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Identifying chromatin domains (CDs) from Hi-C data is
currently a central problem in genome research. Here we
present Multi-CD (https://github.com/multi-cd), a unified
method to discover CDs at various genomic scales. Multi-CD
integrates approaches from polymer physics, financial market
fluctuation analysis, and Bayesian inference, and identifies
multi-scale structures of CDs by clustering a global pattern
manifested on a polymer-network-based cross-correlation
matrix. The CD solutions from Multi-CD, validated against
biological data as well as compared with the pattern of
original Hi-C, demonstrate superiority over those from
existing methods. The hierarchy quantified between four
major families of CDs reveals the basic principles of
chromatin organization: (i) Sub-TADs, TADs, and meta-TADs
constitute a robust hierarchical structure. (ii) The assemblies
of compartments and TAD-based domains are governed by
distinct organizational principles. (iii) Sub-TADs are the
common building blocks of chromosome architecture. The
results from our unified algorithm not only provide general
insight of chromatin organization, but also offer quantitative
account for its cell-type-dependence and function.

Chromosome conformation capture (3C) and its derivatives,
which are used to identify chromatin contacts through the proximity
ligation techniques [1, 2], take center stage in studying the organi-
zation and function of chromosomes [3, 4]. It is particularly clear
from the genome-wide interaction profiles of Hi-C data that details
of chromosome architecture not only vary with cell type but also
with the transcription activity and the phase of cell cycle, underscor-
ing the functional roles of chromosome structure in gene expression
and regulation [5–13]. Since pathological states of chromatin are
also manifested in Hi-C [14, 15], accurate characterization of chro-
matin domains (CDs) from Hi-C data is of utmost importance.

Before discussing our new method and algorithm, we give a brief
overview of the current knowledge on scale-dependent organization
of chromatin [6, 16–21]. Chromosomes packaged inside the nu-
cleus are first segregated into their own territories (Fig. 1a) [18]. At
the scale of & O(10) Mb, alternating blocks of active and inactive
chromatin are phase-separated into two main compartments con-
stituted by crisscrossed interfacial interactions between megabase
sized aggregates, called A- and B-compartments [16, 17, 20, 22]
(Fig. 1b). Inter-chromosomal contact patterns based on high resolu-
tion Hi-C (5 kb [23], 25 kb [17]) have suggested more detailed clas-
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Figure 1: The hierarchical organization of interphase chromo-
some and Hi-C maps at the corresponding scale. (a) Chro-
mosome territories in the cell nucleus, which are reflected as the
higher intra-chromosomal counts in the Hi-C map. (b) Alternating
blocks of active and inactive chromatins, segregated into A- and B-
compartments, give rise to the checkerboard pattern on Hi-C. (c)
Sub-megabase to megabase sized chromatin folds into TADs. Ad-
jacent TADs are merged to meta-TAD, whereas individual TAD is
further decomposed into sub-TADs.

sification of the compartments into at least six sub-compartments,
A1, A2, B1, B2, B3 and B4, which were shown to be in good
agreement with the finer details of epigenetic markers. Topologi-
cally associated domains (TADs) emerge at ∼ O(102) kb [24–27].
The TADs, whose domain boundaries are well conserved across
cell/tissue types, are the basic functional unit of chromatin orga-
nization and gene regulation [18–21]. It was suggested that the
proximal TADs in genomic neighborhood merge into a higher-order
structural domain termed “meta-TAD” [6]. Conversely, at smaller
genomic scale, each TAD is split into sub-structures called sub-
TADs that display more localized contacts [17, 28–31] (Fig. 1c).
It has recently been suggested that TADs and compartments are
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shaped by two distinct mechanisms [32–35]; yet, more quantitative
and direct evidence from Hi-C would lend support on such hypoth-
esis.

Several different algorithms have been put forward for identify-
ing the above-mentioned CDs from Hi-C [16, 17, 24]. However,
these algorithms are optimized for differently formatted Hi-C data
aiming at identifying CDs at a particular genomic scale [21, 24, 36],
not developed for CD identification encompassing multiple ge-
nomic scales. Furthermore, to apply these algorithms, Hi-C data
has to be reformatted to the scale of the target domains. Hi-C data
preprocessing and algorithm adopted by these methods are based
primarily on local pattern recognition analyses [16, 17, 24, 37],
where the most critical physical constraint that chromosome is a
long polymer folded into 3D structure is not taken into account
[6, 38–43].

Here, we interpret Hi-C data as an outcome of the pairwise con-
tact probability of polymer network with multiple crosslinks, and
use the corresponding cross-correlation matrix as the sole input data
for the CD identification algorithm at varying genomic scale (Multi-
CD). The algorithm includes a tuning parameter which enables us
to control the average domain size. We demonstrate the utility of
Multi-CD by applying it to Hi-C data from various cell lines as
well as to that of a particular cell line over multiple genomic scales.
When the results are compared with the original pattern of Hi-C,
the CD structures better match with the original Hi-C pattern than
those determined from other methods. CD structures identified at
multiple genomic scales are consistent with information from bio-
markers. This study will show that amid the rapidly expanding vol-
ume of Hi-C data [10–12], Multi-CD holds good promise to more
quantitative and accurate determination of chromatin organization.

RESULTS
Overview of Multi-CD
The primary goal of this study is to extract information of CDs from
Hi-C data at varying genomic scale of interest. First, we translate
the Hi-C data into a cross-correlation matrix of polymer network,
by noting that chromosomes are in essence a polymer network with
multiple cross-links [38, 44, 45]. In this case, the distance distribu-
tion between two loci i and j can be written in the gaussian form:

P (rij ; γij) ∼ 4πr2ije
−γijr2ij ,

with γij = 1/2(σii + σjj − 2σij), where σij (= 〈δri · δrj〉) is the
positional covariance, determined by the topology of polymer net-
work [45]. This polymer-based interpretation enables a one-to-one
mapping from the contact probability pij =

∫ rc
0
dxP (x; γij) to the

positional covariance σij , and hence to the cross-correlation ma-
trix, (C)ij = σij/

√
σiiσjj (see Methods). The cross-correlation

matrix C normalizes the wide numerical range of the original Hi-C
counts into the range between −1 and 1.

Clustering a correlation matrix into a finite number of corre-
lated groups is a general problem discussed in diverse disciplines.
Here, we adapted a formalism known as the “group model,” de-
veloped for identifying the correlated groups of companies from
empirical data of stock market price fluctuations [46–48]. With-
out ambiguity, the formalism can be applied to our problem of
clustering correlated genomic loci in a chromosome. For a given
correlation matrix C, the group model finds the optimal solution
of clustered loci groups (domains) that best explains the pattern
manifested in C. The domain solution for N loci can be writ-
ten as a vector s = {s1, s2, . . . , sN}, where si indicates the do-
main index for locus i. Technically, this procedure involves find-
ing a vector s that maximizes the posterior distribution p(s|C) for
a given correlation data C; the optimal CD solution is found as
s∗ = argmaxs p(s|C). Maximizing the posterior distribution in
the form of p(s|C) ∝ e−H(s|C)/T is equivalent to minimizing the
cost function (or the effective Hamiltonian) H(s|C). We consider
the cost function of the form H(s|C) = E(s|C) + λK(s), where
E(s|C) quantifies the goodness of clustering, andK(s) with λ(≥ 0)

promotes simpler CD solutions by penalizing the effective number
of clusters (see Methods). This gives a “tunable” group model, such
that we can flexibly control the average size of domain solutions by
changing the parameter λ. In light of the grand-canonical ensemble
in statistical mechanics, T is the effective temperature of the sys-
tem, and λ amounts to the chemical potential. Our “tunable group
model,” applied to Hi-C data can discover the four major CD fami-
lies, namely, sub-TADs, TADs, meta-TADs, and compartments.

Discovery of chromatin domains at multiple scales
We applied Multi-CD to 50 kb resolution Hi-C of chromosome 10
from five different cell lines: GM12878, HUVEC, NHEK, K562,
KBM7 (Fig. 2a-b). Given a Hi-C matrix, we first obtained the cross-
correlation matrix C (Fig. 2c), and used Multi-CD to identify a set
of CDs for each fixed value of λ (Fig. 2d). This resulted in a family
of CD solutions at varying λ, with coarser CDs at larger values of λ.
Interestingly, the family of CD solutions for a given cell line were
divided into two regimes. In the case of GM12878 (Fig. 2e), CD
solutions can be partitioned into two groups below and above λ ≈
40. Solution families for other four cell lines were also similarly
divided (Fig. S1).

We note several points based on Multi-CD analyses for all five
cell lines:

(i) In each of the cells, the average domain size 〈n〉 increased
monotonically with λ (Fig. 2f).

(ii) There is a crossover point at λ = λcr where the distribution
of domain sizes suddenly changes. The variability of domain size,
quantified in terms of the index of dispersion, D

(
= σ2

n/〈n〉
)
, is

below 1 for small λ (< λcr), which means that the domain size is
regular, but it exhibits transition at λcr ≈ 30 − 40 (〈n〉cr ≈ 1.6

Mb) for GM12878, HUVEC, and NHEK; and at λcr ≈ 60 − 70

(〈n〉cr ≈ 2.2 Mb) for K562 and KBM7 (Fig. 2g).
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Figure 2: Multi-scale domain solutions for various cell types, identified using Multi-CD. (a) A subset of 50 kb resolution Hi-C data,
covering a 10 Mb genomic region of chr10 in GM12878. (b) Similar subsets of Hi-C data from the same chromosome (chr10) in four other
cell lines: HUVEC, NHEK, K562, and KBM7. (c-e) Applying Multi-CD to the Hi-C data in a, from GM12878. (c) The cross-correlation matrix
Cij . (d) Domain solutions determined by Multi-CD at 4 different values of λ = 0, 10, 20, 30. Multi-CD captures less fragmented domains
with increasing λ. (e) Similarity between domain solutions at different λ’s, calculated in terms of Pearson correlation. The similarity matrix
has its own modular structure, such that it is partitioned into two regions, λ > 40 and λ < 40. The boundary value λ = 40 corresponds to
the average genomic size of 〈n〉 = 1.8 Mb. (f-h) Statistics of the domain solutions, found from all five Hi-C data in a-b. As λ is varied, we
plot (f) the average domain size, 〈n〉; (g) the index of dispersion in the domain size, D(= σ2

n/〈n〉); (h) the normalized mutual information,
nMI. (i-j) Comparison of domain solutions across cell types. (i) Average cell-to-cell similarity of domain solutions at fixed values of λ, in
terms of Pearson correlations. (j) Domains obtained at λ = 10. See Fig. S2 for solutions at a smaller λ = 0 and a larger λ = 40.

(iii) The goodness of CD solution quantified by the normalized
mutual information (nMI, see Methods for its definition) against Hi-
C data is maximized at λ∗ = 30 in all the cell types, except for K562
(λ∗ = 50) (Fig. 2h).

(iv) We also examined how much the identified domains are con-
served across different cell lines, at fixed values of λ. The ex-

tent of domain conservation was quantified in terms of the average
cell-to-cell similarity over all the cell-type pairs, where the sim-
ilarity is evaluated using the Pearson correlation (see Methods).
We found strong cell-to-cell domain conservation in the range of
0 < λ ≤ 30, which corresponds to the size of CD smaller than
meta-TADs (Fig. 2i). The maximal extent of domain conservation

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2019. ; https://doi.org/10.1101/530519doi: bioRxiv preprint 

https://doi.org/10.1101/530519
http://creativecommons.org/licenses/by/4.0/


10 20 30 40

10

20

30

40

M
b

10 0
10 1
10 2
10 3
10 4

60 70 80 90 100 110
0.05

0.1

0.15

0.2

nM
I w

ith
 GaussianHMM 

(compartment)
GaussianHMM 
(sub-comp.)

Multi-CD

10 20 30 40

10

20

30

40

M
b

-0.7

0

0.7

H
i-C

 c
ou

nt

a b c d

re-ordered
by domain

k=1

k=2

co
rr

el
at

io
n 

(o
bs

./e
xp

.)

Figure 3: Domain solutions for compartments. (a) Input Hi-C data for compartment identification. The 2 Mb-diagonal band was
removed. (b) Demonstrated are the domain solution at λ = 90 obtained based on Hi-C data in (a) (lower triangle) and CO/E (upper triangle).
(c) The domain solution for compartments obtained using the original Hi-C data in (b) are re-ordered with the cluster (compartment) index.
The two largest compartments (k = 1, 2), corresponding to B (k = 1) and A (k = 2) compartments, are depicted in the lower triangle.
Clearly separated B- and A-compartments emerge from the correlation matrix CO/E (upper triangle) when the rows and columns of CO/E

are also re-ordered in accordance with the domain solution (lower triangle). (d) nMI between domain solutions at varying λ and CO/E. The
nMI of compartment structure with respect to CO/E is maximized at λ = 70− 100. The nMI values of sub-compartment (dashed line) and
compartment (dotted line) from [17] are depicted for comparison.

across the cell lines is found at λ = 10 (Fig. 2i, see also Fig. 2j),
at which the average domain size is 〈n〉 ≈ 0.9 Mb, which corre-
sponds to the average size of TAD (see Fig. 2j obtained for λ = 10

and compare it with Fig. S2 for λ = 0 and λ = 40) This find-
ing is consistent with the widely accepted notion that TADs are the
most well-conserved, common organizational and functional unit
of chromosomes, across different cell types [21].

(v) Although we analyzed chromosome 10 as an example, the
important features observed in the family of CD solutions are not
specific to this particular chromosome (see Fig. S3).

Two families of chromatin domains
Fig. 2h shows that there is a special value of λ∗ ≈ 30 at which the
CD solution best captures the pattern of Hi-C data. The family of
CD solutions are also divided into two regimes at λ ≈ λ∗.
TAD-based chromatin organization at λ ≤ λ∗. What do the
CDs at λ∗ = 30 represent? Our analysis in Fig. 2 points to two ob-
servations: the CDs at this scale have an average size of 〈n〉∗ ≈ 1.6

Mb, which is slightly greater than the size of TADs (〈n〉TAD ≈ 0.9

Mb); the CD solutions at λ < λ∗ show stronger similarity (Fig. 2e).
Based on these observations, we surmise that CDs at λ∗ ≈ 30 are
associated with a higher-order structure of TADs, a “meta-TAD”,
which results from an aggregate consisting of multiple TADs in ge-
nomic neighborhood [6]. In contrast to the previous analysis which
extended the range of meta-TAD to entire chromosome via hierar-
chical clustering analysis [6], the meta-TAD implicated from Multi-
CD is confined in a finite range, so that it is well discerned from
compartments and at the same time is more correlated with TADs
(Fig. 2e). Notably, the pattern of CDs identified at λ < λ∗ is local-
ized (see Fig. 2d, λ = 0, 10, 30). Our algorithm identifies the diag-
onal blocks of Hi-C data as the subsets of a hierarchically crumpled
structure of chromatin chain [40, 49].

Compartment-like chromatin organization at λ > λ∗ . The
super-Mb sized domains are generally defined as the compartment

in the chromosome organization [21]. In this case, a direct applica-
tion of Multi-CD to the cross-correlation matrix C (as in Fig. 2) is
dominated by the strong local correlation from the loci pairs in ge-
nomic neighborhood. A simple and effective solution to capture the
compartment-like structures is to exclude a narrow band along the
diagonal of the Hi-C matrix (Fig. 3a; also see Methods). Then we
can apply Multi-CD to identify two large compartments with alter-
nating patterns (Fig. 3b), which successfully capture the non-local
correlations, as clearly seen with a re-ordering of indices (Fig. 3c).
It is natural to associate a domain (k = 1) showing a greater num-
ber of contacts (Fig. S4) with the compartment B, which is usually
more compact than compartment A; and k = 2 with compartment
A. Further validation of the two compartments, by comparisons to
epigenetic markers, will be presented below.

Conventionally, in order to identify chromosome compartments,
the existing principal component analysis (PCA)-based methods
use the Pearson correlation matrix of a low-resolution Hi-C data
(CO/E) [16] (see Methods), whose heatmap is typically featured
with checkerboard pattern (upper triangular part of Fig. 3b). In-
stead of making direct comparison with Hi-C data, we used this
CO/E matrix to evaluate the goodness of compartment-like CD so-
lutions, again calculating the normalized mutual information (nMI).
We note that Multi-CD outperforms GaussianHMM [17], a widely
accepted benchmark, in capturing the large-scale structures in Hi-C
(Fig. 3d).

Hierarchical organization of chromatin domains
We examined the extent of hierarchical relationship between the
four classes of CD solutions obtained at varying λ. From the dia-
gram in which sub-TADs, TADs, meta-TADs and compartments are
overlaid on top of each other (Fig. 4a), it is visually clear that sub-
TADs or TADs almost never fail to be included inside the bound-
ary of meta-TAD, whereas there are mismatches between the do-
main boundaries of meta-TADs and compartments. We evaluated
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Figure 4: Hierarchical organization of CD families (a) Hierarchi-
cal structure of CDs are highlighted with the domain solutions for
sub-TADs (red), TADs (green), meta-TADs (blue) and compartments
(black). Each panel represents the superposition of two domain so-
lution, and the hierarchy score h is provided above each panel. (b)
A diagram of hierarchical relations between sub-TADs, TADs, meta-
TADs and compartments based on the average hierarchy score cal-
culated for chr10 of GM12878. Higher score for a pair of two different
domains means that one domain is more nested to other domain.

the extent of overlap or domains-within-domains type of hierarchy
between two domain solutions by means of the hierarchy scores
(h) which quantifies the extent of inclusion of smaller domains into
larger domains (see Methods).

Based on the hierarchy scores, calculated over the CD solutions
from Hi-C data of GM12878 (Fig. 4b), we found the basic princi-
ples for chromatin organization: (i) The hierarchy scores between
the pairs of TAD-related domains (sub-TADs, TADs, and meta-
TADs) are all > 0.96, which is appreciably greater than that of
any pair of TAD-related domains with compartments. (ii) The hi-
erarchical links of TADs and meta-TADs with compartments are
relatively weak. This implies that TADs or meta-TADs are not nec-
essarily the components of compartments, which is also consistent
with recent reports that TADs and compartments are organized by
different mechanisms [33, 50]. (iii) Although the hierarchy score
between sub-TADs and compartments (h = 0.85) is not so large as
those among the pairs of TAD-based domains, it is still greater than
the hierarchy scores between TADs and compartments (h = 0.77)
or between meta-TADs and compartments (h = 0.69). Thus, sub-
TAD can be considered a good candidate for a common building
block of the chromatin architecture.

Validation of domain solutions from Multi-CD
The CD solutions from Multi-CD are in good agreement with the
previously proposed CDs, obtained from several different methods.
Specifically, CDs correspond to the sub-TADs [17] in the prior-
free solution at λ = 0, to the TADs [24, 51] at λ ≈ 10, and to
the compartments [17] at λ ≈ 90 (see Fig. S5). When assessed in
terms of nMI of acquired CD solutions against the input Hi-C data,
Multi-CD outperforms other methods in identifying three distinct
CD families (Fig. 5a).

In order to further validate the biological relevance of the CD
solutions from Multi-CD, we compared with several biomarkers
that are known to be correlated with the spatial organization of the
genome [52].

First, we calculated how much our domain boundaries obtained
at λ = 10 are correlated with the CTCF signals which are known to
capture TAD boundaries [24, 26] (Fig. 5b). Compared to the cor-
relation (or extent of overlap quantified by χ(d). See Eq.21 and
Fig. 5b) of CD solutions for λ = 0 with CTCF signals, the over-
lap at the domain boundary (d ≈ 0) is stronger for solutions at
λ = 10 and 20, which are in the parameter range where Multi-CD
identifies TADs. We also observe that Multi-CD identifies TAD
boundaries that are more sharply correlated with the CTCF bind-
ing sites than those identified by two popular methods, ArrowHead
[17] and DomainCaller [24] (Fig. 5b). Specifically, when fitted to
exponential function, the correlation lengths are 34 kb (λ = 0),
143 kb (λ = 10), and 234 kb (λ = 20); whereas the correlation
lengths obtained from ArrowHead and DomainCaller are & 900 kb
(Fig. 5b).

Next, we compared our compartment-like domains with the
replication timing profile (GM12878 Repli-Seq data) [7, 53]. The
large-scale domains from Multi-CD (at λ = 90) are in good agree-
ment with the patterns of replication timing anticipated for the A/B
compartments, which exhibits anti-correlated activation/repression
along the replication cycle (Fig. 5c-d). Specifically, the replication
signal in the Multi-CD-identified compartment A (blue shade in
Fig. 5c) is active in the early phases (G1, S1, S2), whereas it is re-
pressed (or deactivated) in the late phases (S3, S4, G2). An en-
tirely opposite trend is observed for B-compartment (red shade in
Fig. 5c): the replication activity in B compartment is repressed in
the early phases (G1, S1, S2), and is activated in the late phases (S3,
S4, G2). The Pearson correlation between the replication signals
(Fig. 5d) confirms the clear contrast between the replication timing
of A/B compartments quantitatively, and validates the domain so-
lutions of compartments identified by Multi-CD.

DISCUSSION
What fundamentally differentiates Multi-CD from other approaches
rests on the algorithm by which the pattern of CD is identified.
In the conventional methods, local features of Hi-C data, such as
CD boundaries or loops enriched with higher contact frequencies,
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Figure 5: Validation of CD solutions from Multi-CD. (a) CD solutions (sub-TAD, TAD and compartment) assessed in terms of nMI against
Hi-C data (log10 M): Multi-CD outperforms ArrowHead, DomainCaller and GaussianHMM at the corresponding scale. (b) The overlap
function χ(d) calculated between CTCF enrichment and the domain boundaries obtained from different methods: χ(d) for Multi-CD at
λ = 0, 10, and 20 (left). χ(d) for ArrowHead (middle) and DomainCaller (right). (c) Genome-wide, locus-dependent replication signal
(trep, black lines). The genomic position of the two domains, B (k = 1) and A (k = 2) compartments obtained in Fig. 3, are shaded in light
blue and light red. Here, we translated the acquired pattern of A/B compartments into a binary array q by assigning two numbers, 1 for
compartment B (k = 1, red), and −1 for compartment A (k = 2, blue), along the genomic loci. (d) Pearson correlation (≡ (trep ·q)/|trep||q|)
between trep and the binarized array q for compartment pattern defined in c. The replication activities of A- and B-compartments are
anti-correlated. In the early phase of cell-cycle (G1, S1, S2) the replication of A-compartment is more active than B-compartment, but an
opposite trend is observed in the later phase (S3, S4, G2).

are key for CD-identification and Hi-C data has to be formatted in
accordance with the scale of domain to be identified. In contrast,
Multi-CD solves the problem of global pattern clustering as its basic
algorithm for CD discovery. Therefore, Multi-CD can be applied to
any scale of interest without resorting to a coarse-grained version
of Hi-C data or to a particular bin size.

The Multi-CD uses the tuning parameter λ, which is tantamount
to the “chemical potential” in statistical thermodynamics, to set the
average domain size, giving rise to λ-dependent CD solution for a
given Hi-C data. nMI comparing CD solutions with the 50 kb res-
olution Hi-C data is maximized at λ ≈ 30, which corresponds to
∼ 1.5 Mb in domain size (length) (Fig. 2f). Notably, 1.5 Mb, the
average size of CD that we can best read off from the 50 kb res-
olution Hi-C data [17] used in this study, is also similar to the do-
main size detected by a recently proposed TAD detection algorithm
called deDoC [54]. In essence, the concept of “graph structural en-
tropy” used in deDoC is also based on global pattern recognition.

The authors of deDoC, who developed deDoC as a TAD detection
algorithm, have concluded that their∼ 2 Mb-sized domain solution
from their analyses on 40 kb data of Dixon et al. [24] was the best
solution for TAD, based on their finding that deDoC identified do-
main solution displayed the lowest structural entropy in comparison
with all the five other TAD detection algorithms they tested. Inter-
estingly, we also found that the best domain solution from varying
λ, assessed in terms of nMI with Hi-C heatmap, was when λ ≈ 30,
which corresponds to the genomic length of 1.5 Mb; however, we
do not conclude CD solution at λ = 30 represents the solution for
canonical TAD. Instead, we surmise the domain solution at λ = 30

is for meta-TAD, an aggregate of TADs in genomic neighborhood.
As indicated by the domain solutions from Multi-CD at varying
λ, the extent of domain conservation across different cell types are
maximized at λ = 10 (〈n〉 = 0.8 Mb). To be consistent with the
general notion that TADs are the functional unit of chromosome
well conserved across different cell types and species [24], CD so-
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lution obtained at λ = 10 is better interpreted as the solution for
TAD.

We showed that the characteristics of CD solutions shared by the
TAD-like domains do not precisely hold together in compartment-
like domains. This finding is consistent with the recent insightful
studies which report that compartments and TADs do not neces-
sarily have a hierarchical relationship because they are formed by
different mechanisms of motor-driven active loop extrusion and mi-
crophase separation [32–35]. Notably, even when clear mismatches
are present between the meta-TAD and compartment, the sub-TADs
are, in most of the cases, a part of the compartment (Fig. 4). This
finding points to sub-TADs as the fundamental building blocks of
the higher domain organization. In fact, the existence of sub-TADs
is robust even when a higher resolution Hi-C data is analyzed. From
a clustering analysis on 5 kb resolution HiC data, the boundaries of
∼ 300 kb-sized sub-TAD are clear and consistent with those ob-
tained from 50 kb resolution Hi-C (see Fig. S6).

Finally, we explored the cell-type dependent chromatin organi-
zation and its link to gene expression. To this end, we inspected the
details of CDs identified for TADs at λ = 10 in the 10 Mb region
of chr10 of five different cell types (GM12878, HUVEC, NHEK,
K562, KBM7) (Fig. 2j). A comparison of RNA-seq profiles be-
tween different cells (Fig. 6) shows that the APBBB1IP gene, which
is regulated by other elements located in the region between 26.65
and 27.15 Mb, is transcriptionally active in GM12878 and KBM7
cells, but not in HUVEC, NHEK and K562 cells. It is interesting
to find that around this gene, TAD boundaries in GM12878 and
KBM7 cells also show appreciable difference from those in other
three cell types. Whereas the gene and all of its regulatory elements
are enclosed in a single TAD in GM12878 and KBM7, they are split
into two domains in other three cell lines. It is expected that the in-
tegrity of TAD encompassing the genomic region of 26.5–27.5 Mb
for GM12878 and KBM7 is critical for the expression of APBB11P
gene. This is consistent with the understanding that TADs are the
functional boundaries for genetic interactions [5, 6, 18, 20].

In order to glean genome function from Hi-C data that vary with
genomic state [10–13], a computationally efficient and accurate
method to identify CD structures is of vital importance. In sum-
mary, we developed Multi-CD, a novel and versatile method for
CD-identification. The method identifies multi-scale structures of
chromatin domains by solving the global optimization problem. We
find that the chromatin domains identified from Multi-CD are not
only in excellent match with biological data such as CTCF binding
sites and replication timing signal, but also outperform the existing
methods. Quantitative analyses of CD structures identified by this
unified algorithm across multiple genomic scales and various cell
types not only offer general physical insight into how chromatin is
organized in the nucleus but also will be of practical use to decipher
broad spectrum of Hi-C data obtained under various conditions.
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Figure 6: Cell-line dependent TAD organization and its link to
gene expression. RNA-seq signals are depicted with lines above
the TAD solutions for 5 different cell lines obtained from Multi-CD.
The position of APBB1P gene, which is only activated for GM12878
and KBM7, is marked at the top row. Drawn in the second row is the
genehancer track for corresponding gene (APBB1P) acquired from
GeneHancer track in UCSC browser, which represent the regulatory
elements, promoter (magenta line) and enhancers (orange lines),
and their inferred target gene. It is of particular note that RNA-seq
signals that show overlap with the genehancer track of APBB1IP are
only observed in GM12878 and KBM7.

ONLINE CONTENT

Any methods, additional references are available in Methods and
Supplementary Information.
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METHODS
Data acquisition
Hi-C data. We applied Multi-CD on the 50 kb-resolution Hi-C
data of chr10 from five different cell types (GM12878, HUVEC,
NHEK, K562, and KBM7). The data were obtained through GEO
data repository (GSE63525-cell type-primary) [17].

Biological markers. The domain solutions from Multi-CD were
compared with known biological markers. We obtained these
data mostly from the ENCODE project [55]. Specifically, we
used the enrichment data of the transcriptional repressor CTCF
measured in a Chip-Seq assay from http://hgdownload.cse.

ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwTfbs/

wgEncodeUwTfbsGm12878CtcfStdPkRep1.narrowPeak.gz.
The Repli-seq signals in the six phases G1, S1, S2, S3, S4,
and G2 were obtained from http://hgdownload.cse.ucsc.

edu/goldenPath/hg19/encodeDCC/wgEncodeUwRepliSeq/,
and were averaged over 50 kb windows along the genome to
construct the replication timing profiles. The RNA-seq data
for the four cell lines GM12878, HUVEC, NHEK and K562
were also obtained from http://hgdownload.cse.ucsc.edu/

goldenpath/hg19/encodeDCC/wgEncodeCaltechRnaSeq/.
RNA-seq for the cell line KBM7 were separately obtained from
https://opendata.cemm.at/barlowlab/2015_Kornienko_

et_al/hg19/AK_KBM7_2_WT_SN.F.bw.

Pre-processing of Hi-C data
Normalization and contact probability. We performed Knight-
Ruiz (KR) normalization [56] on Hi-C data, which normalizes Hi-C
data such that any row and column sums to the unity. As a result,
most of the values of KR normalized Hi-C matrix elements (Mij)
are on the order of O(N−1), which is far smaller than 1. In or-
der to use the M-matrix as the contact probability matrix P, de-
fined element-wise as (P)ij = pij , we first divided M by the mean
value of the greatest matrix elements typically concentrated near
the diagonal band of M-matrix, i.e., µ = 1

N−1
∑N−1
i=1 Mi,i+1, and

next multiplied a constant value µc. In other words, we rescaled
Mij into pij = (µc/µ)Mij . We set µc = 0.9 and regarded the
elements of P greater than 1 as outliers and set them to 1, which
effectively filters the unusually high contact signals from the actual
data. For the contact probability for a pair of loci, we used pij , a
rescaled and high-intensity-signal-filtered version of Mij .

Correlation matrix from Hi-C. A chromosome can be regarded
as a polymer chain containing N monomers, each of which (i-th
monomer or locus) corresponds to the i-th genomic segment and
its spatial position is written as ri. Employing the idea of the ran-
dom loop model (RLM) [45], which has been proposed for model-
ing chromosome conformation, we interpret that chromosome con-
formation is described with an ideal polymer network crosslinked
at multiple sites. In RLM, the position vector of the chromosome
r = (r1, r2, · · · , rN ) obeys gaussian distribution with zero mean
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〈r〉 = 0 and covariance matrix Σ, the probability of relative dis-
tance P (rij) between i and j-th monomers in 3D is given as

P (rij ; γij) =
4√
π
γ
3/2
ij r2ij exp(−γijr2ij). (1)

where γij = 1/2(σii+σjj − 2σij) and σij ≡ (Σ)ij . Provided that
the contact between two monomers is formed when their distance
rij is within a certain cutoff distance rc, the contact probability (pij)
can be calculated as

pij =

∫ rc

0

P (rij ; γij)drij = erf(γ1/2ij rc)−2rc

√
γij
π
e−γijr

2
c , (2)

with erf(x) = 2√
π

∫ x
0
dte−t

2 . Note that pij is monotonically in-
creasing function of γij(≥ 0). Therefore, given covariance matrix
Σ, we can explicitly calculate the contact probability pij through
Eq.(2). In inverse problem, the covariance matrix Σ can be inferred
from contact probability matrix P. However, this inverse problem
requires additional assumption about the variance of each monomer
σii from the definition of γij = 1/2(σii +σjj − 2σij). We assume
that all variances have identical value (σii = σjj = σc), which gen-
erates the following normalized covariance matrix (i.e. correlation
matrix, C)

(C)ij =
σij√
σiiσjj

= 1− 1

2σcγij
. (3)

The parameter σc sets the overall intensity of C. Here, we set this
variable as the median of 1/2γij to maintain the balance of Cij .

The primary goal of this study is to extract information of CDs
from Hi-C correlation matrix (C). In fact, a very similar problem
has been posed for stock market price fluctuations [46, 47]. Adapt-
ing the formalism in References [46, 47], we assumed that xi, which
stands for the “genomic state” (or “transcriptional state”) of i-th lo-
cus, obeys the following stochastic equation in terms of the stan-
dardized variable ξi, i.e., ξi = (xi − 〈xi〉)/σxi

ξi = y(ηsi , εi) =

√
gsi

1 + gsi
ηsi +

1√
1 + gsi

εi (4)

where si denotes the index of CD to which the i-th locus is clus-
tered, and the parameter gsi (−1/2 ≤ gsi ≤ ∞) defines the
strength of intra-CD correlation; ηsi and εi are the independent and
identically-distributed (i.i.d) random variables with zero mean and
unit variance, ηsi , εi ∼ N (0, 1). From Eq.4, the cross-correlation
between the loci i and j is written as

〈ξiξj〉 =
gsi

1 + gsi
δsisj +

1

1 + gsi
δij . (5)

Therefore, in light of Eq.5, the first term of Eq. 4 on the right hand
side represents intra-CD variation of the si-th CD where intra-
domain correlation increases with gsi ; the second term of Eq. 4
corresponds to a noise that randomizes the intra-domain correla-
tion dictated by the first term. By matching Eq. 3 with Eq. 5

(C)ij := 〈ξiξj〉. (6)

one can use the cross-correlation matrix C from σij as an input for
Multi-CD.

Removal of the diagonal band for identifying compartments.
The Hi-C matrix shows that the interaction strength is highly con-
centrated near the diagonal elements, which makes it difficult to
identify the compartment characterized with the long-range inter-
action pattern. To circumvent this issue, the previous methods have
either intentionally reduced the resolution of Hi-C data (usually to
1Mb) [16] or used only inter-chromosomal interactions [17]. In
this study, as a similar motivation we ignore the diagonal band of
C. Specifically, we set all elements in C to zero if its genomic dis-
tance (|i− j|) is smaller than lc. We scanned lc and found that the
CD solutions most consistent with the compartment are obtained
for l∗c = 40 (' 2 Mb in 50 kb resolution). This value is almost
identical to the crossover value of domain size n∗ which sets the
boundary between TAD-like and compartment-like domains.

The observed/expected (O/E) matrix and its Pearson correla-
tion matrix. The O/E matrix was used to account for the genomic
distance-dependent contact number due to random polymer inter-
actions in chromosome [16]. Each pair (i, j) in O/E matrix is cal-
culated by taking the count number Mij (observed number) and
dividing it by average contacts within the same genomic distance
d = |i − j| (expected number). Since the expected number could
be noisy, one smooths it by increasing the window size (see refs
[16, 17] for further details). In this study, we used the expected
number obtained from [17]. The Pearson correlation matrix of the
O/E (CO/E) represents the overall contact pattern through pairwise
correlation coefficients between loci.

Identifying chromatin domains

Our goal is to find the chromatin domain (CD) solution s =

{s1, s2, · · · , sN}, as well as a set of parameters for the intra-CD
correlation G = {g1, g2, · · · , gKmax}, that best represent the pat-
tern in the Hi-C data. Each s is a state in the CD solution space.
For each genomic locus i ∈ {1, 2, · · · , N}, the element of the CD
solution si = k indicates that the i-th locus belongs to the domain
k (= 1, 2, · · · ,Kmax). It is always ensured that the elements of
each s spans a set of consecutive integers from 1 to Kmax, where
Kmax is the number of distinct domains in the solution. For exam-
ple, a state s = {1, 1, 1, 2, 2, 3} describes a structure where the 6
loci are clustered into 3 domains as {{s1, s2, s3}, {s4, s5}, {s6}}
with the corresponding strength of three intra-domain correlation
G = {g1, g2, g3}.

Likelihood: goodness of clustering. To formulate the clustering
problem, we first consider the likelihood of data, at a given CD
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solution s with strength parameters G: [48]

p(data|s, G)

=

〈
N∏
i=1

δ

(
ξi −

√
gsi

1 + gsi
ηsi −

1√
1 + gsi

εi

)〉
η,ε

(7)

where 〈· · · 〉η,ε denotes an average over the gaussian noises for
ηsi and εi. The data dependence of the likelihood is written sim-
ply in terms of the correlation matrix C (Eq. 6). With standard
calculations involving Gaussian integrals, the corresponding log-
likelihood can be written as:

log p(C|s, G) = −1

2

Kmax∑
k=1

[
(1 + gk)

(
nk −

gkck
1 + gknk

)
−nk log(1 + gk) + log(1 + gknk)] ,

where nk =
∑N
i=1 δsi,k is the size of domain k, and ck =∑N

i,j=1 Cijδsi,kδsj ,k is the sum of all intra-domain correlation el-
ements. Conveniently, the likelihood p(C|s, G) is maximized at
gk = (ck − nk)/(n2

k − ck) for a given {s,C}. We define the cost
function E(s|C) as the negative log-likelihood at this likelihood-
maximizing G:

E(s|C) =
1

2

Kmax∑
k=1

[
log

ck
nk

+ (nk − 1) log
n2k − ck
n2k − nk

]
, (8)

such that maxG p(C|s, G) = exp(−E(s|C)). The cost function
evaluates the (negative) goodness of clustering for a given CD so-
lution s.

Prior: preference to simpler solutions. Because of the structural
hierarchy inherent to chromosome and the ensemble characteristic
of the Hi-C measurement, it is still an issue to define CDs at a cer-
tain length scale of interest. In order to construct a unified formal-
ism that can control the overall domain size in a CD solution, we
introduce a prior of the form p(s) = exp(−λK(s)), where K(s)

increases with the complexity of the solution s. Specifically, we
define K(s) as

K(s) = exp

(
−
Kmax∑
k=1

nk
N

log
nk
N

)
, (9)

such that it measures the effective number of CDs from the domain
size distribution. For example, in the limit where all CDs are of the
same size, K(s) = Kmax. This formulation is also equivalent to
adding a regularizer to the cost function E , such that the total cost
functionH becomes:

H(s|C) = E(s|C) + λK(s), (10)

where the parameter λ controls the relative weight of K(s) with
respect to E(s|C).

Posterior distribution. Then the posterior distribution is given by
the following Bayes rule:

p(s|C) ∝ p(C|s) p(s) = exp(−H(s|C)). (11)

We remark that this formulation is analogous to the grand canon-
ical ensemble in statistical mechanics. The total cost function
H(s|C) can be thought of as the effective Hamiltonian of the sys-
tem; E(s|C) amounts to the energy of the system, and K(s) the
effective number of particles (in this case CDs) with a chemical po-
tential of λ. It is natural to introduce an effective temperature T , so
that the probability of having a state s is given as

p(s|C) ∝ exp

[
− 1

T
(E(s|C) + λK(s))

]
. (12)

A higher temperature T makes the distribution flatter; in other
words, it tempers the distribution. This is useful for an efficient
posterior inference through simulated annealing.

Metropolis-Hastings sampling. We use Markov chain Monte
Carlo (MCMC) sampling to find the maximum value of the pos-
terior distribution, or equivalently the minimum value of the total
cost function H. The standard Metropolis-Hastings (MH) routine
was used, such that at each trial move from the current state s to
the next state s′, the move is accepted with a probability min(1, α),
where α(s, s′) = exp [−(H(s′|C)−H(s|C))/T ]. We used “sin-
gle mutation” proposals, as described below.

To ensure that a steady state is reached, we continue the sampling
until each chain collects ttot ≥ 5τ∗ samples in the CD solution
space. Here τ∗ is the “relaxation time” defined as the number of
steps it takes until the autocorrelation function R(τ), drops signifi-
cantly: τ∗ = argminτ |R(τ)− 1/e|. The autocorrelation function
is calculated from the value of the total cost functionH, as

R(τ) =
1

σ2
〈(H(st|C)− µ)(H(st+τ |C)− µ)〉t, (13)

where st is the t-th sample in the chain, and µ and σ are the mean
and standard deviation of {H(st|C)}, respectively. The running
time average in Eq.13, 〈· · ·〉t

[
= 1

ttot−τ
∫ ttot−τ
0

dt(· · · )
]
, is taken

over all the pairs of samples with the time gap of τ . We stop the
sampling as soon as the total sampling time is five times longer
than the relaxation time (ttot > 5 · τ∗(ttot)), so that the state st (or
H(st|C)) is practically in steady states.

Single mutation in the CD solution space. In the space of CD
solutions, we define a single mutation as a move from a state s to
another state s′, such that the two CD solutions (s, s′) differ only
by one genomic locus. In other words, it is a move with distance
d(s, s′) = 1, where the distance between the two CD states is de-
fined as the number of loci with differing domain memberships,
d(s, s′) =

∑N
i=1 XOR(si, s

′
i). More precisely, because a CD so-

lution is invariant upon permutations of the domain indices, d is
uniquely defined as the minimal number of mismatches over all
possible domain index permutations. We define the set of all single-
mutated neighbors around a state s as S1(s) = {s′ : d(s, s′) = 1}.
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Simulated annealing. We use the simulated annealing to explore
the high-dimensional CD solution space which is also likely char-
acterized with multiple local minima. We start from a finite tem-
perature T = T0 > 0 and slowly decrease it to T → 0, letting
the system relax toward the global minimum of the configurational
landscape of H (Fig. S7). The simulated annealing process is de-
scribed below.

Initialization. An initial configuration s(0) is generated in
two random steps. First, the total number of CDs, Kmax, is
drawn randomly from the set of integers {1, · · · , N}. Then,
each genomic locus i ∈ {1, · · · , N} is allocated randomly into
one of the CDs, k ∈ {1, 2, · · · ,Kmax}. The initial tem-
perature T0 is determined such that the acceptance probabil-
ity for the “worst” move around s(0) is 0.5. Specifically, it is
given as T0 = argminT |exp(−∆H1/T )− 0.5|, where ∆H1 =

maxs∈S1(s0){H(s|C)−H(s(0)|C)} is the energy difference to the
least favorable move among the set of all single mutations.

Iteration. At each step r, the temperature is fixed at Tr. We
sample the target distribution pr(s|C) ∝ exp(−H(s|C)/Tr), us-
ing the Metropolis-Hastings sampler described above. For the next
step r + 1, the temperature is lowered by a constant cooling factor
ccool ∈ (0, 1), such that the next temperature is Tr+1 = ccool · Tr.
We used ccool = 0.95 in this study.

Final solution. The annealing process is repeated until the tem-
perature reaches a small (but finite) value Tf . We used Tf = 0.03.
Then we quench the system to the closest local minimum by per-
forming a “zero-temperature” sampling, in which a proposed move
is always accepted if it lowers the cost function. This process is
simply to remove any remaining fluctuation from the finite temper-
ature, which is usually very small at this point. Because there is still
no guarantee that the global minimum is found, we tried a batch of
at least 10 different initial configurations and chose the final state
s∗ that gives the minimalH(s∗|C).

Analysis on subsets of Hi-C data. Our method allows the user to
break down the Hi-C data into subsets, as long as the CDs are local-
ized within the subsets (Fig. S8). This saves the algorithm from the
large memory requirement of dealing with the entire intrachromo-
somal Hi-C (for example, Hi-C of chromosome 10 has 2711 bins
in 50 kb resolution). For the analysis of the 50 kb resolution Hi-C
data in this paper, we used subsets of the data that correspond to
40-Mb ranges along the genome, or 800 bins.

The overall schematic involving the algorithm of Multi-CD. A
schematic diagram of Multi-CD is provided in Fig. S9.

Analysis and evaluation of domain solutions
Index of dispersion. The index of dispersion for the domain size
distribution is defined asD = σ2

n/〈n〉, where 〈n〉 is the average size
of a domain, and σ2

n is the variance. It measures how clustered or
dispersed a given distribution is, compared to a normal distribution.
If D < 1, it indicate that the domain sizes are all very similar. If

D > 1, on the other hand, it means that the domain size distribution
is over-dispersed and heterogeneous, which may be the case when
there are a few large domains and many small ones.

Similarity of two distinct CD solutions using Pearson correla-
tion. In order to measure the extent of similarity between two CD
solutions s and s′, we consider the Pearson correlation at the level
of loci pairs. We start by constructing the binary matrices B and B′

that represent the two CD solutions, where (B)ij = Bij = δsisj ,
such that the matrix element are all 1’s within the same CD and
0 otherwise. Considering the lower triangular elements of B, we
can calculate the mean b̄ = 2

N(N−1)
∑
i<j Bij and the variance

σ2
B = 2

N(N−1)
∑
i<j(Bij − b̄)2; similarly, b̄′ and σ2

B′ for B′. The
similarity between B and B′ is quantified with the Pearson corre-
lation

ρ =
cov(B,B′)
σBσB′

, (14)

where the element-wise covariance is cov(B,B′) =
2

N(N−1)
∑
i<j(Bij − b̄)(B′ij − b̄′).

Normalized mutual information. We use the mutual information
to evaluate how well a CD solution s captures the visible patterns
in the pairwise correlation data. We consider the binary grouping
matrix (B)ij = Bij = δsi,sj for the CD solution of interest, and
compare it to the input data matrix (A)ij = Aij . In this study,
either log10 M or CO/E was used in the place of A. Assuming that
we can treat the matrix elements a ∈ A and b ∈ B as two random
variables, we can construct the joint distribution p(a, b) by binning
and counting, as:

p(a, b) =
2

N(N − 1)

∑
i<j

δAij ,aδBij ,b, (15)

where the Kronecker delta for the continuous variable a should
be understood in a discretized fashion. That is, δAij ,a = 1 if
Aij ∈ [a, a + ∆a) and 0 otherwise, where we used ∆a =

[max {Aij} −min {Aij}] /100 to discretize the values into 100
bins. It is straightforward to obtain the marginal distributions as
p(a) =

∑
b p(a, b) and p(b) =

∑
a p(a, b). We can use the

standard definitions to calculate the marginal entropies, H(a) =

−∑a p(a) log(p(a)) and H(b) = −∑b p(b) log(p(b)), as well as
the mutual information

I(a; b) =
∑
a

∑
b

p(a, b) log

[
p(a, b)

p(a)p(b)

]
. (16)

Note that the sum runs over the discretized values of a that are the
endpoints of the bins used for counting, and over {0, 1} for the bi-
nary variable b. Finally, the normalized mutual information (nMI)
is defined as

nMI(a; b) =
I(a; b)√
H(a)H(b)

. (17)
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Hierarchy score. We define the hierarchy score to quantify the
hierarchical relationship between two CD solutions, s and s′. We
assume that we know the average domain sizes for the two solutions:
we will say that s is a set of smaller CDs and s′ a set of larger
CDs. Then the perfect hierarchy condition can be defined as in the
following statement: if two loci i, j belong to the same CD in the
smaller-scale s (si = sj), then they also belong to the same CD in
the larger-scale s′ (s′i = s′j). Here we extend this idea to evaluate
the extent of overlap of s to s′. To begin, for each domain k ∈ s in
the smaller-scale CD solution, the best overlap of this domain on s′

is quantified by the single-domain hierarchy score h1:

h1(k → s′) = max
k′∈s′

[∑
i δsi,k δs′i,k′∑

i δsi,k

]
(18)

We get a maximum score h1(k → s′) = 1 if there is a k′ ∈ s′ such
that the smaller domain k ∈ s is completely included in the larger
domain k′ ∈ s′. On the other hand, the worst score is obtained
when the domains in the two CD solutions s and s′ are completely
uncorrelated, in which caseh1 only reflects the overlap “by chance”.
The chance level is written as h̄1(s′) = 〈n〉s′/N , where 〈n〉s′ =

〈∑i δs′i,k′〉k′∈s′ is the average domain size of the larger solution s′.
This naturally defines a normalized score

ĥ1(k → s′) =
h1(k → s′)− h̄1(s′)

1− h̄1(s′)
. (19)

Consequently, the hierarchy score h(s→ s′) of the entire CD solu-
tion s on s′ is calculated as a weighted sum of h1 as

h(s→ s′) =
∑
k∈s

ĥ1(k → s′)
nk
N
, (20)

where nk =
∑
i δsi,k is the size of domain k in s. In this study, we

are interested in h(sλ1 → sλ2) for CD solutions evaluated at two
distinct values λ1 < λ2, knowing that the average domain sizes are
〈n〉sλ1 < 〈n〉sλ2 .

Correlation between CTCF signal and domain boundaries.
The validity of domain boundaries, determined from various CD-
identification methods including Multi-CD, is assessed in terms of
their correlation with the CTCF signal. We write φCTCF(i) to in-
dicate the CTCF signal at locus i. We also define a binary vari-
able ψDB(i) that indicates the boundaries of a CD solution s, such
that ψDB(i) is 1 if the i-th locus is precisely in the domain bound-
ary, ψDB(i) = 0, otherwise (ψDB(i) = (1 − δsi,si−1δsi,si+1)). We
evaluated a distance-dependent, normalized overlap function χ(d),
defined as

χ(d) =
〈δφCTCF(i+ d)ψDB(i)〉i

〈ψDB〉

≈
∑N−d
i=1 φCTCF(i+ d)ψDB(i)∑N

i=1 ψDB(i)
− 1

N

N∑
i=1

φCTCF(i), (21)

where δφCTCF = φCTCF − 〈φCTCF〉 and the approximation sign is
used because of N

N−d ≈ 1 forN � d. If the domain boundaries de-
termined from a CD-identification method is correlated with TAD-
capturing CTCF signal, a sharply peaked and large amplitude over-
lap function (χ(d)) is expected at d = 0.

Code availability
The Matlab software package and associated documentation are
available online (https://github.com/multi-cd).
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SUPPLEMENTARY INFORMATION
Fig S1. Similarity between domain solutions at different λ in terms
of Pearson correlation. The calculation was performed for chromo-
some 10 from five different cell lines

Fig S2. The structures of CDs obtained from Multi-CD for the five
different cell lines (GM12878, HUVEC, NHEK, K562, KBM7).

Fig S3. Chromatin domain solutions of chromosome 11.

Fig S4. Genomic distance-dependent contact number for domain
solutions of k = 1 and k = 2.

Fig S5. Validation of domain solutions from Multi-CD by com-
paring to previous methods.

Fig S6. Identification of sub-TAD boundaries at 5 kb resolution.

Fig S7. Finding CD solutions through simulated annealing.

Fig S8. Robustness of clustering solutions over different subsets
of Hi-C data.

Fig S9. Schematic of the Multi-CD algorithm.
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Figure S1: Similarity between domain solutions at different λ in terms of Pearson correlation. The calculation was performed for chro-
mosome 10 from five different cell lines
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Figure S3: Chromatin domain solutions for chromosome 11. (a) Hi-C data of chromosome 11 from five different cell lines, GM12878,
HUVEC, NHEK, K562, and KBM7. (b) Mean domain size 〈n〉 as a function of λ. (c) The index of dispersion (D) of domain size for varying
λ. (d) The goodness of each domain solution assessed in terms of nMI with respect to Hi-C data (log10 M) (e) The similarity of domain
solutions measured by the Pearson correlation between two binarized contact matrices across five cell types with different λ.
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Figure S4: Genomic distance-dependent contact number for domain solutions of k = 1 and k = 2. At short genomic distance, the
domain solution of k = 1 is characterized with a greater number of contacts than k = 2, which suggests that k = 1 domain is locally more
compact.
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Figure S5: CD solutions from Multi-CD and other algorithms. Comparison between domain solutions obtained by three popular
algorithms (ArrowHead, DomainCaller, GaussianHMM) (right column) and those by Multi-CD (left column), applied to 50 kb resolution
Hi-C data. Three subsets from the same Hi-C data (log10 M), with different magnification (5, 10, and 40 Mb from top to bottom), are given
in the middle column. ArrowHead algorithm [17] was used for identifying the domain structures of sub-TADs, DomainCaller [24] for TADs,
and Gaussian Hidden Markov Model (GaussianHMM) [17] for compartments. Multi-CD use λ = 0, 10, 90, as the parameter values for
identifying sub-TADs, TADs, and compartments, respectively.
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Figure S6: Identification of sub-TAD boundaries at 5 kb resolution. (a) The optimum cluster size, best describing 5 kb resolution Hi-C
map in terms of nMI, is determined at 〈n〉 = 0.35 Mb, which is consistent with the sub-TAD size determined from 50 kb resolution Hi-C at
λ = 0. (b-c) Comparison between Multi-CD solutions at different resolutions of the input Hi-C data, that point to the robustness of sub-TAD
boundaries regardless of Hi-C resolution. (b) The best CD solution (corresponding to λ = λ∗ in panel (a)) for the 5 kb-resolution Hi-C data
in the 120-124 Mb region of the genome. (c) Solution for the same genomic interval from 50 kb Hi-C, determined at λ = 0. The two CD
solutions are effectively identical, which supports our interpretation of sub-TAD as the unit of hierarchical chromosome organization.
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Figure S7: Temperature trajectory of domain solutions by simulated annealing method. (a) A subset of Hi-C data, covering 10 Mb
genomic region on chr10 of GM12878. (b) CD solutions, obtained from the Hi-C data in (a), at three values of T for λ = 0. The CD
solution at each T was constructed by 2, 000 sample trajectories being equilibrated. (c-e) We plot three quantities over varying T , where
the simulated annealing from high to low T (right to left in figure) was used as a sampling protocol. (c) The effective energy hamiltonian
H(s|C) . (d) The heat capacity Cv = 〈δH2〉/T 2. (e) The normalized mutual information (nMI) between the domain solution and Hi-C matrix
(log10 M). (f-i) Same analyses repeated for λ = 10.
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Figure S8: Domain solutions from Hi-C inputs with different size. Multi-CD is confirmed to be locality-preserving. That is, the sets
of domain solutions determined from Hi-C inputs with different sizes remain almost identical to each other. The Hi-C data demarcated by
the purple squares on the top panels are the input data used for Multi-CD analysis. The three panels from left to right on the bottom are
the domain solutions from 10 Mb, 20 Mb, and 40 Mb Hi-C inputs. (a) For λ = 0, the correlation coefficients of 20 Mb Hi-C and 40 Mb
Hi-C generated domain solutions with respect to the 10 Mb Hi-C generated one is 0.95 and 0.84, respectively. (b) Same calculations were
carried out for λ=10.
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Figure S9: Schematic of the Multi-CD algorithm. The diagram illustrates the three levels of iterations in Multi-CD. Ultimately, Multi-CD
identifies a family of chromatin domains at multiple scales as the control parameter λ is varied. At each fixed λ, the best domain solution
is found through a simulated annealing, in which the effective temperature T is gradually decreased. At each fixed T , the tempered
posterior distribution is approximated by the Markov chain Monte Carlo method, which samples multiple domain solutions, s, according to
the posterior distribution p(s|C) ∝ exp(−H(s|C;λ)/T ).
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