 the	

transcriptomic	 subtype	 score[15,16]	 and	 the	 subtype	 probability	 predicted	 by	 a	 VGGNet	

model	trained	by	histopathology	images.	The	Spearman’s	correlation	test	was	performed	to	

evaluate	 the	 strength	 of	 the	 correlations.	 All	 statistical	 analyses	 were	 performed	 in	 R	

version	3.3.	

	

	

Results	

Patient	Characteristics	

We	 obtained	 the	 whole-slide	 histopathology	 images	 from	 427	 lung	

adenocarcinoma[33]	 and	 457	 lung	 squamous	 cell	 carcinoma[34]	 patients	 in	 the	 TCGA	
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database.	Additional	87	patients	with	lung	adenocarcinoma	and	38	with	lung	squamous	cell	

carcinoma	were	identified	in	the	ICGC	cohort.	Pathology	reports	and	clinical	information	of	

each	patient,	such	as	patient	age,	gender,	race,	and	the	anatomical	subdivision	of	the	tumor,	

were	 also	 acquired.	 Supplemental	 Table	 1	 summarizes	 the	 patient	 characteristics	 of	 the	

TCGA	cohort,	and	Supplemental	Table	2	outlines	those	for	the	ICGC	cohort.	

	

Convolutional	Neural	Networks	Classified	Lung	Adenocarcinoma	from	Adjacent	Dense	Benign	

Tissue	

	 The	convolutional	neural	network	successfully	distinguished	 lung	adenocarcinoma	

from	 the	 adjacent	 dense	 benign	 tissue,	 with	 the	 areas	 under	 receiver	 operating	

characteristic	curves	(AUC)	approximately	0.941-0.965	in	the	TCGA	test	set	(VGGNet:	0.965	

±	 0.012;	 ResNet:	 0.952	±	 0.015;	 GoogLeNet:	 0.965	±	 0.012;	 AlexNet	AUC:	 0.941	±	 0.014;	

Figure	1A).	VGGNet	and	GoogLeNet	performed	slightly	better	than	ResNet	and	AlexNet.	The	

results	were	validated	in	the	ICGC	cohort,	with	AUCs	0.890-0.935	(VGGNet:	0.912	±	0.037;	

ResNet:	0.935	±	0.024;	GoogLeNet:	0.901	±	0.044;	AlexNet	AUC:	0.890	±	0.051;	Figure	1B).	

The	performance	on	the	ICGC	dataset	was	not	significantly	different	from	that	of	the	TCGA	

test	 set	 (Wilcoxon	 signed	 rank	 test	 P>0.15).	 Comparing	 with	 a	 previously-reported	

quantitative	 method	 for	 pathology	 analysis	 using	 the	 TCGA	 datasets[46],	 our	 neural	

networks	attained	9-12%	performance	 improvement	 in	 the	TCGA	test	set.	 (Supplemental	

Table	3).	We	further	investigated	the	gradient-weighted	class	activation	maps	(Grad-CAMs)	

and	demonstrated	 that	 the	convolutional	neural	networks	give	higher	weights	 to	 regions	

indicative	of	tumorous	changes	(Figures	1C	and	1D).		
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Convolutional	 Neural	 Networks	 Classified	 Lung	 Squamous	 Cell	 Carcinoma	 from	 Adjacent	

Dense	Benign	Tissue	

	 Convolutional	 neural	 network	 classifiers	 achieved	 AUCs	 of	 0.935-0.987	 in	

distinguishing	 the	 tumor	parts	of	 lung	squamous	cell	 carcinoma	 from	 the	adjacent	dense	

benign	 tissue	 in	 the	 TCGA	 test	 set	 (VGGNet:	 0.982	 ±	 0.0066;	 ResNet:	 0.935	 ±	 0.0086;	

GoogLeNet:	0.987	±	0.0047;	AlexNet	AUC:	0.977	±	0.0040;	Figure	2A).	Similar	performance	

was	 observed	 in	 the	 validation	 cohort	 from	 ICGC,	with	 AUCs	more	 than	 0.979	 (VGGNet:	

0.991	±	0.0019;	ResNet:	0.979	±	0.0035;	GoogLeNet:	0.993	±	0.0019;	AlexNet	AUC:	0.995	±	

0.0023;	 Figure	2B).	Note	 that	 the	 performance	 on	 the	 ICGC	dataset	was	not	 significantly	

different	 from	 that	 of	 the	 TCGA	 test	 set	 (Wilcoxon	 signed	 rank	 test	 P>0.15).	 In	 general,	

AlexNet,	GoogLeNet,	and	VGGNet	achieved	similar	classification	performance,	whereas	the	

effectiveness	 of	 ResNet	 had	 slightly	 more	 variation.	 All	 of	 the	 neural	 network	 methods	

investigated	achieved	6-11%	increase	in	AUC,	compared	with	previously	reported	machine	

learning	methods	developed	with	the	TCGA	datasets[46]	(Supplemental	Table	3).	The	high	

AUCs	 demonstrated	 the	 potential	 of	 identifying	 the	 suspicious	 part	 of	 the	 whole-slide	

images	 for	 further	 review	 and	 provide	 decision	 support	 to	 pathologists	 encountering	

ambiguous	 histopathology	 changes.	 Visualization	 of	 the	 attention	map	 revealed	 that	 the	

convolutional	 neural	 networks	 attended	 to	 regions	 of	 squamous	 cancerous	 cell	 clusters,	

which	 validated	 the	 relevance	 of	 the	 classifiers	 (Figures	 2C	 and	 2D).	 Error	 analysis	 also	

revealed	that	images	constantly	misclassified	by	our	models	contained	mislabels	by	TCGA	

investigators.	 Supplemental	 Figure	 1	 shows	 one	 of	 such	 images,	 which	was	 tiled	 from	 a	

slide	 labeled	as	adjacent	benign	tissue	by	pathology	evaluation	conducted	by	TCGA,	but	a	

detailed	 pathology	 review	 by	 a	 pulmonary	 pathologist	 indicated	 that	 the	 frozen	 section	
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image	 contains	 clusters	 of	 atypical	 cells	 and	 atypical	 glandular	 proliferation.	 Since	 the	

tissue	 slides	were	 used	 for	 quality	 control	 purposes	 in	 the	 TCGA	 studies,	 the	 associated	

sample	would	need	further	evaluation	in	order	to	avoid	biasing	the	omics	profiling	results	

in	the	original	study.		

	

Convolutional	 Neural	 Networks	 Classified	 Lung	 Adenocarcinoma	 from	 Lung	 Squamous	 Cell	

Carcinoma		

	 Adenocarcinoma	and	squamous	cell	carcinoma	are	the	two	most	common	types	of	

lung	malignancy.	It	is	crucial	to	distinguish	them	since	the	treatment	options	are	different	

for	 these	 two	 cancer	 types,	 and	 the	 results	 demonstrated	 that	 convolutional	 neural	

networks	achieved	high	accuracy	in	this	task.	The	AUCs	of	the	classifiers	in	the	TCGA	test	

set	 were	 approximately	 0.883-0.932	 (VGGNet:	 0.932	 ±	 0.0042;	 ResNet:	 0.883	 ±	 0.026;	

GoogLeNet:	 0.930	 ±	 0.0013;	 AlexNet	 AUC:	 0.896	 ±	 0.0226;	 Figure	 3A).	 All	 of	 the	 neural	

network	 models	 performed	 12-27%	 better	 than	 the	 feature-based	 machine	 learning	

methods	 on	 the	 TCGA	 test	 set[46]	 (Supplemental	 Table	 3).	 The	 AUCs	 of	 the	 finalized	

models	applied	to	the	validation	cohort	(ICGC)	were	0.752-0.857.	(VGGNet:	0.843	±	0.019;	

ResNet:	0.857	±	0.024;	GoogLeNet:	0.830	±	0.014;	AlexNet	AUC:	0.752	±	0.016;	Figure	3B).	

The	performance	on	the	ICGC	dataset	was	not	significantly	different	from	that	of	the	TCGA	

test	set	(Wilcoxon	signed	rank	test	P>0.09).	Except	for	the	varying	performance	of	AlexNet,	

the	neural	network	with	the	simplest	architecture	among	the	four,	the	performance	of	the	

other	 neural	 network	 frameworks	 was	 comparable	 in	 both	 cohorts.	 Grad-CAM	 analyses	

revealed	 the	 distinctive	 visual	 patterns	 of	 the	 two	 tumor	 types	 picked	 up	 by	 the	
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convolutional	neural	networks,	such	as	the	clustering	patterns	of	tumor	cells	(Figures	3C-

3F).	

	

Convolutional	Neural	Networks	Correlated	Cell	Morphology	with	Gene	Expression	Subtypes	

	 Previous	studies	defined	the	subtypes	of	non-small	cell	 lung	cancer	by	the	clusters	

of	 tumor	 gene	 expression	 profiles.	 The	 three	 transcriptomic	 subtypes	 of	 lung	

adenocarcinoma	 proposed	 by	 TCGA	 are	 the	 terminal	 respiratory	 unit	 (TRU),	 proximal	

inflammatory	 (PI),	 and	 proximal	 proliferative	 (PP)	 subtypes,	 which	 correspond	 to	 the	

previous	 pathological,	 anatomic,	 and	 mutational	 classifications	 of	 bronchioid,	 squamoid,	

and	 magnoid	 subtypes	 respectively[16,33].	 The	 four	 transcriptomic	 subtypes	 of	 lung	

squamous	 cell	 carcinoma	 proposed	 by	 TCGA	 are	 the	 classical,	 basal,	 secretory,	 and	

primitive	 subtypes[15,34].	 These	 subtypes	 are	 related	 to	 the	 differentially	 activated	

inflammation,	proliferation,	and	cell	differentiation	pathways[15,16].	Here	we	analyzed	the	

lung	adenocarcinoma	and	squamous	cell	carcinoma	patients	with	available	histopathology	

slide	 and	RNA-sequencing	 data	 (Supplemental	 Table	 4),	 determined	 their	 transcriptomic	

subtypes,	 and	 employed	 convolutional	 neural	 networks	 to	 associate	 the	 morphological	

patterns	 of	 the	 cells	 with	 patients’	molecular	 subtypes.	 A	multiclass	 image	 classification	

model	 showed	 that	 the	 principal	 components	 of	 the	 output	 values	 from	 the	 last	 layer	 of	

VGGNet	 were	 significantly	 correlated	 with	 the	 transcriptomic	 subtypes	 of	 both	

adenocarcinoma	(ANOVA	P	<	0.001	in	both	principal	components	1	and	2;	Figure	4A)	and	

squamous	 cell	 carcinoma	 (ANOVA	 P	 <	 0.001	 in	 principal	 component	 1;	 Figure	 4C).	

Correlation	 analysis	 showed	 that	 patients	 with	 typical	 transcriptomic	 profiles	 for	 the	

subtype	 they	 belong	 to	 also	 possessed	 histopathology	 patterns	 typical	 of	 that	 subtype	
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(Figures	4B	and	4D).	The	Spearman’s	correlation	coefficients	of	the	transcriptomics-based	

subtype	 scores	 and	 the	 histopathology-derived	 probabilities	were	 greater	 than	 0.4	 in	 all	

three	 subtypes	 (P<0.01)	 of	 lung	 adenocarcinoma	 and	 in	 the	 two	 common	 subtypes	

(classical	and	prototypical)	of	lung	squamous	cell	carcinoma.	In	addition,	pair-wise	neural	

network	models	predicted	the	subtypes	of	lung	adenocarcinoma	with	AUCs	0.771-0.892	in	

the	 best	 classifiers	 (Supplemental	 Figure	 2)	 and	 predicted	 the	 major	 subtypes	 of	 lung	

squamous	 cell	 carcinoma	 with	 AUCs	 approximately	 0.7	 (Supplemental	 Figure	 3).	 The	

slightly	worse	performance	in	squamous	cell	carcinoma	might	originate	from	the	fact	that	

there	were	fewer	numbers	of	samples	in	each	of	the	four	subtypes.	These	results	indicated	

the	 strong	 correlations	 between	 cell	 morphology	 and	 gene	 expression	 subtypes	 of	 non-

small	cell	lung	cancer.	

	

	

Discussion	

This	 is	 the	 first	 study	 that	 used	 convolutional	 neural	 networks	 to	 identify	 the	

transcriptomic	subtypes	of	 lung	malignancy.	Results	demonstrated	that	the	deep	learning	

framework	 identified	 histopathology	 slides	 with	 tumor	 cells,	 captured	 the	 cell	

morphologies	 related	 to	 lung	 cancer	 diagnosis,	 and	 correlated	 histopathology	 with	

transcriptomic	 profiles.	 The	 diagnostic	 classifications	 were	 successfully	 validated	 in	 an	

independent	 test	 set,	 showing	 the	 robustness	 of	 our	methods.	 Our	 analytical	 framework	

requires	no	human	 intervention	after	 tissue	 slide	preparation,	 contributes	 to	building	an	

automated	 decision	 support	 system,	 and	 points	 to	 the	 associations	 between	 tumor	 cell	

morphology	and	molecular	biology.		
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Our	work	demonstrates	a	systematic	approach	to	analyzing	histopathology	images	

in	a	non-biased	fashion.	Compared	with	the	previous	methods[24-26,46],	our	approaches	

require	no	human	segmentation[24]	and	feature	definition,[24-26,46]	making	them	easily	

fit	into	the	clinical	workflow	of	pathology	diagnosis.	The	extracted	features	do	not	rely	on	

prior	 pathology	 knowledge.	 This	 enables	 us	 to	 identify	 novel	 morphological	 patterns	

related	 to	 clinically	 relevant	 phenotypes	 and	biological	 processes	 at	 the	 gene	 expression	

level.	 In	 addition,	 our	 models	 performed	 6-27%	 better	 than	 the	 previously-proposed	

feature-based	 methods,	 and	 the	 error	 rates	 were	 comparable	 with	 the	 reported	 inter-

observer	 variations,	 indicating	 the	 utility	 of	 deep	 convolutional	 neural	 network	 in	

classifying	lung	cancer	types.	Furthermore,	our	system	successfully	identified	regions	with	

atypical	 cells	 and	 atypical	 glandular	proliferation	 in	 slides	 that	were	marked	 as	 adjacent	

dense	benign	 tissue	by	TCGA	(Supplemental	Figure	1).	This	 finding	was	confirmed	by	an	

experienced	pulmonary	pathologist.	This	suggests	that	our	methods	could	learn	the	general	

patterns	 of	 pathology	 in	 the	 presence	 of	 noise	 and	mislabels	 in	 the	 dataset,	which	 could	

identify	 suspicious	 cells	 in	 the	 histopathology	 slides	 of	 research	 samples	 and	 provide	

decision	 support	 for	 pathology	 evaluation[29,47].	 Given	 the	 increasing	 incidence	 rate	 of	

lung	 cancer	 and	 the	 projected	 shortage	 of	 pathologists[48],	we	 can	 augment	 the	 current	

pathology	evaluation	workflow	with	the	reported	system,	which	can	double-check	on	the	

diagnoses	made	by	human	practitioners	and	point	out	suspicious	tissue	regions	requiring	

additional	review.	The	deployment	of	machine-learning	systems	in	the	clinical	settings	has	

the	 potential	 of	 reducing	 the	 cost	 and	 loss	 of	 quality	 of	 life	 associated	 with	

misdiagnoses[49].	 In	 addition,	 the	 classification	 of	 transcriptomic	 subtypes	 can	 facilitate	
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further	 studies	 on	 the	 morphological	 impact	 of	 aberrant	 gene	 expression	 in	 the	 tumor	

tissue.	

	

	 The	general	architecture	of	our	convolutional	neural	networks	was	 trained	on	 the	

images	 from	 the	 ImageNet[43],	 which	 bear	 little	 resemblance	 to	 histopathology	 images.	

However,	 we	 showed	 that	 these	 frameworks	 generated	 good	 classification	 performance	

when	 refined	with	 an	 adequate	 amount	 of	 training	 data	 for	model	 fine-tuning[50].	 This	

indicates	 the	 utility	 of	 fine-tuning	 the	 pre-trained	 convolutional	 neural	 networks	 using	

whole-slide	 pathology	 training	 images	 from	 hundreds	 of	 patients.	 When	 classifying	

cancerous	regions	from	the	adjacent	dense	benign	tissues,	AlexNet,	which	consists	of	only	5	

convolutional	 layers,	 has	 similar	 performance	 compared	 with	 GoogLeNet,	 VGGNet,	 and	

ResNet.	 However,	 for	 more	 sophisticated	 tasks,	 such	 as	 differentiating	 tumor	 types,	

AlexNet	 has	 the	 worst	 performance	 among	 all	 convolutional	 neural	 networks	 we	

investigated.	 These	 results	 indicated	 that	 simple	 models	 may	 be	 suitable	 for	 tumor	

detection	tasks,	while	diagnosing	tumor	types	and	subtypes	may	require	neural	networks	

with	more	layers.	

	

As	 expected,	 convolutional	 neural	 networks	 worked	 best	 when	 the	 number	 of	

training	 samples	 was	 large[51,52].	 Whole	 slide	 histopathology	 images	 of	 tumor	 tissues	

provide	 a	 substantial	 opportunity	 for	 convolutional	 neural	 network	 applications,	 as	 one	

slide	 typically	 contains	 thousands	 of	 tumor	 cells.	 In	 addition,	 several	 types	 of	 tumor	 cell	

variations	 are	 often	 represented	 in	 different	 parts	 of	 the	 same	 whole-slide	 image.	 The	

abundance	 of	 tumor	 cells	 and	 their	 variations	 per	 slide	 provided	 sufficient	 data	 for	
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establishing	a	diagnostic	model	for	non-small	cell	lung	cancer.	This	study	demonstrated	the	

feasibility	of	developing	a	deep	 learning-based	platform	for	histopathology	diagnosis	and	

omics-histopathology	integration.	The	developed	methods	are	extensible	to	other	imaging	

classification	tasks	central	to	clinical	diagnosis[53].	Further	studies	are	needed	to	establish	

the	cell-level	image-transcriptomics	association	by	single-cell	sequencing	and	validate	the	

utility	of	computer	vision	methods	for	diagnosing	other	prevalent	tumor	types.	

	

	 One	limitation	of	the	study	is	that	the	TCGA	and	ICGC	datasets	only	included	the	two	

most	 common	 histology	 types	 of	 lung	 cancer:	 adenocarcinoma	 and	 squamous	 cell	

carcinoma.	Although	 these	 two	subtypes	comprise	more	 than	80%	of	non-small	 cell	 lung	

cancer,	the	diagnostic	performance	of	rarer	types	of	tumors,	such	as	giant-cell	carcinoma	of	

the	 lung	 or	 small	 cell	 lung	 carcinoma,	 cannot	 be	 evaluated	 based	 on	 the	 available	

data[54,55].	 Large-scale	 collection	 of	 rarer	 cancer	 types	 and	 prospective	 studies	 on	 the	

efficacy	of	the	developed	models	are	required	to	enable	comprehensive	cancer	diagnostic	

systems[49].	 In	 addition,	 all	 of	 the	 histopathology	 images	 in	 this	 study	 were	 gathered	

retrospectively,	 and	 the	 updated	 International	 Association	 for	 the	 Study	 of	 Lung	

Cancer/American	 Thoracic	 Society/European	 Respiratory	 Society	 classifications	 of	 lung	

adenocarcinoma[56]	were	not	available	for	the	study	cohorts.	Future	studies	are	needed	to	

quantify	the	inter-observer	disagreement	of	various	lung	cancer	pathology	and	investigate	

the	clinical	utility	of	implementing	an	automated	histopathology	image	analysis	system	in	

real-world	settings[57].	
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	 Overall	 our	 study	 demonstrated	 the	 utility	 of	 convolutional	 neural	 networks	 in	

associating	 tumor	 cell	 morphology	 with	 their	 molecular	 subtypes	 and	 classifying	 the	

histopathology	 images	 of	 the	 major	 types	 of	 non-small	 cell	 lung	 cancer.	 The	 machine	

learning	 system	 presented	 here	 can	 provide	 decision	 support	 to	 pathologists,	 detect	

atypical	 cells	 in	 large	 datasets	 with	 noisy	 labels,	 and	 aid	 in	 reclassifying	 patients	 with	

inconclusive	histopathology	presentations.	Further	testing	in	the	clinical	settings	is	needed	

to	 confirm	 the	 utility	 of	 our	 system.	 Our	 developed	 bioinformatics	 workflow	 is	

generalizable	to	other	tumor	types	or	diseases.	
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Figure	Legends	

Figure	 1.	 Convolutional	 neural	 networks	 distinguished	 lung	 adenocarcinoma	 from	

adjacent	 dense	 benign	 tissue,	 and	 the	 results	 were	 validated	 in	 the	 independent	 ICGC	

cohort.	(A)	Receiver	operating	characteristic	(ROC)	curves	of	AlexNet,	GoogLeNet,	ResNet,	

and	 VGGNet	 in	 the	 TCGA	 test	 set.	 Areas	 under	 receiver	 operating	 characteristic	 curves	

(AUCs):	VGGNet:	0.965	±	0.012;	ResNet:	0.952	±	0.015;	GoogLeNet:	0.965	±	0.012;	AlexNet:	

0.941	±	0.014.	(B)	The	ROC	curves	of	the	convolutional	neural	networks	in	the	independent	

ICGC	 cohort.	 The	 classifiers	 achieved	 similar	 performance	 in	 this	 independent	 test	 set.	

AUCs:	VGGNet:	0.912	±	0.037;	ResNet:	0.935	±	0.024;	GoogLeNet:	0.901	±	0.044;	AlexNet:	

0.890	 ±	 0.051.	 (C)	 Attention	 analysis	 showed	 that	 the	 deep	 neural	 networks	 accurately	

utilized	 regions	 of	 tumorous	 changes	 to	 distinguish	 lung	 adenocarcinoma	 from	 adjacent	

dense	 benign	 tissues.	 A	 sample	 image	 tile	 of	 lung	 adenocarcinoma	 was	 shown.	 (D)	

Gradient-weighted	class	activation	map	(Grad-CAM)	of	 the	VGGNet	model.	The	Grad-CAM	

method	 characterizes	 the	 regions	 where	 changes	 in	 pixel	 values	 would	 affect	 the	

classification	 score	 significantly,	 thereby	 quantifying	where	 the	 artificial	 neural	 network	

put	their	“attention.”	Regions	with	adenocarcinoma	cells	were	identified	and	highlighted	by	

the	 convolutional	 neural	 network	 automatically	 after	 training.	 Note	 that	 no	 human	

segmentation	is	involved	in	our	training	process.	

	

Figure	2.	Convolutional	neural	networks	distinguished	lung	squamous	cell	carcinoma	from	

adjacent	 dense	 benign	 tissue,	 and	 the	 results	 were	 validated	 in	 the	 independent	 ICGC	

cohort.	(A)	Receiver	operating	characteristic	(ROC)	curves	of	AlexNet	GoogLeNet,	ResNet,	

and	VGGNet	in	the	TCGA	test	set.	AUCs:	VGGNet:	0.982	±	0.0066;	ResNet:	0.935	±	0.0086;	
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GoogLeNet:	 0.987	 ±	 0.0047;	 AlexNet:	 0.977	 ±	 0.0040.	 (B)	 The	 ROC	 curves	 of	 the	

convolutional	 neural	 network	 classifiers	 in	 the	 independent	 ICGC	 cohort.	 AUCs:	 VGGNet:	

0.991	 ±	 0.0019;	 ResNet:	 0.979	 ±	 0.0035;	 GoogLeNet:	 0.993	 ±	 0.0019;	 AlexNet:	 0.995	 ±	

0.0023.	 (C)	 Attention	 analysis	 of	 the	 deep	 neural	 networks	 demonstrated	 the	 regions	 of	

tumor	cell	clusters	were	used	to	distinguish	 lung	squamous	cell	carcinoma	from	adjacent	

dense	 benign	 tissues.	 A	 sample	 image	 of	 lung	 squamous	 cell	 carcinoma	was	 shown.	 (D)	

Gradient-weighted	 class	 activation	 map	 (Grad-CAM)	 of	 the	 VGGNet	 model.	 Regions	 of	

squamous	cancer	cells	are	automatically	highlighted	by	the	trained	model,	without	human	

segmentation.		

	

Figure	3.	Convolutional	neural	networks	distinguished	lung	squamous	cell	carcinoma	from	

lung	adenocarcinoma,	and	the	results	were	validated	in	the	independent	ICGC	cohort.	(A)	

Receiver	operating	characteristic	(ROC)	curves	of	AlexNet,	GoogLeNet,	ResNet,	and	VGGNet	

in	 the	 TCGA	 test	 set.	 AUCs:	 VGGNet:	 0.932	±	 0.0042;	 ResNet:	 0.883	±	 0.026;	 GoogLeNet:	

0.930	±	0.0013;	AlexNet:	0.896	±	0.0226.	 (B)	The	ROC	curves	of	 the	convolutional	neural	

network	classifiers	in	the	independent	ICGC	cohort.	AUCs:	VGGNet:	0.843	±	0.019;	ResNet:	

0.857	±	0.024;	GoogLeNet:	0.830	±	0.014;	AlexNet:	0.752	±	0.016.	(C)	Visualization	of	 the	

attention	map	showed	regions	the	deep	neural	networks	attended	to	when	distinguishing	

lung	 squamous	 cell	 carcinoma	 from	 lung	 adenocarcinoma.	 A	 sample	 image	 of	 lung	

adenocarcinoma	was	shown.	(D)	The	Grad-CAM	plot	of	the	lung	adenocarcinoma	image.	(E)	

A	 sample	 image	 of	 lung	 squamous	 cell	 carcinoma.	 (F)	 The	 Grad-CAM	 plot	 of	 the	 lung	

squamous	 cell	 carcinoma	 image.	 Note	 that	 no	 human	 segmentation	 is	 required	 in	 our	

training	process.	
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Figure	 4.	 Convolutional	 neural	 network	 associated	 transcriptomic	 subtypes	 with	

histopathology	 patterns.	 (A)	 The	 principal	 components	 (PCs)	 of	 the	 VGGNet-based	

histopathology	 image	 summary	 vector	 were	 correlated	 with	 the	 three	 subtypes	 of	 lung	

adenocarcinoma	(PC1	ANOVA	P-value	<	0.0001;	PC2	ANOVA	P-value	=	0.0038).	Each	dot	

represents	 a	 sample	 in	 the	 test	 set.	 The	 color	 of	 the	 dots	 indicates	 the	 transcriptomic	

subtypes	 of	 the	 sample.	 The	 triangles	 represent	 the	mean	PC1	 and	PC2	of	 each	 subtype.	

TRU:	terminal	respiratory	unit	subtype;	PI:	proximal	 inflammatory	subtype;	PP:	proximal	

proliferative	 subtype.	 (B)	 Correlation	 plots	 of	 the	 transcriptomic	 subtype	 scores	 and	 the	

histopathology	classification	scores	in	lung	adenocarcinoma.	Significant	associations	were	

found	 in	 all	 three	 subtypes	 (P<0.01).	 (C)	 The	 first	 principal	 component	 of	 the	 VGGNet-

based	histopathology	 image	summary	vector	 is	correlated	with	 the	 four	subtypes	of	 lung	

squamous	cell	carcinoma	(PC1	ANOVA	P-value	=	0.0028).	Each	dot	represents	a	sample	in	

the	test	set.	The	color	of	the	dots	indicates	the	transcriptomic	subtypes	of	the	sample.	The	

triangles	 represent	 the	mean	 PC1	 and	 PC2	 of	 each	 subtype.	 (D)	 Correlation	 plots	 of	 the	

transcriptomic	 subtype	 scores	 and	 the	 histopathology	 classification	 scores	 in	 lung	

squamous	cell	carcinoma.	Significant	associations	were	found	in	the	classical	and	primitive	

subtypes	(P<0.01).	

	

	

Supplemental	Figure	1.	 Error	 analysis	 revealed	 that	 images	 constantly	misclassified	 by	

convolutional	 neural	 network	 models	 were	 mislabeled	 by	 TCGA.	 An	 example	 image	 tile	
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labeled	as	adjacent	benign	 tissue	by	TCGA	contains	 clusters	of	 atypical	 cells	 and	atypical	

glandular	proliferation.	

	

Supplemental	 Figure	 2.	 Convolutional	 neural	 networks	 identified	 the	 correlations	

between	 histopathology	 image	 patterns	 and	 three	 transcriptomic	 subtypes	 of	 lung	

adenocarcinoma.	 The	 AUC	 for	 pair-wise	 classification	 is	 greater	 than	 0.77	 in	 the	 best	

classifiers.	 (A)	 The	 ROC	 curves	 of	 classifying	 images	 of	 the	 terminal	 respiratory	 unit	

subtype	from	those	of	the	proximal	inflammatory	subtype,	with	AUCs	0.816-0.892.	(B)	The	

ROC	curves	of	classifying	images	of	the	terminal	respiratory	unit	subtype	from	those	of	the	

proximal	proliferative	subtype,	with	AUCs	0.771-0.867.	 (C)	The	ROC	curves	of	 classifying	

images	 of	 the	 proximal	 inflammatory	 subtype	 from	 those	 of	 the	 proximal	 proliferative	

subtype,	with	AUCs	0.687-0.771.	

	

Supplemental	 Figure	 3.	 Histopathology	 image	 patterns	 correlated	 with	 the	 prevalent	

transcriptomic	subtypes	of	lung	squamous	cell	carcinoma.	The	AUC	is	approximately	0.70.	

(A)	The	ROC	curves	of	 classifying	 images	of	 the	classical	 subtype	 from	those	of	 the	basal	

subtype.	 VGGNet	 is	 the	 best	 classifier,	 with	 AUC	 0.685	 ±	 0.018.	 (B)	 The	 ROC	 curves	 of	

classifying	images	of	the	classical	subtype	from	those	of	the	secretory	subtype.	VGGNet	is	

the	best	classifier,	with	AUC	0.701	±	0.061.	The	reduced	AUC	might	result	from	the	smaller	

sample	size	of	the	four	subtypes	of	lung	squamous	cell	carcinoma	in	our	cohorts.	
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