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Abstract

An important but rarely discussed phenomenon in single cell data generated by the 10X-
Chromium protocol is that the fraction of non-exonic reads is very high. This number usually
exceeds 30% of the total reads. Without aligning them to a complete genome reference, non-
exonic reads can be erroneously aligned to the transcriptome reference with higher error rates.
To tackle this problem, Cell Ranger chooses to firstly align reads against the whole genome,
and at a later step, uses a genome annotation to select reads that align to the transcriptome.
Despite its high running time and large memory consumption, Cell Ranger remains the most
widely used tool to quantify 10XGenomics single cell RNA-Seq data for its accuracy.

In this work, we introduce Hera-T, a fast and accurate tool for estimating gene abundances
in single cell data generated by the 10X-Chromium protocol. By devising a new strategy for
aligning reads to both transcriptome and genome references, Hera-T reduces both running time
and memory consumption from 10 to 100 folds while giving similar results compared to Cell
Ranger’s. Hera-T also addresses some difficult splicing alignment scenarios that Cell Ranger
fails to address, and therefore, obtains better accuracy compared to Cell Ranger. Excluding
the reads in those scenarios, Hera-T and Cell Ranger results have correlation scores > 0.99.

For a single-cell data set with 49 million of reads, Cell Ranger took 3 hours (179 minutes)
while Hera-T took 1.75 minutes; for another single-cell data set with 784 millions of reads,
Cell Ranger took about 25 hours while Hera-T took 32 minutes. For those data sets, Cell
Ranger completely used all 32 GB of memory while Hera-T consumed at most 8 GB. Hera-T
package is available for download at: https://bioturing.com/product/hera-t

1 Introduction

In recent years, the emergence of single cell RNA sequencing technologies has allowed scientists to
measure gene expression profile of thousands of individual cells simultaneously. The number of cells
in each sequencing run has increased rapidly thanks to the invention of droplet-based protocols.
In 10X-Chromium 3’ [1] protocol version 2, each transcript molecule is tagged with a 16-base-pair
(bp) cellular barcode, and a 10-bp unique molecular identifier (UMI). Transcript molecules from
the same cell are tagged with the same cellular barcode. UMIs are randomly generated, therefore
different molecules from the same transcript within a cell have a very low chance of sharing the
same UMI. This allows us to directly count the number of transcript molecules without PCR biases.

According to 10XGenomics specification [2], Cell Ranger uses STAR [3], a splicing-aware aligner,
to align all reads against a reference genome and to get the best mapping loci for each read. Cell
Ranger then uses a genome annotation to pick out reads that can be aligned to the transcriptome
and discard the remaining reads.
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Specifically, Cell Ranger uses the genome annotation GTF to bucket reads into exonic, intronic,
and intergenic. A read is exonic if at least 50% of it intersects an exon, intronic if it is non-exonic
and intersects an intron, and intergenic otherwise. Cell Ranger further aligns exonic reads against
annotated transcripts, looking for compatibility. A read that is compatible with exons of an anno-
tated transcript, and aligned with correct orientation, is considered mapped to the transcriptome.
If the read is compatible with a single gene annotation, it is considered uniquely (confidently)
mapped to the transcriptome. Only reads that are confidently mapped to the transcriptome are
used for UMI counting [2].

While the description of Cell Ranger algorithm is highly reasonable, by analyzing its code and
results, we identified the following limitations in its aligning procedure. Specifically, Cell Ranger
(STAR) fails to correctly align reads in cases listed below:

• Reads that span across small exons: When reads span across multiple exons, they
scatter into multiple fragments in the genome coordinate. We observe that when one of these
fragments (exons) is small, Cell Ranger fails to detect correct alignments. As Cell Ranger
(STAR aligner) maps reads to the genome using k-mers for seed identifications, it cannot
detect seeds in small regions of the genome (corresponding to small exons). For these reads,
Cell Ranger usually either fails to map, or maps them to another locus on the genome with a
lower alignment score or cannot detect the exon splicing (reads aligned across exon boundary
into intronic regions instead of skipping the intronic region) (Figure 1).

• Splicing appears near read terminal: Similar to the short exon case, when splicing
positions are near a read terminal, the end fragment of the read cannot be hit by a seed. We
observe that Cell Ranger also fails to align in this scenario and usually extends the alignment
into the adjacent intron (Figure 2).

• Errors (or SNPs) in reads conceal the correct anchor exons: When mapping tran-
scriptomic reads against a reference genome, SNPs or errors in reads can make it difficult
to find the anchor seeds of reads on exons, especially short exons. This leads to incorrect
alignment.

• Incomplete report for equally aligned loci: While using Cell Ranger on several data
sets, we found some strange cases where reads that map perfectly to multiple positions on
the genome (and also perfectly to the transcript sequences at these locations) are reported
only once by Cell Ranger. This is a bug in the alignment tool (STAR) that Cell Ranger uses
and we have filed a bug report to the authors of STAR aligner.

For example, in the 10X Chromium data set of 2k Brain Cells from an E18 Mouse [4], a read
with ID @ST-K00126:491:HMV7GBBXX:2:2201:29812:36376 can be perfectly aligned to the
following positions:

Chr Position Cigar Gene
7 30484775 98M None
7 56014243 98M None
8 123206850 98M None
19 59322598 98M ENSMUSG00000067038
10 23785587 91M224N7M ENSMUSG00000061983

Yet Cell Ranger reports just one position.

Chr Position Cigar Gene
10 23785587 91M224N7M ENSMUSG00000061983
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Figure 1: When a read spans across multiple exons, it is spliced
into small fragments, making it difficult to align correctly on the
genome coordinate.

Figure 2: Splicing appears
near a read terminal.

These incorrect alignment scenarios lead to the incorrect removal or selection of those reads in
the Cell Ranger read selection procedure.

We introduce Hera-T, a new single-cell RNA-seq quantification algorithm for 10x-Chromium
data. With many careful software engineering optimizations, Hera-T is 10 to 100 times faster
than Cell Ranger, while consuming just a small memory footprint (smaller than 8 GB) for all
benchmarked data sets.

Ignoring the difficult alignment cases that Cell Ranger failed to address, Hera-T and Cell
Ranger produce almost identical results with the Spearman correlations larger than 0.99. As Hera-
T handles these difficult alignment scenarios correctly, we argue that it’s even more accurate than
Cell Ranger.

For a single-cell data set with 49 million of reads, Cell Ranger took 3 hours (179 minutes) while
Hera-T took 1.75 minutes; for another single-cell data set with 784 millions of reads, Cell Ranger
took about 25 hours while Hera-T took 32 minutes. For those data sets, Cell Ranger completely
used all 32 GB of memory while Hera-T consumed at most 8 GB.

2 Results

We benchmarked Hera-T against Cell Ranger [5] on 10X-genomics public single-cell data [6].
The code for reproducing the benchmarks is available at: https://github.com/bioturing/Hera-
T-Benchmark. By the time we were finalizing this manuscript, Cell Ranger team released Cell
Ranger 3. Therefore, we divided benchmark data into two groups:

• v2 chemistry: including 4 human and 7 mouse data sets.

• v3 chemistry: including 2 human and 4 mouse data sets.

To be consistent with the 10X-genomics public results, we ran Cell Ranger version 2.1.0 on v2
chemistry data sets and version 3.0.0 on v3 chemistry data sets. We benchmarked on a system
with 56-core CPU and 32GB memory. Table 1 describes the running time and memory usage. As
expected, there is an improvement in the performance of the new version vs the old version of Cell
Ranger. For v2 chemistry data set, Hera-T is 50-100 times faster than Cell Ranger. While this
number is about 10-48 times in v3 chemistry data set.

We use the following procedure to calculate the correlations between Cell Ranger and Hera-T
results in order to assess their similarity.

• We get the set of shared barcodes reported by both tool (defined as set W ).

• For each shared barcode, we filter out genes that have fewer than 2 UMI count in both tools
(the set of remaining genes of jth barcode is defined as Gj).
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• We compute the Spearman, Pearson, and expressed mean absolute relative difference (eMARD)
scores between two vectors of UMI count (x and y). The eMARD score is calculated as equa-
tion 1 [7].

eMARD =
1

|W |

|W |∑
j=1

eMARDj , where eMARDj =
1

|Gj |

|Gj |∑
i=1

|xi − yi|
xi + yi

(1)

• Finally, we compare the mean and median scores of all shared barcodes between the two
tools

Table 1: Memory and running time of Hera-T vs. Cell Ranger.

Dataset
Number of

reads
Running time (minutes) Used memory (GB)
HeraT Cell Ranger HeraT Cell Ranger

v2
ch
em

is
tr
y

neuron_9k 383366284 24.78 1058.33 7.29 32
neurons_900 52805264 1.83 177.78 5.93 32
nuclei_900 48909315 1.75 179.98 5.93 32
nuclei_2k 118742315 4.22 200.77 5.78 32
neurons_2000 147010995 5.23 344.12 5.93 32
fixed_neurons_2000 182420430 4.90 399.42 6.20 32
fixed_neurons_6days_2000 205004798 12.62 420.22 6.09 32
pbmc4k 379462522 14.77 751.83 7.46 32
pbmc8k 784064148 32.77 1491.67 7.86 32
t_3k 361179337 14.90 234.83 7.41 32
t_4k 335198537 14.10 682.88 7.46 32

v3
ch
em

is
tr
y

pbmc_1k_v3 66601887 5.10 64.85 7.29 32
pbmc_10k_v3 638901019 51.35 329.98 9.23 32
neuron_1k_v3 92902231 5.33 70.28 6.38 32
neuron_10k_v3 357111595 18.52 211.32 8.09 32
heart_1k_v3 84512390 3.83 62.78 6.37 32
heart_10k_v3 290439571 11.13 172.73 7.93 32

Table 2 presents the correlation scores between Hera-T and Cell Ranger results.

Table 2: Correlation scores between Hera-T and Cell Ranger results

Dataset
Spearman Pearson eMARD

Mean Median Mean Median Mean Median

v2 chemistry

neuron_9k 0.929576 0.933237 0.987605 0.988771 0.035957 0.034029
neurons_900 0.933719 0.934995 0.986622 0.988992 0.038451 0.036891
nuclei_900 0.922622 0.924616 0.984734 0.986303 0.042077 0.039727
nuclei_2k 0.769741 0.755276 0.994046 0.996602 0.086693 0.087956
neurons_2000 0.919407 0.925676 0.993334 0.994163 0.050205 0.047587
fixed_neurons_2000 0.921406 0.92555 0.990406 0.991377 0.050516 0.04905
fixed_neurons_6days_2000 0.911156 0.914602 0.984244 0.985598 0.061773 0.060617
pbmc4k 0.972385 0.973166 0.999016 0.999438 0.028052 0.027688
pbmc8k 0.968846 0.969988 0.999111 0.999388 0.029999 0.02961
t_3k 0.950823 0.952669 0.99806 0.99887 0.045731 0.045149
t_4k 0.961283 0.963006 0.998421 0.999078 0.037364 0.036704

v3 chemistry

pbmc_1k_v3 0.957775 0.962337 0.997647 0.999564 0.027869 0.025561
pbmc_10k_v3 0.958123 0.960261 0.999319 0.999525 0.02869 0.027597
neuron_1k_v3 0.955488 0.960985 0.994746 0.997093 0.022383 0.020621
neuron_10k_v3 0.960629 0.963373 0.996117 0.996949 0.020031 0.01889
heart_1k_v3 0.951225 0.962044 0.989389 0.993401 0.027405 0.023482
heart_10k_v3 0.945173 0.958361 0.99146 0.992477 0.028488 0.023962

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 26, 2019. ; https://doi.org/10.1101/530501doi: bioRxiv preprint 

https://doi.org/10.1101/530501


As mentioned above, Cell Ranger failed to align reads in some cases. We further removed
those challenging reads together with reads having low alignment scores from the input data and
re-benchmarked Hera-T vs. Cell Ranger. Specifically, we removed:

• Complicated spliced reads that Cell Ranger fails to map correctly. We identify those reads
by comparing the alignments produced by Cell Ranger and bowtie2 on the transcriptome
reference. When bowtie2 produces better alignment score compared to Cell Ranger, we
consider that the read fails to be mapped by Cell Ranger.

• Reads can be mapped on multiple loci with equal alignment score but Cell Ranger only
reports one of those.

• Reads with high error rates.

Table 3: Correlation scores between Hera-T and Cell Ranger results after removing challenging reads

Dataset
Spearman Pearson eMARD

Mean Median Mean Median Mean Median

neuron_9k 0.9899 0.9907 0.9993 0.9995 0.0066 0.0066
neurons_900 0.9909 0.9914 0.9994 0.9996 0.0073 0.0072
nuclei_900 0.9890 0.9903 0.9992 0.9995 0.0084 0.0083
nuclei_2k 0.9687 0.9744 0.9989 0.9995 0.0118 0.0109
neurons_2000 0.9830 0.9841 0.9993 0.9994 0.0118 0.0117
fixed_neurons_2000 0.9787 0.9795 0.9989 0.9990 0.0154 0.0154
fixed_neurons_6days_2000 0.9792 0.9806 0.9980 0.9984 0.0147 0.0148
pbmc4k 0.9898 0.9905 0.9997 0.9998 0.0102 0.0101
pbmc8k 0.9900 0.9905 0.9997 0.9998 0.0092 0.0091
t_3k 0.9897 0.9904 0.9997 0.9997 0.0118 0.0117
t_4k 0.9913 0.9920 0.9997 0.9998 0.0105 0.0103

fixed_neurons_2000

fixed_neurons_6days_2000

neuron_9k

neurons_2000

neurons_900

nuclei_2k

nuclei_900

pbmc4k

pbmc8k

t_3k
t_4k

0

0.2

0.4

0.6

0.8

1

Spearman

Pearson

EMard

Figure 3: The distribution of Spearman, Pearson correlation scores, and eMard between Hera-T and Cell
Ranger.

As a result, the two tools have almost identical results (Spearman and Pearson correlation are
approximately 0.99). The results are presented in Table 3 and Figure 3. We also performed t-SNE
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Figure 4: The t-SNE plots of Cell Ranger, Hera-T and Alevin results on v2 chemistry data. Cell Ranger
and Hera-T plots are very similar, while Alevin’s plots are drastically different

to visualize these data, and included Alevin results into the picture (Fig. 5, 6). While the t-SNE
plots of Hera-T and Cell Ranger results are almost identical, the plots from Alevin results are very
different. The difference of Alevin can be tracked to two reasons. The first is that Alevin does not
use genome reference for alignment, but only uses the transcriptome reference (for performance).
The second source of the difference can be the way Alevin handles reads that map to mulitple
locations, which is different from Cell Ranger and Hera-T.
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Figure 5: The t-SNE plots of Cell Ranger, Hera-T and Alevin results on v3 chemistry data. Cell Ranger
and Hera-T plots are very similar, while Alevin’s plots are drastically different
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