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 24 
Single-cell RNA sequencing (scRNA-seq) can characterize cell types and states through 25 
unsupervised clustering, but the ever increasing number of cells imposes computational 26 
challenges. We present an unsupervised deep embedding algorithm for single-cell 27 
clustering (DESC) that iteratively learns cluster-specific gene expression signatures and 28 
cluster assignment. DESC significantly improves clustering accuracy across various 29 
datasets and is capable of removing complex batch effects while maintaining true 30 
biological variations. 31 
 32 
A primary challenge in scRNA-seq analysis is analyzing the ever increasing number of cells, 33 
which can be thousands to millions in large projects such as the Human Cell Atlas1. Identifying 34 
cell populations is a challenge in large datasets because many existing scRNA-seq clustering 35 
methods cannot be scaled up to handle them. It is desirable to first learn cluster-specific gene 36 
expression features from cells that are easy to cluster because they provide valuable information 37 
on cluster-specific gene expression signatures. These cells can help improve clustering of cells 38 
that are hard-to-cluster.  39 
 40 
Another challenge in scRNA-seq analysis is batch effect, which is systematic gene expression 41 
difference from one batch to another2. Batch effect is inevitable in studies involving human tissues 42 
because the data are often generated at different times and the batches can confound biological 43 
variations. Failure to remove batch effect will complicate downstream analysis and leads to a false 44 
interpretation of results.  45 
 46 
ScRNA-seq clustering and batch effect removal are typically addressed through separate 47 
analyses. Commonly used approaches to remove batch effect include Seurat’s Canonical 48 
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Correlation Analysis3 (CCA) or Mutual Nearest Neighbors (MNN) approach4. After removing batch 49 
effect, clustering analysis is performed to identify cell clusters using methods such as Louvain’s 50 
method5, Infomap6, graph-based clustering7, shared nearest neighbor8, or consensus clustering 51 
with SC39. Since some cell types are more vulnerable to batch effect than others, batch effect 52 
removal should be performed jointly with clustering to achieve optimal performance. However, 53 
none of the existing methods are capable of simultaneously clustering cells and removing batch 54 
effect. 55 
 56 
We developed DESC, an unsupervised deep learning algorithm that iteratively learns cluster-57 
specific gene expression representation and cluster assignments for scRNA-seq data clustering 58 
(Fig. 1a). Using a deep neural network, DESC initializes clustering obtained from an autoencoder 59 
and learns a non-linear mapping function from the original scRNA-seq data space to a low-60 
dimensional feature space by iteratively optimizing a clustering objective function. This iterative 61 
procedure moves each cell to its nearest cluster, balances biological and technical differences 62 
between clusters, and reduces the influence of batch effect. DESC also enables soft clustering 63 
by assigning cluster-specific probabilities to each cell, facilitating the clustering of cells with high-64 
confidence.  65 
 66 
We benchmarked DESC’s performance by analyzing the multi-tissue gene expression data in 67 
GTEx10. We treat this dataset as the gold-standard because the tissue origins are known. 68 
Although not generated by scRNA-seq, GTEx data are similar to scRNA-seq in that it contains a 69 
large number of samples (n=11,688) originated from many tissue types and is similar to the 70 
volume and complexity of scRNA-seq data (Supplementary Note 1). DESC’s clustering yields 71 
an adjusted rand index (ARI) of 0.790, whereas the ARIs for Louvain’s method, SC3, and Infomap 72 
are 0.755, 0.349, and 0.267, respectively. As shown in the Sankey diagrams (Supplementary 73 
Fig. 3), samples that were misclassified by DESC and Louvain’s method tend to be from closely 74 
related tissues, whereas SC3 tends to misclassify samples from tissues distantly related. 75 
 76 
We analyzed a scRNA-seq dataset generated from the midbrain of Drosophila, which includes 77 
10,286 cells using Drop-seq11(Supplementary Note 2). This dataset has minimal batch effect. 78 
DESC identified three types of mushroom body Kenyons, with 1,038 out of the 1,053 Kenyon cells 79 
correctly classified, a 98.6% classification accuracy (Fig. 1b). DESC also separated cholinergic, 80 
glutamatergic, and GABAergic neurons, which were mixed together in the Louvain’s clustering as 81 
shown in the original paper (Fig. 1c). These results indicate that DESC can identify cell types that 82 
are detectable by the Louvain’s method, and is also able to separate more closely related cells, 83 
indicating its increased accuracy in classifying closely related cell types. We further applied 84 
Louvain’s method to the low-dimensional representation learned from the autoencoder in DESC 85 
for clustering, and separated the cholinergic, glutamatergic, and GABAergic neurons better than 86 
the original Louvain’s clustering with principal components (PC) based dimension reduction 87 
(Supplementary Fig. 4). These results suggest the autoencoder is more effective than PC in 88 
dimension reduction for single-cell clustering.  89 
 90 
Encouraged by these findings, we analyzed a scRNA-seq dataset with known batch effect 91 
(Supplementary Note 3). Shekhar et al.12 sequenced 23,494 retinal bipolar cells using Drop-seq, 92 
where cells from six replicates were processed in two different batches. Fig. 2a and 2c show that 93 
DESC removed the batch effect, and yields an ARI of 0.973 for clustering. The corresponding 94 
ARIs for Louvain, SC3, Infomap, CCA and MNN are 0.965, 0.521, 0.560, 0.637, and 0.974, 95 
respectively. Although DESC, Louvain, and MNN have similar ARIs, DESC has the smallest 96 
Kullback-Leibler (KL) divergence, which measures the degree of random mixing of cells in 97 
different batches, indicating that DESC is more effective in removing batch effect (Fig. 2b). 98 
Further analysis revealed that the batch effect removal in DESC is due to its iterative clustering, 99 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 25, 2019. ; https://doi.org/10.1101/530378doi: bioRxiv preprint 

https://doi.org/10.1101/530378
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

3 

 

in which cells from the same cluster, separated by technical batch effect, are grouped closer and 100 
closer to the cluster centroid over iterations (Figs. 2d and 2e). 101 
 102 
We also assessed the performance of DESC on data with complex batch effect generated from 103 
multiple subjects using the same platform but in different labs. Such complex batch effect is 104 
common in human studies because logistical constraints mandate that data from different 105 
subjects be generated at different times and perhaps in different labs, which result in complex 106 
batch effects that are challenging to address. To examine the robustness of DESC in the presence 107 
of this complex batch effect, we analyzed scRNA-seq data obtained from seven human kidneys 108 
(Supplementary Note 4). This dataset includes 8,544 cells, derived from four healthy kidneys, 109 
generated by us using 10X, and 7,149 cells obtained from the normal part of kidneys in three 110 
patients with kidney tumor13, also generated by 10X, but in a different lab. Figs. 3a and b show 111 
that DESC removed batch effect, with the seven biological samples and the two different datasets 112 
randomly mixed. The KL-divergence is lower for DESC than for CCA and MNN (Fig. 3d), 113 
indicating that DESC is more effective in removing batch effect both at the subject level and 114 
dataset level. 115 
 116 
The kidneys and the immune system are closely linked. It has been shown that the accumulation 117 
of natural killer (NK) cells promotes chronic kidney inflammation and contributes to kidney 118 
fibrosis14. T cells, which have a well-described role in renal injury, are involved in renal fibrosis15. 119 
Previous studies have shown that NK cells play a role in the regulation of the adaptive immune 120 
response and stimulate or inhibit T cell responses16. Better understanding of how different 121 
components of the immune system mediate kidney disease requires a clear separation of NK and 122 
T cells. Fig. 3c and Supplementary Fig. 8 show that both DESC and MNN identified T cells and 123 
NK cells as separate clusters; however, CCA mixed some of the NK cells with T cells, possibly 124 
due to overcorrection of true biological variations. These results indicate that DESC not only 125 
removed technical batch effect more effectively than CCA and MNN, but also maintained true 126 
biological variations among closely related immune cells. 127 
  128 
To further demonstrate that DESC preserves true biological variations, we considered an even 129 
more complex situation in which technical batches were completely confounded with biological 130 
variations. This is inevitable in disease studies where tissues are processed immediately to 131 
maintain cell viability resulting in the preparation of normal and diseased samples in different 132 
batches. For data generated in such complex settings, it is desirable to remove technical batch 133 
effect while maintaining true biological variations between normal and diseased samples so that 134 
disease specific subpopulations can be identified. We analyzed a dataset generated by 10X that 135 
includes 24,679 human PBMCs from eight patients with lupus17 (Supplementary Note 5). The 136 
cells were split into a control group and a matched group stimulated with INF-β, which leads to a 137 
drastic but highly cell type-specific response. This dataset is extremely challenging because 138 
removal of technical batch effect is complicated by the presence of biological differences, both 139 
between cell types under the same condition and between different conditions.  140 
 141 
Fig. 3c shows that DESC randomly mixed cells between the control and the stimulus conditions 142 
for all cell types except CD14+ monocytes. Differential expression (DE) analysis revealed a drastic 143 
change in gene expression after INF-β stimulation for CD14+ monocytes (Fig. 3d); the number of 144 
DE genes and the magnitude of DE, measured by p-value and fold-change, are several orders 145 
more pronounced than the other cell types. This is consistent with previous studies showing 146 
CD14+ monocytes with a more drastic gene expression change than B cells, dendritic cells, and 147 
T cells after INF-β stimulation18, 19. These results suggest that DESC is able to remove technical 148 
batch effect and maintain true biological variations induced by INF-β. MNN also preserved the 149 
biological difference between the control and the INF-β stimulated CD14+ monocytes, but the NK 150 
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cells are less well separated from CD8 T cells (Supplementary Fig. 15a). CCA masked the 151 
biological difference between the control and the INF-β stimulated CD14+ monocytes indicating 152 
that it might have overcorrected batch effect (Supplementary Fig. 15a).  153 
 154 
In summary, we have developed a deep learning algorithm that clusters scRNA-seq data by 155 
iteratively optimizing a clustering objective function with a self-training target distribution. DESC’s 156 
memory usage and running time increase linearly with the number of cells, thus making it scalable 157 
to large datasets (Fig. 3e). DESC can further speed up computation by GPUs. We analyzed a 158 
mouse brain dataset with 1.3 million cells generated by 10X, which only took about 3.5 hours with 159 
one NVIDIA TITAN Xp GPU (Supplementary Note 6). Compared to existing scRNA-seq 160 
clustering methods DESC improves clustering by iteratively learning cluster-specific gene 161 
expression features from cells clustered with high confidence. This iterative clustering also 162 
removes batch effect and maintains true biological differences between clusters. As the growth 163 
of single-cell studies increases, DESC will be a more precise tool for clustering of large datasets. 164 
 165 
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FIGURE LEGENDS 226 
 227 
Figure 1 (a) Overview of the DESC framework. DESC starts with parameter initialization in which 228 
a stacked autoencoder is used for pretraining and learning a low-dimensional representation of 229 
the input gene expression matrix. The resulting encoder is then added to the iterative clustering 230 
neural network to cluster cells iteratively. The final output of DESC includes cluster assignment, 231 
the corresponding probabilities for cluster assignment for each cell, and the low-dimensional 232 
representation of the data. (b) Analysis of the single-cell data generated from midbrain in 233 
Drosophila. DESC not only identified the three types of Kenyon cells, which are detectable by the 234 
Louvain’s method, but also identified cholinergic, glutamatergic, and GABAergic neurons, which 235 
are harder-to-separate by the Louvain’s method reported in the original paper. 236 
 237 
Figure 2 (a) Clustering of the mouse retina bipolar cells by different methods. The cells are 238 
colored by replication IDs. Cells from six replicates were processed in two different batches 239 
(Bipolar1-Bipolar4 are replicates from batch1, and Bipolar5-6 are replicates from batch 2). (b) KL-240 
divergence for measuring of batch mixing of different methods. (c) Batch effect mixing is improved 241 
over iterations in DESC. (d) KL-divergence decreases over iterations in DESC, indicating that 242 
batch effect removal is improved over iterations. 243 
 244 
Figure 3 (a) DESC clustering of the human kidney data. Cell types were determined based on 245 
known marker genes. Endo_AVR: Endothelial Ascending Vasa Recta; Endo_DVR: Endothelial 246 
Descending Vasa Recta; CD-IC: Collecting Duct Intercalated Cell; NK: Natural Killer; PT: 247 
Proximal Tubule. (b) KL-divergence for measuring batch mixing of different methods for the 248 
human kidney data. (c) DESC clustering of the PBMC data. Cell types were based on 249 
assignment reported in the original paper. (d) Volcano plot of differential expression analysis 250 
between control and stimulus conditions for each cell type. Highlighted are genes with FDR 251 
adjusted p-value<10-50. CD14+ monocytes has the most number of differentially expressed 252 
genes compared to the other cell types. (e) Comparison of memory usage and running time of 253 
each method for datasets with various numbers of cells, where the cells were randomly sampled 254 
from the 1.3 million mouse brain dataset.  255 
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ONLINE METHODS 256 
 257 
The DESC algorithm. Analysis of scRNA-seq data often involves clustering of cells into different 258 
clusters and selection of highly variable genes for cell clustering. As these are closely related, it 259 
is desirable to use a data driven approach to cluster cells and select genes simultaneously. This 260 
problem shares similarity with pattern recognition, in which clear gains have resulted from joint 261 
consideration of the classification and feature selection problems by deep learning. However, for 262 
scRNA-seq data, a challenge is that we cannot train deep neural network with labeled data as 263 
cell type labels are typically unknown. To solve this problem, we take inspiration from recent work 264 
on unsupervised deep embedding for clustering analysis20, in which we iteratively refine clusters 265 
with an auxiliary target distribution derived from the current soft cluster assignment. This process 266 
gradually improves clustering as well as feature representation.  267 
 268 
Overview of DESC. The DESC procedure starts with parameter initialization, in which a stacked 269 
autoencoder is used for pretraining and learning low-dimensional representation of the input gene 270 
expression matrix.  The corresponding encoder is then added to the iterative clustering neural 271 
network. The cluster centers are initialized by the Louvain’s clustering algorithm5, which aims to 272 
optimize modularity for community detection. This clustering returns data in a feature space that 273 
allows us to obtain centroids in the initial stage of the iterative clustering. Below, we describe each 274 
component of the DESC procedure in detail.  275 
 276 
Parameter initialization by stacked autoencoder. Let 𝑋 ∈ 𝑅𝑛×𝑝be the gene expression matrix 277 
obtained from a scRNA-seq experiment, in which rows correspond to cells and columns 278 
correspond to genes. Due to sparsity and high-dimensionality of scRNA-seq data, to perform 279 
clustering, it is necessary to transform the data from high dimensional space 𝑅𝑝 to a lower 280 
dimensional space 𝑅𝑑  in which 𝑑 ≪ 𝑝 . Traditional dimension-reduction techniques such as 281 
principal component analysis, operate on a shallow linear embedded space, and thus have limited 282 
ability to represent the data. To better represent the data, we perform feature transformation by a 283 
stacked autoencoder, which have been shown to produce well-separated representations on real 284 
datasets. 285 
 286 
The stacked autoencoder network is initialized layer by layer with each layer being an 287 
autoencoder trained to reconstruct the previous layer’s output. After greedy layer-wise training, 288 
all encoder layers are concatenated, followed by all decoder layers, in reverse layer-wise training 289 
order. The resulting autoencoder is then fine-tuned to minimize reconstruction loss. The final 290 
result is a multilayer autoencoder with a bottleneck layer in the middle. After fine tuning, the 291 
decoder layers are discarded, and the encoder layers are used as the initial mapping between 292 
the original data space and the dimension-reduced feature space, as shown in Fig. 1a.  293 
 294 
Since the number of true clusters for a scRNA-seq dataset is typically unknown, we apply the 295 
Louvain’s method, a graph-based method that has been shown to excel over other clustering 296 
methods, on the feature space 𝑍 obtained from the bottleneck layer. This analysis returns the 297 
number of clusters, denoted by 𝐾, and the corresponding cluster centroids {𝜇𝑗: 𝑗 = 1, … , 𝐾}, 298 
which will be used as the initial clustering for DESC.  299 
 300 
Iterative clustering. After cluster initialization, we improve the clustering using an unsupervised 301 
algorithm that alternates between two steps until convergence. In the first step, we compute a soft 302 
assignment of each cell between the embedded points and the cluster centroids. Following van 303 
der Maaten & Hinton21, we use the Student’s 𝑡-distribution as a kernel to measure the similarity 304 
between embedded point 𝑧𝑖 for cell 𝑖 and centroid 𝜇𝑗 for cluster 𝑗,  305 
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 308 
where 𝑧𝑖 = 𝑓𝑊(𝑥𝑖) ∈ 𝑍 corresponds to 𝑥𝑖 ∈ 𝑋 after embedding, 𝛼 is the degree of freedom of the 309 
Student’s 𝑡-distribution. 310 
 311 
In the second step, we refine the clusters by learning from cells with high confidence cluster 312 
assignments with the help of an auxiliary target distribution. Specifically, we define the objective 313 
function as a Kullback-Leibler (KL) divergence loss between the soft cell assignments 𝑞𝑖 and the 314 
auxiliary distribution 𝑝𝑖 for cell 𝑖 as 315 
  316 

𝐿 = 𝐾𝐿(𝑃 ∥ 𝑄) = ∑ ∑ 𝑝𝑖𝑗𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗

𝐾
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𝑛
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 317 

 318 
where the auxiliary distribution 𝑃 is defined as 319 
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 320 

 321 
The encoder is fine-tuned by minimizing 𝐿. The above definition of the auxiliary distribution 𝑃 can 322 
improve cluster purity by putting more emphasis on cells assigned with high confidence. Given 323 
that the target distribution 𝑃 is defined by 𝑄, minimizing L implies a form of self-training. Also, 𝑝𝑖𝑗 324 

gives the probability of cell 𝑖 that belongs to cluster 𝑗, and this probability can be used to measure 325 
the confidence of cluster assignment for each cell. Because 𝛼 is insensitive to the clustering result, 326 
we let 𝛼 = 1 for all datasets by default.  327 
 328 
Optimization of the KL divergence loss. We jointly optimize the cluster centers {𝜇𝑗: 𝑗 = 1, … , 𝐾} 329 
and the deep neural network parameters using stochastic gradient descent. The gradients of L 330 
with respect to feature space embedding of each data point 𝑧𝑖 and each cluster center 𝜇𝑗 are 331 

𝜕𝐿

𝜕𝑧𝑖
=

𝛼 + 1

𝛼
∑ (1 +

‖𝑧𝑖 − 𝜇𝑗‖
2

𝛼
)

−1

× (𝑝𝑖𝑗 − 𝑞𝑖𝑗)

𝐾

𝑗=1

(𝑧𝑖 − 𝜇𝑗) 332 

𝜕𝐿

𝜕𝜇𝑗
=

−(𝛼 + 1)

𝛼
∑ (1 +

‖𝑧𝑖 − 𝜇𝑗‖
2

𝛼
)

−1

× (𝑝𝑖𝑗 − 𝑞𝑖𝑗)

𝑛
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(𝑧𝑖 − 𝜇𝑗) 333 

 334 
These gradients are then passed down to the deep neural network and used in standard 335 
backpropagation to compute the deep neural network’s parameter gradient. We use Keras to train 336 
our model. During each iteration i.e. when loss is not decreasing or the epoch number threshold 337 
is reached, we update the auxiliary distribution 𝑃, and optimize cluster centers and encoder 338 
parameters with the new 𝑃. This iterative procedure is stopped when less than 𝑡𝑜𝑙% of cells 339 
change cluster assignment between two consecutive iterations. We let 𝑡𝑜𝑙 = 0.5 by default.  340 
 341 
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Architecture of the deep neural network in DESC. Depending on the number of cells in the dataset, 342 
we suggest different numbers of hidden layers and different numbers of nodes in the encoder. 343 
Supplementary Table 2 gives the default numbers of hidden layers and nodes in DESC. 344 
 345 
DESC allows users to specify their own numbers of hidden layers and nodes. We recommend 346 
using more hidden layers and more nodes per layer for datasets with more cells so that the 347 
complexity of the data can be captured by the deep neural network. We use ReLU as the 348 
activation function except for the last hidden layer and last decoder layer, in which tanh is used 349 
as the activation function. The reason why we use tanh is that we must guarantee the values in 350 
feature representation and output of decoder range from negative to positive. The default 351 
hyperparameters for the autoencoder are listed in Supplementary Table 3. 352 
 353 
Data normalization and gene selection. The normalization involves two steps. In the first step, 354 
cell level normalization is performed, in which the UMI count for each gene in each cell is divided 355 
by the total number of UMIs in the cell, and then transformed to a natural log scale. In the second 356 
step, gene level normalization is performed in which the cell level normalized values for each 357 
gene are standardized by subtracting the mean across all cells and divided by the standard 358 
deviation across all cells for the given gene. Highly variable genes are selected using the 359 
filter_genes_dispersion function from the Scanpy package22 (https://github.com/theislab/scanpy).  360 
 361 
Evaluation metric for clustering. For published datasets in which the reference cell type labels 362 
are known, we use ARI to compare the performance of different clustering algorithms. Larger 363 
values of ARI indicate higher accuracy in clustering. The ARI can be used to calculate similarity 364 
between the clustering labels obtained from a clustering algorithm and the reference cluster labels. 365 
Given a set of 𝑛 cells and two sets of clustering labels of these cells, the overlap between the two 366 
sets of clustering labels can be summarized in a contingency table, in which each entry denotes 367 
the number of cells in common between the two sets of clustering labels. Specifically, the ARI is 368 
calculated as 369 
 370 

𝐴𝑅𝐼 =
∑ (

𝑛𝑗𝑗′

2
) − [∑ (

𝑎𝑗

2
) ∑ (

𝑏𝑗′

2
)𝑗′𝑗 ] (

𝑛𝑗𝑗′

2
)⁄𝑗𝑗′

1
2 [∑ (

𝑎𝑗

2
) + ∑ (

𝑏𝑗′

2
)𝑗′𝑗 ] − [∑ (

𝑎𝑗

2
) ∑ (

𝑏𝑗′

2
)𝑗′𝑗 ] (

𝑛𝑗𝑗′

2
)⁄
 371 

  372 
where 𝑛𝑗𝑗′ is the number of cells assigned to cluster 𝑗 based on the reference cluster labels, and 373 

cluster 𝑗′ based on clustering labels obtained from a clustering algorithm, 𝑎𝑗 is the number of cells 374 

assigned to cluster 𝑗 in the reference set, and 𝑏𝑗′ is the number of cells assigned to cluster 𝑗′ by 375 
the clustering algorithm. 376 
 377 
Evaluation metric for batch effect removal. We use KL-divergence to evaluate the performance 378 
of various single-cell clustering algorithms for batch effect removal i.e., how randomly are cells 379 
from different batches mixed together within each cluster. The KL-divergence of batch mixing for 380 
𝐵 different batches is calculated as 381 
 382 

𝐾𝐿 = ∑ 𝑝𝑏𝑙𝑜𝑔
𝑝𝑏

𝑞𝑏

𝐵

𝑏=1

 383 

 384 
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where 𝑞𝑏 is the proportion of cells from batch 𝑏 among all cells, and 𝑝𝑏 is the proportion of cells 385 
from batch 𝑏 in a given region based on results from a clustering algorithm, with ∑ 𝑞𝑏

𝐵
𝑏=1 = 1 and 386 

∑ 𝑝𝑏
𝐵
𝑏=1 = 1. We calculate the KL divergence of batch mixing on the first two components of the 387 

t-SNE coordinates, by using regional mixing KL divergence defined above at the location of 100 388 
randomly chosen cells from all batches. The regional proportion of cells from each batch is 389 
calculated based on the set of 120 nearest neighboring cells from each randomly chosen cell. 390 
The final KL divergence is then calculated as the average of the regional KL divergence. We 391 
repeated this procedure for 500 iterations with different randomly chosen cells to generate box 392 
plots of the final KL divergence. Smaller final KL divergence indicates better batch mixing i.e., 393 
more effective in batch effect removal. 394 
 395 
Datasets. We analyzed multiple scRNA-seq datasets. Publicly available data were acquired from 396 
the access numbers provided by the original publications. The human kidney dataset generated 397 
by us is available in Supplementary Data. 398 
 399 
Benchmarking dataset. The Genotype-Tissue Expression (GTEx) v7 dataset10 was downloaded 400 
from the GTEx data portal (https://gtexportal.org/home/datasets). This dataset includes 11,688 401 
human RNA-seq samples from 30 tissues. Because the tissue origin is known, we treat this 402 
dataset as the benchmarking dataset in which the tissue origin is used as the true cluster label.  403 
 404 
Drosohpila dataset. The data were generated by Croset et al.11 in which 10,286 cells were 405 
generated using Drop-seq from the midbrain of drosophila. 406 
 407 
Mouse retina dataset. The data were generated by Shekhar et al.12 in which 23,494 bipolar cells 408 
were generated using Drop-seq from retinas of six mice processed in two experimental batches. 409 
This dataset allows us to examine batch effect at the subject level. 410 
 411 
Human kidney datasets. The first set of data was generated by us using 10X. This dataset 412 
includes 8,544 cells from kidneys in four healthy human subjects. The second set of data was 413 
generated by Young et al.13, also using 10X. This dataset includes 7,149 cells from the normal 414 
part of the kidneys in three human subjects that have kidney tumors. These two datasets were 415 
combined in our analysis, which allow us to examine batch effect, both at the subject level and at 416 
the dataset level. 417 
 418 
Human PBMC dataset. The data were generated by Kang et al.17 in which 24,679 PBMC cells 419 
were obtained and processed from eight patients with lupus using 10X. These cells were split into 420 
two groups: one stimulated with interferon-beta (INF-β) and a culture-matched control. This 421 
dataset allows us to examine whether technical batch effect can be removed in the presence of 422 
true biological variations. 423 
 424 
1.3 million brain cells from E18 mice. This dataset was downloaded from the 10X Genomics 425 
website (https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M 426 
neurons). It includes 1,306,127 cells from cortex, hippocampus and subventricular zone of two 427 
E18 C57BL/6 mice.  428 
   429 
A complete list of the datasets analyzed in this paper is provided in Supplementary Table 1. 430 
 431 
Software availability. An open-source implementation of the DESC algorithm can be 432 
downloaded from https://eleozzr.github.io/desc/. 433 
 434 
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