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Abstract7

Long-term tissue homeostasis requires a precise balance between stem cell self-renewal and the8

generation of differentiated progeny. Recently, it has been shown that in the adult murine brain,9

neural stem cells (NSCs) divide mostly symmetrically. This finding suggests that the required10

balance for tissue homeostasis is accomplished at the population level. However, it remains un-11

clear how this balance is enabled. Furthermore, there is experimental evidence that proneural12

differentiation factors not only promote differentiation, but also cell cycle progression, suggesting13

a link between the two processes in NSCs. To study the effect of such a link on NSC dynamics, we14

developed a stochastic model in which stem cells have an intrinsic probability to progress through15

cell cycle and to differentiate. Our results show that increasing heterogeneity in differentiation16

probabilities leads to a decreased probability of long-term tissue homeostasis, and that this effect17

can be compensated when cell cycle progression and differentiation are positively coupled. Using18

single-cell RNA-Seq profiling of adult NSCs, we found a positive correlation in the expression levels19

of cell cycle and differentiation markers. Our findings suggest that a coupling between cell cycle20

progression and differentiation on the cellular level is part of the process that maintains tissue21

homeostasis in the adult brain.22

1 Introduction23

It is now widely accepted that a precise balance of stem cell self-renewal and differentiation is24

required to maintain long term tissue homeostasis. There are two strategies to achieve this task:25

asymmetry on the cellular or on the population level [1, 2, 3]. In mammals, the applied home-26

ostatic strategies are different for every regenerating tissue, among which are the skin, intestine,27

lung, blood, bone marrow, heart, testis, uterus and mammary gland [4, 5, 6]. For instance, ap-28

proximately 85% of the stem cells in the skin divide asymmetrically [7], whereas stem cells in the29

intestine divide mostly symmetrically [8]. The mammalian brain also regenerates [9], whereas it30

remains unclear which homeostatic strategy is applied. For a long time, it has been thought that31

the strategy to maintain tissue homeostasis in the adult brain would rely on asymmetry on the32

cellular level [10]. This thinking is likely to have originated from the fact that during embryo neu-33

rogenesis, primary neural progenitors in the ventricular zone (VZ) divide mostly asymmetrically34

[11]. However, Obernier et al. have recently shown that stem cells in the adult brain divide mostly35

symmetrically [12]. This implies that for adult neurogenesis the strategy to maintain homeostasis36

is population asymmetry rather than asymmetry on the cellular level. Although the sustainment37

of adult organs via population asymmetry is a well-established concept and is found in other tis-38

sues, there are still many open questions. For example, how can a stable stem cell population be39

achieved when stem cells divide exclusively symmetrically?40

Homeostasis via population asymmetry could, for instance, be achieved by limited access to a41

stem cell niche in combination with a short-range cell fate determining signal [2, 13]. Conversely,42

if the stem cell population asymmetry is based on an internal regulation that is either intrinsic43

or coupled to an extrinsic signaling, it is unknown what mechanisms could govern the process. Is44

a molecular regulator enabling a balanced stochastic cell fate decision for a stem cell population?45

Interestingly, an experimental study revealed a molecular link between cell cycle progression of neu-46

ral progenitors and neuronal differentiation through the proneural gene Ascl1 [14]. Furthermore,47

recent results have shown that the transcription factor Ato in Drosophila, regulating the expression48

of Ase, the non-mammalian homolog of Ascl1, has a dual role in proliferation and differentiation49

of neural progenitors [15]. These findings suggest that the cell cycle progression and differentiation50

of embryonic NSCs are regulated in a coupled manner through the expression of proneural genes.51

At present it remains unclear, whether cell cycle progression and differentiation of adult NSCs is52

also regulated in a coupled manner, and, in addition to that, whether such a coupled regulation53

would have an effect on tissue homeostasis.54

Over the years, a number of insightful studies on renewal dynamics of stem cells have been55

conducted, ranging from models on stem cell dynamics in general [16, 17, 18, 19, 20, 21, 22, 23]56

to brain specific models [24, 25, 26, 27, 28, 29, 30, 31, 32]. The latter were used to explore57
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specific characteristics of neurogenesis, such as the role of fate determining signaling factors during58

development [28], or the migration of neuroblast cells to the olfactory bulb in adults [26]. Other59

models explored the conditions for homeostasis without further specifying the studied regenerating60

tissue [17, 19, 20, 21, 22, 23]. For instance, the dynamics of mutant accumulation in homeostatic61

tissues over time has been explored, showing that type and number of mutants depend on the62

division-tree length [23]. Especially the role of feedback signals controlling the balance between63

stem cell self-renewal and differentiation was investigated. It was shown that homeostasis based on64

stochastic processes needs to be regulated by negative regulatory feedback loops [20]. Furthermore,65

it was found that, depending on the applied feedback network, symmetric stem cell divisions can66

both stabilize or destabilize the homeostatic state of a population [21].67

In order to study how a coupling between cell cycle progression and differentiation on the single68

cell level affects homeostasis, we developed a model in which stem cells have an intrinsic probability69

to progress through cell cycle and to differentiate. In our model, stem cells divide symmetrically,70

representing for instance adult NSCs [12]. We chose a stochastic approach as it allows to study71

how fluctuations that emerge at the cellular level affect population dynamics. With our model, we72

investigated the dynamics of stem cell populations with uncoupled and coupled cell cycle activity73

and differentiation. We evaluated how robust populations are maintained and how many pre-74

differentiated cells are produced. Furthermore, we analyzed single-cell RNA-Seq data of adult75

NSCs for a qualitative comparison to our simulation results.76

This paper is organized as follows. In Section 2 we define our model and discuss the biological77

background underlying our assumptions. In Section 3 we present the results of our simulations78

(Section 3.1 and 3.2) and the RNA-Seq profiling analysis (Section 3.3), offering biological interpre-79

tation of the results. In Section 4 we discuss our findings.80
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2 Methods81

2.1 Modeling a stem cell82

We developed a stochastic model of stem cell dynamics in which the fate of a stem cell is determined83

by its probability to progress through cell cycle within a time frame ∆t and its probability to84

differentiate.85

In our model, we assign each stem cell a factor ε, where ε corresponds to:86 {
ε : probability to progress through cell cycle within ∆t,

(1− ε) : probability to not progress through cell cycle within ∆t,
(1)

with ε ∈ [0, 1]. The cell cycle activity ε is inverse proportional to the cell cycle time τcc and given87

by ε = ∆t
τcc

. Further, each stem cell has a88 {
α : probability to differentiate, and a

(1− α) : probability to maintain stemness,
(2)

with α ∈ [0, 1].89

Recent findings revealed that the divisions of NSCs in adult mice are mostly symmetrical [12].90

Our model mimics the dynamics of adult NSCs by allowing stem cells to divide only symmetrically,91

either into two stem cells (symmetric proliferative division) or into two pre-differentiated cells92

(symmetric differentiative division). If a stem cell does not progress through cell cycle, it remains93

unchanged while keeping its typical stem cell properties. The dynamics of a stem cell are described94

by a discrete-time Markov chain, where each iteration has a set of 3 states: symmetric proliferative95

division, symmetric differentiative division and no division. A graphical representation of one96

iteration is shown in Figure 1(a). The probability of differentiation and self-renewal are given by97

εα and ε(1− α), respectively.98

2.2 Modeling a stem cell population99

Several factors can lead to inhomogeneous populations, e.g. the spatial distribution of stem cells100

or biomolecular signaling. Our model allows for extrinsic and intrinsic sources of heterogeneity by101

assigning an individual value pair of cell cycle activity and differentiation probability (εk, αk) to102

every stem cell. In case of a symmetric proliferative division, the daughter cell does not inherit the103

properties of its mother cell, being in line with an experimental study that revealed independent104

cell cycle times between mother and daughter cells in the rat retina [33].105

We investigated stem cell populations with uncoupled and coupled cell cycle and differentiation106

probabilities. The probabilities (εk, αk) for every stem cell of a population were generated according107

to a multivariate normal distribution X ∼ N2(k,Σ) with vector k = (µε µα)T and covariance108

matrix109

Σ =

(
σ2
ε cσεσα

cσεσα σ2
α

)
. (3)

The mean values µε, µα and standard deviations σε, σα determine the normal distribution of cell110

cycle activities and differentiation probabilities, respectively. The correlation coefficient c ∈ [−1, 1]111

defines the type of coupling between cell cycle activity and differentiation.112

For our simulations, we assumed average cell cycle times of τcc ' 20h, which is close to measured113

cell cycle times for stem cells in the ventricular-subventricular zone (V-SVZ) of the adult mam-114

malian brain [34]. We chose a time step of ∆t = 1h. Figure 1(b) shows an exemplary histogram of115

cell cycle activities {ε} and the corresponding histogram of cell cycle times {τcc}. We chose σε such116

that the resulting distribution of the cell cycle times {τcc} resembles experimental measurements117

[33, 35]. Consequently, about 90% of all stem cells have a cell cycle time of (20± 10)h, while the118

remaining ones are slow cycling stem cells that accumulate over time.119
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Figure 1: (a) Schematic representation of one iteration step. The probability of differentiation and
self-renewal are given by εα and ε(1 − α), respectively. (b) Exemplary histogram of cell cycle
activities {ε} and corresponding histogram of cell cycle times {τcc}, with normal and log-normal
fit, respectively.

To study the dynamics of a stem cell population in a tissue, we summed over all stem cells at120

each iteration step to track the stem cell population size. The expected net change of the stem cell121

population B after one time step is given by122

∆B = Bt+1 −Bt =

Bt∑
k=1

εk · (1− 2αk), (4)

where Bt is the number of stem cells before the iteration step. For homeostasis, we assumed the123

stem cell population to be constant in size:124

〈εk(1− 2αk)〉k,t = 0. (5)

For all relevant parameter areas in our study, the differences in the solution for 〈αk〉k = µα between125

the statistically dependent and independent case, are negligible. Thus, we solve 〈εk〉k ·〈1−2αk〉k = 0126

to determine µα for the homeostatic case. The non-trivial solution is µα = 0.5, which implies that127

the stem cells are on average as likely to maintain stemness as to differentiate. We analyzed the128

average stem cell population dynamics for the non-homeostatic cases and found that a deviation129

from the homeostatic conditions (µα 6= 0.5 and µε > 0) leads to a measurable change in the stem130

cell population size within approximately two days (Section A.1).131

To evaluate and compare our simulations, we analyzed the number of differentiated daughter132

cells and the probability to maintain a stem cell population (robustness). We defined the differen-133

tiation rate D as the number of pre-differentiated cells C that were generated on average per time134

step, normalized by the initial stem cell population size B0:135

D =
Ctend

tend ·B0
, (6)

with tend being the simulation time. We simulated the stem cell population dynamics for different136

tend and we set B0 = 50. For every tend, we simulated n = 300 populations and evaluated how137

many stem cell populations ñ could maintain their size, i.e. were neither lost (Btend
= 0) nor did138

overgrow (Btend
≥ 2B0) within the given time period tend. We calculated the robustness R as139

follows:140

R =
ñ

n
. (7)
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2.3 Analysis of single-cell RNA-Seq data141

We analyzed public single-cell RNA-Seq data of adult NSCs [36] for a qualitative comparison to142

our simulation results. From the RNA-Seq data, we extracted cell cycle and differentiation marker143

expression levels, which we related to the cell cycle activity ε and differentiation probability α in144

our model. The goal of this analysis was, to extract information on the coupling between cell cycle145

activity and differentiation of adult NSCs.146

For our analysis, we plotted the expression levels of cell cycle markers (Mki67, Mcm2, Ccnd1147

[36, 37, 38]) and differentiation markers (Ascl1, Neurog2, Neurod2 [34, 39, 40]) on a log2 scale148

against each other, excluding data points with zero expression for both marker types. We then149

computed the Pearson correlation coefficient (PCC) and did a bootstrapping analysis to evaluate150

the accuracy of the determined PCC.151

3 Results152

3.1 Uncoupled cell cycle progression and differentiation153

First, we studied the dynamics of stem cell populations with uncoupled cell cycle activity and154

differentiation. To do so, we generated probabilities as described in Section 2.2 with various155

σα and c = 0. Two exemplary distributions are shown in Figure 2(a) and further exemplary156

distributions are shown in Figure A.2. We simulated the dynamics of two stem cell population types157

with distinct differentiation heterogeneity levels (σα = 0.02, σα = 0.08) for different simulation158

times tend. We found that for both population types the average differentiation rates D are not159

significantly changing for different simulation times, while a population with higher differentiation160

heterogeneity tends to generate more differentiated progeny (Figure 2(b), top). Evaluating the161

robustness R, we observed that for both differentiation heterogeneity levels, the probability to162

maintain a population decreases for increasing simulation times (Figure 2(b), bottom). Although163

the robustness of populations with lower differentiation heterogeneity decreases significantly slower,164

there is no life-long homeostasis for a population with uncoupled cell cycle and differentiation165

activities.166
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Figure 2: (a) Two exemplary stem cell populations with uncoupled cell cycle and differentiation
and distinct differentiation heterogeneity levels. The histograms show an overlay of cell cycle
activity and differentiation probability distributions, respectively, where the bars for σα = 0.02 are
transparent. (b) Average differentiation rates D (top) and average robustness R (bottom) of two
stem cell population types with uncoupled cell cycle and differentiation for different simulation times
tend. The level of heterogeneity affects the probability for maintaining homeostasis significantly,
while the production of differentiated progeny is not affected.
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Focusing on long-term simulations (tend = 800h ' one month), we observed that the level of167

heterogeneity in the differentiation probabilities has a strong impact on homeostasis: the higher168

the differentiation heterogeneity level, the lower the probability to maintain a stem cell population169

(Figure 3(a)). Furthermore, the probability for overgrowth among the unstable cases increases170

from around 50% for σα = 0 to 100% for σα = 0.12. Both results are likely to be caused by171

the dynamics of stem cells that have a high cell cycle activity and are more likely to maintain172

stemness: these cells cause a stem cell population to (over-)grow and their number increases173

with increasing differentiation heterogeneity. Moreover, the long-term simulations revealed that174

the differentiation rates D of populations with a robustness ≥ 10% do not significantly change175

for various differentiation heterogeneity levels (Figure 3(b)). However, stem cell populations with176

heterogeneous differentiation probabilities tend to be larger and thus have on average slightly higher177

differentiation rates than stem cell populations with homogeneous differentiation probabilities.178
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Figure 3: Long-term (tend = 800h) robustness and differentiation rates of stem cell populations
with uncoupled cell cycle and differentiation for various σα. (a) The higher σα, the lower the
probability for a population to be maintained. (b) The level of heterogeneity in the differentiation
probabilities does not affect the differentiation rates significantly. More heterogeneous differentia-
tion probabilities induce the generation of more differentiated progeny.

3.2 Coupled cell cycle progression and differentiation179

Having analyzed uncoupled stem cell populations, we investigated stem cell populations with cou-180

pled cell cycle and differentiation activities. Again, we generated probabilities as described in181

Section 2.2 with various σα and c 6= 0. Two exemplary distributions are shown in Figure 4(a) and182

further exemplary distributions are shown in Figure A.2. We studied the dynamics of stem cell183

populations with coupled cell cycle and differentiation activities and σα = 0.08. We found that184

for all simulation times, a negative coupling results in significantly higher average differentiation185

rates D than a positive coupling (Figure 4(b), top). Evaluating the robustness R, we observed186

that for both, populations with positive and negative coupling, the probability to be maintained in187

the long term is lower than in the short term (Figure 4(b), bottom). The probability to maintain188

homeostasis decreases significantly slower for populations with a positive coupling than for popu-189

lations with a negative coupling. However, there is no life-long homeostasis for a population with190

coupled cell cycle and differentiation activities.191
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Figure 4: (a) Two exemplary coupled stem cell populations with positive and negative correlation.
The histograms show an overlay of cell cycle activity and differentiation probability distributions,
respectively, where the bars for c = −0.9 are transparent. (b) Average differentiation rates D (top)
and average robustness R (bottom) of two coupled stem cell population types for different simulation
times tend. A negative coupling increases differentiation rates, while a positive coupling increases
the probability for maintaining homeostasis.

Focusing on long-term simulations (tend = 800h ' one month), we observed that the type of192

coupling between cell cycle activity and differentiation has a strong impact on homeostasis. A193

positive correlation increases the probability for a tissue to be maintained in the long term (Figure194

5(a)) and decreases its average differentiation rates D (Figure 5(b)). In contrast, a negative195

correlation decreases the probability for a tissue to be maintained in the long term. At the same196

time, it results in the highest average differentiation rates D for stem cell populations with a197

robustness ≥ 10%. Furthermore, we found that the probability for overgrowth among the unstable198

cases merely depends on the differentiation heterogeneity level and is independent of the coupling199

type. Stem cell populations with a coupling between cell cycle activity and differentiation mainly200

consist of two subpopulations: slow dividing stem cells and fast dividing stem cells, which are201

either more likely to maintain stemness or more likely to differentiate. For populations with a202

negative coupling, the slow dividing stem cells are more likely to differentiate and the fast dividing203

stem cells are more likely to maintain stemness, which causes populations to (over-)grow. At the204

same time, because these stem cell populations are larger, they enable the generation of more205

pre-differentiated progeny compared to populations with a positive coupling. For populations with206

a positive coupling, the fast dividing stem cells are more likely to differentiate, while the cells that207

are more likely to maintain stemness divide slowly, which enables robustness of a population in208

the long term.209
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Figure 5: Long-term (tend = 800h) robustness and differentiation rates of stem cell populations
with coupled cell cycle and differentiation for various σα. (a) A positive coupling increases the
probability for maintaining homeostasis. (b) A negative coupling increases differentiation rates,
while a positive coupling lowers them.

3.3 Single-cell RNA-Seq data of adult murine NSCs210

In our simulations, we observed the most robust stem cell populations for a positive correlation211

between cell cycle activity and differentiation (Figure 5(a)). We also found a positive correlation212

between cell cycle and differentiation marker expression levels in the adult murine SVZ (Figure213

6(a)). This finding indicates that an adult NSC population is likely to prioritize its robust main-214

tenance rather than a high amount of differentiated progeny. We saw this positive correlation215

confirmed when we analyzed the subpopulation of stem cells which have non-zero expression levels216

in both, cell cycle and differentiation markers (A.3).217

An underlying mechanism for a coupling of cell cycle and differentiation on the molecular level218

could be driven by proneural genes regulating both processes in a coupled manner (Figure 6(b)).219

Determining which molecular players might be involved in such a regulation will require further220

experimental investigation.221
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Figure 6: (a) Analysis of single-cell RNA-Seq data of adult mouse NSCs [36] reveals a positive
correlation between cell cycle and differentiation marker expression levels. (b) Schematic represen-
tation of a possible underlying molecular mechanism of a coupled regulation of cell cycle progression
and differentiation.
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4 Discussion222

Homeostasis is an important mechanism for the sustainment of adult tissues during life. Various223

organs regenerate via tissue homeostasis, and there is evidence that also complex organs like the224

brain make use of it. Here, we presented a stochastic model to study stem cell dynamics in the225

adult brain. We focused on the interplay between cell cycle activity and differentiation on the226

cellular level and its impact on stem cell population dynamics. We also analyzed single-cell RNA-227

Seq data of adult NSCs for a qualitative comparison to our simulation results. In the following,228

we present and discuss the main findings of this study.229

Our simulations showed that the probability to maintain homeostasis decreases with increasing230

differentiation heterogeneity. Furthermore, we found that a coupling of cell cycle and differentiation231

has an effect on stem cell population dynamics, and, depending on whether the coupling is positive232

or negative, increases or decreases the robustness of homeostasis in an adult tissue, respectively. A233

coupling between cell cycle activity and differentiation leads to the generation of two subpopulations234

within a stem cell population. There are slow dividing and fast dividing stem cells, which are either235

more likely to maintain stemness or more likely to differentiate. In a population with a positive236

coupling, the fast dividing stem cells are more likely to differentiate and the slow dividing stem237

cells are more likely to maintain stemness. This combination leads to an increase in the typical238

lifetime of a stem cell pool. How subpopulations within a stem cell population could be generated239

remains unclear. For instance, limited access to a stem cell niche in combination with a short range240

signal can possibly generate two or more subpopulations of stem cells.241

Although a positive coupling between cell cycle and differentiation leads to a significantly higher242

long-term robustness for heterogeneous differentiation probabilities, it is also advantageous for a243

stem cell population to keep the heterogeneity level of differentiation low. Based on our theoretical244

analysis, we cannot conclude which of these scenarios is probably the case in the adult brain. Other245

studies report heterogeneous gene expression amongst stem cells within a population, suggesting the246

existence of differentiation heterogeneity within a NSC population. For instance, there is evidence247

for heterogeneity in gene expression among hematopoietic stem cells [41, 42, 43]. Furthermore,248

heterogeneity among the NSCs in the mammalian brain prevails in terms of proliferation dynamics249

and regional identity [44]. A central question is, whether the heterogeneity is a reflection of intrinsic250

differences of NSCs or is caused by an external signal [10].251

Single-cell RNA-Seq is a powerful method to compare gene expression levels of cells within a252

population. Our qualitative analysis of single-cell RNA-Seq data of adult NSCs showed a positive253

correlation between the expression of cell cycle markers and differentiation markers, indicating that254

cell cycle activity and differentiation are indeed coupled. As RNA-Seq data has several limitations,255

such as providing a snapshot of gene expression in time and allowing for a relative quantification256

of gene expression levels only, we can neither conclude that the differentiation probabilities are257

heterogeneous and positively coupled nor that they are rather homogeneous. Nonetheless, the258

idea that both, cell cycle progression and differentiation, are controlled by the same molecular259

players could explain a positive correlation between these two key components of homeostasis.260

The proneural gene Ascl1, associated with differentiation of neuronal progenitor cells [14], could261

be part of a molecular network that regulates cell cycle progression and differentiation of NSCs in262

a coupled manner. The existence and the details of such a regulating network will require further263

experimental investigation, as well as the identification of additional molecular players.264

In this study, our focus was on exploring the effect of a coupled internal regulation of cell cycle265

activity and differentiation on stem cell population dynamics. Explicit regulating factors are not266

part of our model, as they were intensively explored in former studies [17, 21]. As there is no267

long-term homeostasis without external control, we propose that feedback signaling among the268

stem cells or signaling from the stem cell niche are the building blocks to maintain a stem cell269

population. In addition, a coupling of cell cycle activity and differentiation of stem cells gives a270

stem cell population an internal robustness and is thus likely to be part of a homeostatic strategy.271

Furthermore, a certain, if only small, amount of adult NSCs dividing asymmetrically can further272

increase the stability of homeostasis, as well as stem cell quiescence.273

If the balance between stem cell self-renewal and differentiation gets out of equilibrium, the274
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stem cell population suffers overgrowth or depletion of the stem cell population, resulting in fatal275

consequences for the organ such as tumorigenesis [3, 45, 46]. Our simulation results have shown276

that a stem cell population whose cell cycle activity and differentiation are negatively correlated is277

rather unstable: it tends to overgrow, while producing many differentiated cells at the same time.278

This results in the question whether in case of disease, a regulating molecular mechanism might279

possibly be altered and adopt a state that is similar to the negatively coupled one. In summary, in280

terms of neurogenesis and neural diseases related to tissue overgrowth, the molecular link between281

cell cycle progression and differentiation in NSCs is worthwhile to study further.282

Materials283

Code Availability284

For simulations and data analysis we used Python programming language (Python Software Foun-285

dation, https://www.python.org/).286

Our code is available on https://github.com/astopka/StochasticModelNSC.git.287

Data Availability288

For the analysis of single-cell RNA-Seq data we used the public dataset from [36] and the processed289

data was downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67833.290
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[31] Picco N, Garćıa-Moreno F, Maini PK, Woolley TE, Molnár, Zoltán. Mathematical Modeling374

of Cortical Neurogenesis Reveals that the Founder Population does not Necessarily Scale with375

Neurogenic Output. Cerebral Cortex. 2018;(May):3–5. doi:10.1093/cercor/bhy068.376

[32] Ziebell F, Dehler S, Martin-Villalba A, Marciniak-Czochra A. Revealing age-related377

changes of adult hippocampal neurogenesis using mathematical models. Development.378

2018;145(1):dev153544. doi:10.1242/dev.153544.379

13

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 26, 2019. ; https://doi.org/10.1101/530543doi: bioRxiv preprint 

https://doi.org/10.1101/530543


[33] Gomes FLAF, Zhang G, Carbonell F, Correa JA, Harris WA, Simons BD, et al. Reconstruction380

of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell381

fate decisions. Development. 2011;138(2):227–235. doi:10.1242/dev.059683.382

[34] Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A. Cell cycle383

and lineage progression of neural progenitors in the ventricular-subventricular zones of384

adult mice. Proceedings of the National Academy of Sciences. 2013;110(11):E1045–E1054.385

doi:10.1073/pnas.1219563110.386

[35] Yates CA, Ford MJ, Mort RL. A Multi-stage Representation of Cell Proliferation as a Markov387

Process. Bulletin of Mathematical Biology. 2017;79(12):2905–2928. doi:10.1007/s11538-017-388

0356-4.389

[36] Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-Cell390

Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated391

upon Brain Injury. Cell Stem Cell. 2015;17(3):329–340. doi:10.1016/j.stem.2015.07.002.392

[37] Kelly TJ, Brown GW. Regulation of Chromosome Replication. Annu Rev Biochem.393

2000;69:829–80. doi:10.1146/annurev.biochem.69.1.829.394

[38] Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D 1 is a nuclear protein required395

for cell cycle progression in G1. Genes & Dev. 1993;(7):812–821. doi:10.1101/gad.7.5.812.396

[39] Kele J, Simplicio N, Ferri ALM, Mira H, Guillemot F, Arenas E, et al. Neurogenin 2 is required397

for the development of ventral midbrain dopaminergic neurons. Development. 2004;8:495–505.398

doi:10.1242/dev.02223.399

[40] Messmer K, Shen Wb, Remington M, Fishman PS. Induction of neural differentiation by400

the transcription factor NeuroD2. International Journal of Developmental Neuroscience.401

2012;30(2):105–112. doi:10.1016/j.ijdevneu.2011.12.006.402

[41] Hu M, Krause D, Sharkies S, Dexter M, Heyworth C, Enver T. Multilineage gene expression403

preceded commitment in the hemopoietic system. Genes and Development. 1997;11:774–785.404

doi:10.1101/gad.11.6.774.405

[42] Enver T, Heyworth CM, Dexter TM. Do Stem Cells Play Dice? blood. 1998;.406

[43] Haas S, Trumpp A, Milsom MD. Causes and Consequences of Hematopoietic Stem Cell407

Heterogeneity. Cell Stem Cell. 2018;22(5):627–638. doi:10.1016/j.stem.2018.04.003.408

[44] Chaker Z, Codega P, Doetsch F. A mosaic world: puzzles revealed by adult neural stem cell409

heterogeneity. Wiley Interdisciplinary Reviews: Developmental Biology. 2016;5(6):640–658.410

doi:10.1002/wdev.248.411

[45] Moore KA. Stem Cells and Their Niches. Science. 2006;311(5769):1880–1885.412

doi:10.1126/science.1110542.413

[46] Buszczak M, Signer RAJ, Morrison SJ. Cellular differences in protein synthesis regulate tissue414

homeostasis. Cell. 2014;159(2):242–251. doi:10.1016/j.cell.2014.09.016.415

14

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 26, 2019. ; https://doi.org/10.1101/530543doi: bioRxiv preprint 

https://doi.org/10.1101/530543


A Appendix416

A.1 Average stem cell population dynamics417

We studied the average stem cell population dynamics, assuming constant average stem cell prop-418

erties ε = 〈εk〉k, α = 〈αk〉k for any time. Equation (4) then becomes419

dB

dt
= [ε · (1− 2α)]B(t) (8)

with the solution420

B(t) = B0 · e[ε·(1−2α)]t. (9)

We characterized the evolution of a stem cell population by bringing the initial population size421

B0 in relation to the final population size Btend
:422

ρB =
Btend

B0
. (10)

There a three possible scenarios for the evolution of a stem cell population over time: it can be423

constant in size (ρB = 1), grow (ρB > 1) or shrink (ρB < 1), where the two latter cases occur under424

non-homeostatic conditions (Figure A.1). We analyzed the non-homeostatic cases and found that425

even a minimal deviation from the homeostatic cell cycle and differentiation activity leads to a426

vast change in the stem cell population size within the time of two average cell cycles (tend = 40h).427

Both, overgrowth and depletion, become stronger with an increasing average cell cycle activity428

〈εk〉k.429
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Figure A.1: Average stem cell population dynamics for the homeostatic cases (black lines) and the
non-homeostatic cases for tend = 40h.
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A.2 Exemplary distributions of stem cell probabilities430
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Figure A.2: (a) Uncoupled probabilities with σα = 0.04, c = 0. (b) Uncoupled probabilities with
σα = 0.12, c = 0. (c) Coupled probabilities with σα = 0.08, c = 0.5. (d) Coupled probabilities with
σα = 0.08, c = 1.0. (e) Coupled probabilities with σα = 0.08, c = −0.5. (f) Coupled probabilities
with σα = 0.08, c = −1.0.
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A.3 Subpopulation in single-cell RNA-Seq data of adult murine NSCs431

Here, we analyzed the subpopulation of cells that do have non-zero expression levels in both gene432

marker sets. For this analysis, we excluded cycling cells that do not express differentiation markers433

and cells that do express differentiation markers without cell cycle activity. The results show, that434

also for this subpopulation there is a positive correlation between cell cycle and differentiation in435

the adult (Figure A.3).436
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Figure A.3: Cell cycle marker expression levels against cell differentiation marker expression
levels of those adult mouse NSCs [36], that express both, cell cycle and differentiation markers.
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