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Abstract  1	

Ecosystem processes result from interaction between organisms. When interactions 2	

are local, the spatial organization of organisms defines their network of interactions, 3	

and thus influences the system’s functioning. This can be especially relevant for 4	

microbial systems, which often consist of spatially structured communities of cells 5	

connected by a dense interaction network. Here we measured the spatial interaction 6	

network between cells in microbial systems and identify the factors that determine it. 7	

Combining quantitative single-cell analysis of synthetic bacterial communities with 8	

mathematical modeling, we find that cells only interact with other cells in their 9	

immediate neighbourhood. This short interaction range impacts the functioning of the 10	

whole system by reducing its ability to perform metabolic processes collectively. Our 11	

experiments and models demonstrate that the spatial scale of cell-to-cell interaction 12	

plays a fundamental role in understanding and controlling natural communities, and in 13	

engineering microbial systems for specific purposes. 14	

 15	

Significance Statement  16	

Communities of interacting microbes perform fundamental processes on earth. We do 17	

not understand well how these processes emerge from the interactions between 18	

individual microbial cells. Our work investigates how strongly individual cells 19	

interact and how the strength of the interaction depends on the distance between cells. 20	

The discovery that individual cells ‘live in a small world’, i.e. they only interact with 21	

a small number of cells around them, changes our understanding of how cells in 22	

natural microbial communities are metabolically coupled and how their spatial 23	

arrangement determines emergent properties at the community level. Our quantitative 24	

single-cell approach allows to address central questions on systems composed of 25	

interacting genotypes and to increase our understanding and ability to control 26	

microbial communities.  27	

Text 28	

Microbial systems perform processes that ultimately sustain all of life (1, 2). These 29	

processes are often based on metabolic interactions between different types of 30	

organisms (3–5) and are thus an emergent property of microbial systems. Metabolic 31	

interactions are often essential because many microorganisms are unable to perform 32	

all anabolic functions required for life and thus need to obtain compounds from other 33	
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species (6–8). These metabolic interactions are expected to decay with the distance 34	

between individual cells (9), which thus determines whether cells can or and cannot 35	

interact. Little is known about the spatial scale at which cells interact and the 36	

biological parameters that determine this scale. The spatial scale of interaction is a 37	

fundamental property of any microbial system consisting of multiple genotypes 38	

because it defines the network of interactions that can occur. 39	

 40	

Results and Discussion 41	

The spatial scale over which individual cells interact can have a strong influence on 42	

cellular dynamics, as we show with a simple simulation of multiple genotypes that 43	

need to exchange essential metabolites in order to grow (Fig. 1a). This simulation 44	

reveals that the reproductive success of individuals is lower when interactions are 45	

limited to immediate neighbours (Fig. 1b) because often these neighbours are their 46	

kin. This effect becomes stronger when organisms depend on metabolites from more 47	

than one other cell type; a small range of interaction reduces the probability that all 48	

required partners are present in the interaction neighbourhood (Fig. 1b). These results 49	

indicate that collective metabolism might be hindered when interactions are short-50	

ranged.  51	

 52	

Our first goal was thus to quantify the spatial range of interaction between cells in a 53	

microbial system. We measured this range by growing a synthetic consortium in 54	

microfluidic chambers (Fig. 2b, Sup. Video S1) and quantifying how the growth rate 55	

of cells depends on the identity of their neighbours (Fig. 2c, Sup. Video S2). The 56	

synthetic consortium (Fig. 2a) is composed of two auxotrophic Escherichia coli 57	

strains that are unable to synthesize proline and tryptophan, respectively. Because 58	

cells naturally leak out amino acids (10, 11) a pair of auxotrophs can grow together by 59	

exchanging amino acids. In the absence of biological activity, amino acids would 60	

diffuse throughout the microfluidic chamber in less than a second to yield a 61	

homogenous environment; however cells can modify the local amino acid 62	

concentration and thereby influence their neighbours’ growth.  63	

 64	
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To quantify the spatial range at which cells interact, we correlated the growth rates of 65	

individual auxotrophic cells with the presence of their complementary partner in the 66	

neighbourhood. Specifically, we measured the fraction of the complementary partner 67	

within a distance d from a cell’s membrane, and determined the value of d that leads 68	

to the best prediction of the cell’s growth rate. We call this distance the interaction 69	

range.  70	

 71	

This analysis revealed that the interaction range is on the order of one cell length (Fig. 72	

3a). This is found consistently across ten biological replicates (~15,000 cells analyzed 73	

in total). Specifically, the interaction range of the tryptophan auxotroph cells is 74	

3.2±0.4 µm (mean ± standard error of the mean), while the interaction range of the 75	

proline auxotroph cells is 12.1±0.5 µm (significantly larger, p<10-5, paired t-test, 76	

n=10). In other words, these cells live in a small world: they are only affected by a 77	

small group of individuals around them.   78	

 79	

Our next goal was to identify the mechanisms that explain the small range of 80	

interaction. We addressed this question with an individual-based model (Fig. 4a). We 81	

assumed that the growth rate of auxotrophic cells is limited by the uptake of the 82	

amino acid that they need, and that cells take up amino acids actively and leak them 83	

passively. All model parameters are taken from literature, apart from the two leakage 84	

rates, which are estimated from the data (Supplementary Information). Our model 85	

predicts the individuals’ growth given the combined activities of all the cells in the 86	

system and captures how growth depends on neighbourhood composition (Fig. 4c) 87	

and at what spatial scale (proline auxotroph: 15.0 µm model, 12.5 µm data, 88	

tryptophan auxotroph: 3.0 µm model, 3.2 µm data, Fig. 4b).  89	

 90	

The model shows that the interaction range is set by fundamental biochemical 91	

parameters. In fact, the interaction range is directly proportional (Fig. 4e) to a second 92	

length scale, which we can calculate analytically: the growth range, the length scale 93	

describing the decrease in growth when the auxotrophs are arranged as in Fig. 4d. 94	

One can show that the growth range, and thus the interaction range between cells, 95	

depends more strongly on the amino acid uptake rate (square root dependence) than 96	

on the leakage rate (logarithmic dependence, Supplementary Information). The 97	

interaction range is generally small in systems where leakage is slow and uptake of 98	
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the exchanged compounds is fast compared to their diffusion (Fig. 4f). As the 99	

diffusion constant does not vary significantly for small molecules such as amino acids 100	

(DΔtrpC/DΔproC ~ 0.75), the interaction range is primarily modulated by the uptake rates 101	

(ru
ΔtrpC/ru

ΔproC ~16). Our modeling framework can be adapted to estimate the 102	

interaction range in other multi-genotype systems where the molecules mediating the 103	

interactions are taken up or degraded by individuals. 104	

 105	

Next, we considered how this small interaction range affects community dynamics. 106	

Our communities show consistent dynamics: within about 25 hours all replicate 107	

communities reach a steady state composition where the tryptophan auxotroph is in 108	

minority (median fraction of total biomass = 0.23, Fig. 5a). This is in line with the 109	

growth dynamics that we measured at the single-cell level: to reach an equal growth 110	

rate of e.g. 0.1 per hour, the tryptophan auxotrophs need ~90% of the complementary 111	

partner within a small neighbourhood, while the proline auxotrophs need four times 112	

less within a much larger neighbourhood (Fig. 3c). The single cells’ properties thus 113	

determine the community steady state.  114	

 115	

Does the small interaction range that we measured in our experimental system limit 116	

the rate at which individual cells can grow? This question brings us back to our 117	

central hypothesis, that short-range interactions limit the exchange of resources and 118	

hinder collective metabolism. One would expect the individual cells in the multi-119	

genotype system to grow faster if they would increase their mixing or their interaction 120	

range. We tested these predictions by applying our model to experimentally observed 121	

spatial arrangements. Specifically, the predicted average growth rate of individuals, 122	

and therefore the growth rate of the community as a whole, is higher when we 123	

randomize arrangements and disrupt kin clusters (Fig. 5b) or when we simulate an 124	

increase in the interaction range by lowering the uptake rates of amino acids (Fig. 5c).  125	

 126	

While we expect that the spatial scale of interaction fundamentally affects the 127	

functioning and dynamics of any microbial multi-genotype system, the specific 128	

effects will depend on the nature of the interactions. For example, short-range 129	

interactions can stabilize the cooperative production of molecules, as they ensure that 130	

these molecules are only accessible to cells that also contribute to production, and 131	

inaccessible to non-producing individuals (12, 13). In contrast, short-range 132	
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interactions generally harm mutualistic cross-feeding communities (14), although they 133	

can have a stabilizing effect by preventing ecological invasion by non-contributing 134	

mutants (15).  135	

 136	

The ecological and evolutionary outcome of cooperation and competition can change 137	

dramatically when interactions are limited to the local neighbourhood (9, 16, 17). 138	

Quantifying the interaction range and linking it to biochemical parameters of the 139	

system is therefore essential for understanding the functionality and dynamics of 140	

microbial multi-genotype systems. We found that interaction ranges are small 141	

whenever the uptake or degradation of the molecules mediating the interaction is fast 142	

compared to their diffusion in the environment, and when the density of individuals is 143	

high. We thus expect interactions to be local in dense microbial systems where cells 144	

interact through the exchange of cellular building blocks, quorum sensing molecules 145	

and metabolites that bind (18) or digest extracellular nutrients. Our work 146	

demonstrates that the spatial arrangement of organisms can significantly impact the 147	

functioning of microbial systems when the spatial scale of interaction is small. 148	

Knowing at which scale organisms interact is crucial for understanding and 149	

controlling natural communities, and for engineering microbial systems for desired 150	

purposes.  151	
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Methods 

 

Strains 152	

All experiments were performed using strains derived from MG1655; these strains are 153	

ΔtrpC-GFP (MG1655 trpC::frt, PR-sfGFP), ΔtrpC-RFP (MG1655 trpC::frt, PR-154	

mCherry), ΔproC-GFP (MG1655 proC::frt, PR-sfGFP), and ΔproC-RFP (MG1655 155	

proC::frt, PR-mCherry). The ΔtrpC strains are unable to produce proline due to a 156	

deletion in proC, the ΔtrpC are unable to produce tryptophan due to a deletion in 157	

trpC(19). The auxotrophic strains were made by transferring the respective 158	

kanamycin cassettes from the keio-collection (20) into TB204 and TB205 from the 159	

lab strain collection using lambda Red mediated recombination (21). TB204 and 160	

TB205 are E. coli MG1655 derivatives that constitutively express sfGFP or mCherry 161	

under the PR promoter from the chromosome. In brief, the kanamycin cassette 162	

including the homologous flanking regions were amplified by PCR from JW0377 163	

(proC::kan) and JW1254 (trpC::kan) and transformed into TB204 and TB205 164	

harbouring the pSim8 plasmid (kindly provided by Donald L. Court). Primer 165	

sequences used: 166	

U_proC_fw: CAT AAA GTC ATC CTT TGT TGG G 167	

D_proC_rv: CTT TAC GGA TTA GTG TGG GG 168	

U_trpC_fw: AAC GTC GCC ATG TTA ATG CG 169	

D_trpC_rv: GAA CTG AGC CTG AAA TTC AGG 170	

The kanamycin cassette was transferred into a fresh strain of TB204 or TB205 using 171	

P1 mediated generalized transduction. Upon successful transduction, the phenotypes 172	

of the strains were confirmed (no growth without proline or tryptophan) and the 173	

kanamycin cassettes removed from the genome using the FLP-recombinase from 174	

plasmid pCP20(21). We confirmed the ability of our two auxotrophs to grow together 175	

by receiving the amino acid they cannot produce from their partner, as reported in 176	

previous work(19). 177	

 178	

Media and growth condition 179	

Monocultures of the two auxotrophs strains were started from a single colony taken 180	

from a LB-agar plate and were grown overnight at 37°C in a shaker incubator. The 181	

cells were growing overnight in M9 medium (47.76 mM Na2HPO4, 22.04 mM 182	

KH2PO4, 8.56 mM NaCl and 18.69 mM NH4Cl) supplemented with 1mM MgSO4, 0.1 183	
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mM CaCl2, 0.2% glucose (all from Sigma-Aldrich), 50 µg/L of L-proline (434 mM) 184	

and 20 µg/L L-tryptophan (98 mM) and 0.1% Tween-20 (added to facilitate loading 185	

of cells in microfluidic device). Cells were loaded in stationary phase in a 186	

microfluidic device and grown in the same media. After approximately 10 hours, cells 187	

exit lag phase and started to fill the chambers. The medium was then switched to M9 188	

medium + 0.2% glucose + 0.1% Tween-20 with no amino acids. The medium was fed 189	

at a flow rate of 0.5 ml/h for the whole duration of experiment (approximately three 190	

days). Imaging was started three hours before switching to this medium, to have a 191	

control of the cell’s growth with amino acids in the medium. 192	

 193	

Microfluidic experiment 194	

The microfluidic devices consisted of chambers of 60x60 µm and 0.76 µm in height 195	

facing a feeding channel of 22 µm in height and 100 µm wide. Masks for 196	

photolithography were ordered at Compugraphics (Jena, Germany). A two-step 197	

photolithography was used to make SU8 molds on silicon wafers. 198	

Polydimethylsiloxane (PDMS, Sylgard 184 Silicone Elastomer Kit, Dow Corning) 199	

was mixed in a ratio of 1.5∶10 and poured on the dust-free wafer, degassed in a 200	

desiccator for 30 minutes, and baked for around one hour at 80°C for curing. PDMS 201	

chips of approximately 2 cm×3.5 cm were cut out around the structures on the wafer. 202	

Holes for medium supply and outlet were punched (diameter of holes 1.2 mm). 203	

PDMS chips were bound to round (50 mm diameter) glass coverslips (Menzel-Gläser, 204	

Braunschweig, Germany) by treating them for 30 seconds at maximum power in a 205	

Plasma Cleaner (PDC-32G-2, Harrik Plasma, New York, USA), and left on a heated 206	

plate at 100°C for one minute for binding. Before an experiment, a small amount of 207	

medium was flushed into the channels using a pipette to wet the chambers. Then air 208	

was pushed through the main channel (medium remains in chambers). Cells in 209	

stationary phase, from overnight culture (14 h approximately) were concentrated 210	

approximately 100 times by centrifugation (5,000×g, 5 min.) and loaded into the chip 211	

using a pipette. Cells where pushed in the side chambers with the help of small air 212	

bubbles flowing through the main channel. Once a sufficient number of cells were 213	

pushed inside the chambers, fresh medium was pumped through the flow channel. For 214	

all experiments, syringe pumps (NE-300, NewEra Pump Systems) with 50 ml 215	

syringes containing the medium were used. Tubing (Microbore Tygon S54HL, ID 216	

0.76 mm, OD 2.29 mm, Fisher Scientific) was connected to the syringes using 20G 217	
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needles (0.9 mm×70 mm), which were directly inserted into the tubing. Smaller 218	

tubing (Teflon, ID 0.3 mm, OD 0.76 mm, Fisher Scientific) was then inserted into the 219	

bigger tubing and directly connected to the inlet holes in the PDMS chip. Medium 220	

switches were performed by disconnecting the bigger tubing from the syringe and 221	

reconnecting it to new syringes. All experiments were run at a flow rate of 0.5 ml/h. 222	

The flow rate is high enough that amino acids do not accumulate in the feeding 223	

channel and are not exchanged via the main channel. In fact no growth was observed 224	

in chambers hosting only one of the two auxotrophs during the whole duration of the 225	

experiment.  226	

 227	

Microscopy 228	

Time-lapse microscopy was done using fully automated Olympus IX81 inverted 229	

microscopes (Olympus, Tokyo, Japan). Images were taken using a 100X NA1.3 oil 230	

objective (Olympus) with 1.6X manual auxiliary magnification and an ORCA-flash 231	

4.0 v2 sCMOS camera (Hamamatsu, Hamamatsu, Japan). Fluorescent imaging was 232	

done using a X-Cite120 120 Watt high pressure metal halide arc lamp (Lumen 233	

Dynamics, Mississauga, Canada) and Chroma 49000 series fluorescent filter sets 234	

(N49002 for GFP and N49008 for RFP, Chroma, Bellows Falls, Vermont). Focus was 235	

maintained using the Olympus Z-drift compensation system and the entire setup was 236	

controlled with Olympus CellSens software. The sample was maintained at 37°C with 237	

a microscope incubator (Life imaging services, Basel, Switzerland). Several positions 238	

were imaged on the same microfluidic device and images were taken every ten 239	

minutes. 240	

 241	

Image analysis 242	

All image processing was done using Matlab (version 2016A and newer, MathWorks, 243	

Natick, Massachusetts) and Vanellus software (credit D. J. Kiviet, accessible at: 244	

http://kiviet.com/research/vanellus.php). Time-lapse frames were first registered and 245	

cells were then segmented using customized segmentation algorithms. Two different 246	

algorithms for segmentation were used: the ‘segmentation of biomass algorithm’ and 247	

the ‘segmentation of cells algorithm’. The ‘segmentation of biomass algorithm’ 248	

identifies the green and red biomass in the chamber: images were first cropped along 249	

the profile of the microfluidic chambers (up to 5 micrometers from the outlet), and 250	

biomass was segmented on the phase contrast image and assigned to its relative 251	
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colour after deconvolution; the algorithm was optimized to give the most accurate 252	

estimation of the area occupied by cells of each type and not to segment the single 253	

individuals. The ‘segmentation of cells algorithm’ identifies individual cells for 254	

subsequent single cell growth estimation (elongation rate). In this case, cells were 255	

segmented on the green or the red fluorescent image, according to their fluorescence 256	

colour. Single cell location was tracked using an optical flow based algorithm 257	

(described below) and the tracking was manually corrected to prevent mistakes. 258	

Subparts of the chambers were randomly selected for the single cell segmentation and 259	

tracking and 250 cells per chamber were analyzed on average, giving a total of 15,475 260	

cells across 61 chambers. The area close (within 5 µm) to the open end of the 261	

chamber was not considered for analysis as amino acid concentrations in this area are 262	

lower because they are washed out into the main flow channel. The tracking 263	

algorithm based on optical flow can be described in three steps: 1) estimate vector 264	

field of movement M between subsequent segmented images S1 and S2  using 265	

Farneback(22) algorithm 2) back-transform the second image S2,backtransformed = - M • 266	

S2, to obtain a prediction of how S1 should look like based on the vector field of 267	

motion 3) for each cell in S1 determine the area overlap with cells in  S2,backtransformed ; 268	

cells in S1  are tracked to cells in S2  based on maximum overlap area.  269	

 270	

Cell elongation rate  271	

Cell elongation rates were calculated by fitting the exponential curve L(t)=L(0) 2µ·t to 272	

the cell length L over time. The fitting was done using a linear fit on the logarithm of 273	

the cell length over a sliding time window of 5 time-points (40 minutes). Length of a 274	

cell was measured as the length of the major axis of the ellipse that approximates the 275	

cell, i.e. the ellipse that has the same normalized second central moments as the cell.  276	

 277	

Correlation analysis 278	

We quantified the composition of the neighbourhood of a focal cell as the fraction of 279	

the other complementary partner present in that neighbourhood, e.g. in the case of the 280	

tryptophan auxotroph we quantified the fraction ΔproC/(ΔproC+ΔtrpC). ΔtrpC and 281	

ΔproC are the areas (in pixel) occupied by each auxotroph, therefore they are a 282	

measurement of biomass and not of cell number. To calculate the fraction above, we 283	

first identified biomass of the two types as described in the image analysis section; 284	

then we calculated the area in pixel that each cell type occupies within increasing 285	
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distances from the focal cell’s perimeter. For a given distance, we plotted the fraction 286	

(x-axis) against the growth rate (y-axis) for all cells and we calculated Spearman's 287	

rank correlation coefficient (no assumption on the functional relationship between 288	

variables). The correlation coefficient is maximal at a specific distance, which we call 289	

interaction range. We use linear regression to characterize the relationship between 290	

the growth rate of the cells and the fraction of the amino acid producing partner 291	

present within the estimated interaction range. For figure 3a, the correlation is 292	

calculated as Spearman ρ on 2,610 data points for proline auxotrophs and 2,162 for 293	

tryptophan auxotrophs, both from four biological replicates. The same correlation 294	

analysis performed when cells are fed amino acids shows that growth does not depend 295	

on the neighbours when amino acids are present in the medium (see Supplementary 296	

Data).  297	

 298	

Individual-based model     299	

We consider two cell types living on a on a 40x40 squared grid: Type A can only 300	

produce amino acid 1 while Type B can only produce amino acid 2. The growth of 301	

type A is thus limited by the supply of amino acid 2 leaked by type B cells and vice 302	

versa. We make the following assumptions:  303	

a)  Cells can maintain a constant internal concentration I of the amino acid they can 304	

produce.  305	

b) Growth of a cell is limited only by the amino acid the cell cannot produce; growth 306	

is modeled using the Monod equation (23) µ =µmax I / ( I+ K), where K is the 307	

concentration at which cells grow at half maximum speed. 308	

c)  Both cell types have the same maximum growth rate µmax . 309	

d)  Cells take up amino acids actively (10), and the process is approximated with 310	

linear kinetics: inflow = r u E , where r u is the uptake rate and E is the external 311	

concentration. Linear kinetics approximates Monod kinetics if the concentration of 312	

external amino acids E  are low.  313	

e)  Cells leak amino acids through passive diffusion through the cellular membrane 314	

(10) outflow = r l (I - E), where r l is the leakage rate. 315	

f)  Diffusion in the extracellular environment is modeled as diffusion in a crowded 316	

environment (24)  𝐷!"" =  𝐷(1− 𝜌)/(1+ 𝜚/2) , where D is the diffusion constant 317	

and ρ the cell density. 318	
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g) The ratio between the volume inside a cell and the available volume outside of a 319	

cell is constant and equal to  𝛼 =  𝜌 /(1− 𝜌 ) .  320	

With these assumptions, we can write the following equations for the internal 321	

concentration of amino acids for a cell of type A - which produces amino acid 1, and 322	

not amino acid 2:  323	

 324	

𝜕𝐼!
𝑑𝑡 = 0 

𝜕𝐼!
𝑑𝑡 = 𝑟!! 𝐸! − 𝑟!!  𝐼! − 𝐸! − 𝐼! µ!"#𝐼! /(𝐼! + 𝐾! ) 

 325	

and for type B -which produces amino acid 2 and not 1: 326	

 327	

𝜕𝐼!
𝑑𝑡 = 0 

𝜕𝐼!
𝑑𝑡 = 𝑟!! 𝐸! − 𝑟!!  𝐼! − 𝐸! − 𝐼! µ!"#𝐼! /(𝐼! + 𝐾! ) 

 328	

The external concentration of each amino acid is: 329	

𝜕𝐸!
𝑑𝑡 = − α 𝑟!! 𝐸! + α 𝑟!!  𝐼! − 𝐸! + D!

!""∇! E!  

 330	

Some parameters can be eliminated by expressing the concentrations of amino acid i 331	

in units of Ki,  time in units of  1/ µmax, and space in units of cell size. This gives a set 332	

of dimensionless equations with a reduced number of parameters (Supplementary 333	

Information). The other parameters are taken from literature or measured, with the 334	

exception of the leakage rates, which are estimated from data. These equations can be 335	

used to predict cells’ growth rates in real or artificial arrangements of the two cell 336	

types. For detail about the numerical solution see Supplementary Information.  337	

 338	

Cellular automaton 339	

The cellular automaton models a system of two or more types of organisms that live 340	

on a grid and benefit from the presence of the other types. The model rests on two 341	

assumptions: 1) individuals place offspring close to themselves; 2) reproductive 342	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 26, 2019. ; https://doi.org/10.1101/530584doi: bioRxiv preprint 

https://doi.org/10.1101/530584
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

success of individuals depends on the fraction of neighbours of the other type within 343	

the interaction range, the sole parameter in the model.  344	

An operative description of the cellular automaton follows: individuals live in space, 345	

each occupying a site on a 40x40 grid; each site has 8 adjacent sites on the grid 346	

(Moore neighbourhood) and boundary condition wrap the grid into a Torus.  For the 347	

two type communities, there are individuals of types 0 and 1. At every time step an 348	

individual dies at a random location on the grid and it is replaced with an individual 349	

of type 0 or 1. It will be of type 0 with probability P(0): 350	

 351	

𝑃(0) =
𝛿!  𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠!

!"#!$%&' !"#!$!#%&'(
!

𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠!
!"#!$%&' !"#!$!#%&'(
!

 

 352	

where 𝛿!  is the Dirac delta function, which is one if grid site i contains type 0 and zero 353	

otherwise. The reproductive success of each individual i is: 354	

 355	

𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠! =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑡𝑦𝑝𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠  

 356	

Individuals interact with all other individuals within a neighbourhood of range R (a 357	

square-shaped neighbourhood). For communities with more than two types, the 358	

reproductive success is the fraction of neighbours that is most rare in the 359	

neighbourhood: 360	

 361	

𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠! =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑟𝑒𝑠𝑡 𝑡𝑦𝑝𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠  

 362	

All the rest is easily extended from the two types community described above to 363	

communities of more than two types. To compare systems with a different number of 364	

types, the reproductive success is normalized by the reproductive success the systems 365	

has in well mixed conditions (𝑅 → ∞), which is 1/2 for two types, 1/3 for three and 366	

1/4 for four.  367	

Starting from different initial configurations and varying proportions of the types, we 368	

let the system evolve and stop the simulation after the system has attained a 369	

dynamical equilibrium where the average reproductive success of individuals remains 370	
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approximately constant. Average steady state reproductive success result from 100 371	

independent runs of the cellular automaton. The cellular automaton is implemented in 372	

C++.  373	

 374	

Dataset and statistical analysis 375	

The dataset consists of 15,475 cells, from 61 communities, grouped into ten biological 376	

replicates including both fluorescent label combinations. Four biological replicates 377	

were done with ΔtrpC-GFP and ΔproC-RFP (consortium 1) and six were done with 378	

ΔtrpC-RFP and ΔproC-GFP (consortium 2). Each biological replicate corresponds to 379	

one channel in a microfluidic chip and for each channel on average 6 chambers were 380	

analyzed (range: 3-9). Inside each chamber, on average 250 cells were tracked in time 381	

(see Image Analysis section). The experiments were performed in three different 382	

weeks (different microfluidic chips and different batch of media). The interaction 383	

range and relation between growth and neighborhood were estimated separately for 384	

consortium  1 and 2. The interaction ranges are consistent for the two consortia (Fig. 385	

3a shows consortium 1, Fig. S5a shows consortium 2), but the fluorescent label affect 386	

the growth rate to some extent: the ΔtrpC-RFP grows generally slower than the 387	

ΔtrpC-GFP (Fig. 3b-c shows consortium 1, Fig. S5b-c consortium 2). To assess the 388	

variability of the estimate of the interaction range, we repeated the analysis for each 389	

replicate in isolation (results are shown in Fig. 3b).  390	
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Figures and Figure Legends 

 

Fig. 1 

 

 
 

Fig. 1: Interacting locally lowers reproductive success. a Cells (black or white 472	

dots) exchange compounds to reproduce, and place offspring on adjacent sites. 473	

Reproductive success is maximal for cells that are surrounded by the other type. b 474	

The average reproductive success of individuals is lower in systems with smaller 475	

interaction range.   476	
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Fig. 2  

 

Fig. 2: Measuring the spatial range of cell-to-cell interaction. a Synthetic consortia 477	

of two auxotroph mutants of E. coli that depend on each other and that are labeled 478	

with constitutively expressed green and red fluorescent proteins. b Microfluidic 479	

chamber hosting ~1400 cells in a monolayer. Continuous flow of culture media at the 480	

bottom of the chamber removes cells as soon as they are pushed out of the chamber. c 481	

Auxotrophic cells surrounded by the complementary partner (top row) grow faster 482	

than auxotrophic cells surrounded by their own type (bottom row). Scale bar 1 µm.  483	

  484	
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Fig. 3 

 

 
 

 

Fig. 3: Individuals interact at a short spatial range. a We calculated the correlation 485	

coefficients between the growth rates of individual cells and the fraction of the 486	

complementary partner in a given neighborhood size. When we plot the correlation 487	

coefficient as a function of the neighborhood size, we observe that the strength of the 488	

correlation is maximal for an intermediate neighborhood size (marked by dashed 489	

lines); we call this neighborhood size the interaction range. b Proline (red) and 490	

tryptophan (green) auxotrophs have different interaction ranges (10 biological 491	

replicates, ~15,000 cells total). c-d Both auxotrophic cells grow faster when 492	

surrounded by the complementary partner within the interaction range. Tryptophan 493	

auxotrophs (c) generally have lower growth rates than proline auxotrophs (d), as 494	

shown by the slopes of the linear regression (0.75 for ΔproC and 0.21 for ΔtrpC). 495	

Black dots: single cells (2,610 ΔproC and 2,162 ΔtrpC cells); Open symbols: binned 496	

median values; lines: linear regression on binned values. 497	
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Fig. 4 

 
 

Fig. 4: Mathematical model shows mechanism of local interactions. a Individual-498	

based model where amino acids are actively taken up and passively leaked. 499	

Tryptophan auxotrophs are shown in green and proline auxotrophs in red in all panels. 500	

b The model (dark curves) predicts the empirical correlation analysis (light curves, 501	

identical to those in Fig. 3a). c The predicted and experimentally measured growth 502	

rates are strongly correlated. We grouped cells based on the fraction of the 503	

complementary partner in their interaction range and for each group we compared the 504	

measured growth rate (x-axis, same data as Fig. 3c-3d) to the predicted growth rates 505	

(y-axis). Each symbol represents a single group. d For a symmetric arrangement with 506	

a straight interface between the two types, we can analytically calculate the range 507	

(shown in grey) in which the cellular growth rate is at least half of the maximal 508	

growth rate observed at the interface; we call this range the growth range. The growth 509	

range can be calculated from biochemical parameters. e The interaction range is 510	

proportional to the growth range. When we decrease, in the model, the rate at which 511	

cells take up amino acids, the growth range and the interaction range increase; circles 512	

show combinations of growth range and interaction ranges for different values of the 513	

uptake rate of amino acids. f Growth range as a function of leakage and uptake rate 514	

(relative to maximum growth rate and diffusion constant respectively). Growth range 515	

(and interaction range) of the tryptophan auxotroph (green circle) and proline 516	

auxotroph (red circle) are small.  517	
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Fig. 5 

 

 
 

Fig. 5: The short interaction range reduces growth of the whole microbial 518	

system.  a Communities equilibrate at compositions of 23% (median, n=61) of the 519	

tryptophan auxotrophs; deviations are due to large clusters of tryptophan auxotrophs 520	

in the back of the chamber. b Randomizing community arrangements leads to higher 521	

mixing and higher predicted average growth rates (n randomization = 20, p<10-5, 522	

paired t-test, n=22); c The model predicts an increase in the average growth rate when 523	

the interaction range increases (as a consequence of a decrease in the uptake rate). 524	

When the uptake rate is very low and the interaction range therefore very large, amino 525	

acids diffuse out of the chamber and the growth rate decreases.  526	

 

0.2

0.22

0.24

0.26

0.28

0.3

   real   randomized
arrangements

gr
ow

th
 ra

te
 [1

/h
]

5 10 15 20 25
0.8

1

1.2

interaction range [ m]

re
la

tiv
e 

gr
ow

th
 ra

te

0 20 40 60
0

0.5

1

time [hr]

fra
ct

io
n 

try
pt

op
ha

n
au

xo
tro

ph

ΔPro

ΔTrp
a cb

Figure 5 .CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 26, 2019. ; https://doi.org/10.1101/530584doi: bioRxiv preprint 

https://doi.org/10.1101/530584
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Information

Contents

1. Supplementary discussion 23
1.1. Independence of growth from neighbours when amino acids are supplied 23
1.2. Robustness of interaction range estimate to spatial arrangement 23
1.3. Limitation to the prediction of growth rates 24
1.4. Tradeoff in uptake rates of amino acids 25
1.5. Additional data 25
2. Individual-base model 26
2.1. Rescaled equations 26
2.2. Steady state equations 28
2.3. Numerical solution and boundary condition 29
2.4. Analytical limits 29
2.5. Discussion on the effect of parameters 34
3. Supplementary methods 35
3.1. Proportionality of analytical growth range and interaction range 35
4. Supplementary Tables 36
5. Captions for Movies 36
6. References 36

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 26, 2019. ; https://doi.org/10.1101/530584doi: bioRxiv preprint 

https://doi.org/10.1101/530584
http://creativecommons.org/licenses/by-nc-nd/4.0/


23

1. Supplementary discussion527

1.1. Independence of growth from neighbours when amino acids are supplied. We528

verified that growth of auxotrophic cells does not depend on the identity of their neighbours529

when amino acids are externally supplied (Figure S2a and S2b).
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Figure S2. Growth does not depend on the identity of neighbours
when amino acids are fed. When media is supplemented with proline
and tryptophan, growth of auxotrophic cells does not depend on the
presence of the complementary partner. The correlation is low for all
distances analysed. Panel (a) shows results for consortia 1, panel (b) for
consortia 2. Proline auxotroph (red), tryptophan auxotroph (green).

530

1.2. Robustness of interaction range estimate to spatial arrangement. The model531

allowed us to verify that the interaction range we measure does not arise from the spatial532

arrangements we analyse, but is rather a property of the system. Generally, inside the533

communities, the two cell types display different typical patch sizes, with the ∆trpC534

(the auxotroph that has the smaller interaction range) forming smaller patches. This535

observation raises the question: is our correlation analysis affected by patch size? We536

tested whether patch size affects our estimate of the interaction range by generating537

several synthetic datasets, each with 100 configurations of the two types arranging in538

patches of controlled sizes (Figure S3a); we analysed these synthetic datasets in the539

same way as our empirical dataset (Figure S3b and S3c). The results confirmed that540

the interaction range of each type, i.e. the location of the correlation peak in Figure541

3a, is robust to changes in patch size (Figure S3d). In particular, we can show that the542
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location of the peak does not change more than 30% for a range of patch sizes which are543

typically observed in the data (visual inspection). This result supports that our analysis544

of correlation between growth rates of individuals and their neighbourhood composition545

is a valid method to determine how cells affect each other’s growth within complex546

spatial arrangements.547
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Figure S3. Robustness of interaction range estimate to spatial
arrangement of types. (a) Examples of artificial arrangements with
controlled patch size; dataset of 100 different arrangements per patch
size were generated and analysed. The shape of the correlation curve
changes for both tryptophan (b) and proline (c) auxotrophs but the
interaction range changes only minimally (d) for the range of patch size
typically observed in the data. Proline auxotroph (red circles), tryptophan
auxotroph (green squares).

1.3. Limitation to the prediction of growth rates. The model recapitulates quantitatively548

the effect of spatial arrangement on growth (Fig. 4c - linear correlation between binned549

growth rates predicted by the model and measured in the data R2 > 0.96), However,550

the model tends to overestimate the absolute growth rate of cells (Fig. 4c displays an551

intercept). In fact, the classical Monod equation does not consider that cells may need552

substrate (the limiting amino acid here) even when they do not grow. For this reason,553

the original Monod equation is often modified by introducing a term of maintenance (1).554

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 26, 2019. ; https://doi.org/10.1101/530584doi: bioRxiv preprint 

https://doi.org/10.1101/530584
http://creativecommons.org/licenses/by-nc-nd/4.0/


25

A more refined model including a growth cost could improve the estimation of growth555

rates; we keep this for future studies.556

1.4. Tradeoff in uptake rates of amino acids. High uptake rates of metabolites like557

amino acids seem advantageous for the growth of individual cells, however they are558

not for the whole community: high uptake rates hinder metabolic exchange between559

different genotypes and thus reduce overall growth. Our simulations (Fig. 5c) show that560

the average growth of the two auxotrophs increases when the interaction range increases561

(by lowering the uptake rates of amino acids). However, there is a tradeoff: when uptake562

rates are too low, the average growth of the auxotrophs decreases because amino acid563

diffuse out of the chamber (Fig. 5c). We can show that in closed systems, where amino564

acids cannot diffuse away, growth does not decrease (Fig S4)
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Figure S4. Lower uptake rates lead to higher growth when amino
acids cannot diffuse away from the community. When simulating
systems with closed boundaries, the growth rate of the two auxotrophs
increases with increasing interaction range (decreasing uptake rates).
Proline auxotroph (red), Tryptophan auxotroph (green).

565

1.5. Additional data. Figure S5 show the correlation analysis between single cells566

growth rates and fraction of the complementary partner in the interaction range for six567

biological replicates done with ∆trpC-RFP and ∆proC-GFP (consortium 2); figure 3568

in the main text shows four biological replicates done with ∆trpC-GFP and ∆proC-569

RFP (consortium 1). The interaction ranges are consistent for the two consortia (Fig.570

3a shows consortium 1, S52a consortium 2), but the fluorescent label affect the growth571
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rate to some extent: the ∆trpC-RFP grows generally slower than the ∆trpC-GFP (Fig.572

3b-c shows consortium 1, Fig. S5b-c consortium 2).

Extended Data Figure 1. 
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Figure S5. Individuals interact at a small spatial range. The plots
shows data for consortia number 2 (∆trpC-RFP and ∆proC-GFP), and
complement Fig. 3 showing data from consortia number 1 (∆trpC GFP
and ∆proC-RFP). (a) The cells’ growth rate correlates maximally with
the identity of their neighbours within the interaction range. (b-c) Both
auxotrophic cells grow faster when surrounded by more complementary
partners inside the interaction range. Tryptophan auxotrophs (b) achieve
generally smaller growth rates then proline auxotrophs (c), as shown by
the slopes of the linear regression (0.79 for∆proC and 0.089 for∆trpC).
Black dots: single cells (6,871 for ∆proC and 3,832 for ∆trpC ); red
(green) open symbols: binned median values; lines: linear regression on
binned values.

573

2. Individual-base model574

2.1. Rescaled equations. The individual-based model describes two cell types on a575

squared grid: type A can only produce amino acid 1 while type B can only produce576

amino acid 2. The growth of type A is thus limited by the supply of amino acid 2 leaked577

by type B cells and vice versa. At every site, the internal and external concentration of578

amino acids are described by the following equations (definition of parameters in the579
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Methods).580

∂I1
∂t

= 0 if type is A(1)

∂I1
∂t

= ru1 · E1 − rl1 · (I1 − E1)−
µmax · I1
K1 + I1

· I1 if type is B(2)

∂I2
∂t

= ru2 · E2 − rl2 · (I2 − E2)−
µmax · I2
K2 + I2

· I2 if type is A(3)

∂I2
∂t

= 0 if type is B(4)

∂Ei

∂t
= −α · rui · Ei + α · rli · (Ii − Ei) +Deff

i ∇2Ei(5)

We can reduce the number of parameters by rescaling units as follows:581

• concentrations are measured in units of Ki582

• time is measured in units of inverse growth rate: 1
µmax583

• space is measured in units of cell size: ∆x.584

This gives the following equations:585

∂Î1

∂t̂
= 0 if type is A(6)

∂Î1

∂t̂
= r̂u1 · Ê1 − r̂l1 · (Î1 − Ê1)−

Î1

1 + Î1
· Î1 if type is B(7)

∂Î2

∂t̂
= r̂u2 · Ê2 − r̂l2 · (Î2 − Ê2)−

Î2

1 + Î2
· Î2 if type is A(8)

∂Î2

∂t̂
= 0 if type is B(9)

∂Êi

∂t̂
= −α · r̂ui · Êi + α · r̂li · (Îi − Êi) + D̂eff

i ∇̂2Êi(10)

Where:

Îi =
Ii
Ki

Êi =
Ei

Ki
t̂ = µmax · t

r̂ui =
rui

µmax r̂li =
rli

µmax D̂eff
i =

Deff
i

µmax·∆x2 = (1−ρ)·Di

(1+
ρ
2
)·µmax·∆x2

α = ρ
(1−ρ)

In the remainder of this text we will omit the hats: all variables and parameters always586

refer to the rescaled ones.587

588
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2.2. Steady state equations. We want to obtain the steady state concentration Ei(x, y)589

and Ii(x, y) on every site (x, y) of the grid. Setting equation 7 or 8 to steady state and590

rewriting gives:591

0 = rui · Ei − rli · (Ii − Ei)−
Ii

1 + Ii
· Ii

0 = (1 + rli)I
2
i +

(
rli − (rui + rli)Ei

)
Ii − (rui + rli)Ei

Which we can solve to get the internal concentration of the amino acid each cell cannot592

produce as function of the external concentration of that amino acid:593

Ii(Ei) = f(Ei) =
(rui + rli)Ei − rli

2(1 + rli)
(11)

+

√(
rli
)2

+ (rui + rli)
2E2

i + (2rli + 4)(rui + rli)Ei

2(1 + rli)

The internal concentration of the produced amino acid is kept constant (equations 6594

and 9):595

Ii(Ei) = ICi .(12)

Setting equation 10 to steady state gives:596

∇2Ei =
α · (rui + rli)

Deff
i

Ei −
α · rli
Deff

i

Ii(Ei)(13)

where Ii(Ei) is given by equation 12 for grid sites where amino acid i is produced and597

by equation 11 otherwise. If we describe the spatial arrangement of the two cell types598

with the function T (x, y):599

T (x, y) = 0 if site (x, y) is occupied by type A(14)

T (x, y) = 1 if site (x, y) is occupied by type B
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then the external concentration of the two amino acid on each grid site is the solution of600

the equations:601

∇2E1(x, y) =
α(ru1 + rl1)

Deff
1

E1(x, y)(15)

− αrl1

Deff
1

·
(
T (x, y) · f (E1(x, y)) + [1− T (x, y)] · IC1

)
∇2E2(x, y) =

α(ru2 + rl2)

Deff
2

E2(x, y)(16)

− αrl2

Deff
2

·
(
[1− T (x, y)] · f (E2(x, y)) + T (x, y) · IC2

)
After solving for Ei(x, y) we can obtain the growth profile µ(x, y):

µ(x, y) = [1− T (x, y)] · I2(x, y)

1 + I2(x, y)
+ T (x, y) · I1(x, y)

1 + I1(x, y)
(17)

Ii(x, y) = f (Ei(x, y))(18)

2.3. Numerical solution and boundary condition. We numerically solved equations602

15 and 16 on the grid. On one edge of the grid we implement a Dirichlet boundary603

condition and set Ei = 0 to represent the flow-channel where all excreted amino-604

acids are washed away; on all other edges we implement Neumann no-flux boundary605

conditions to represents the solid wall of the growth chamber. We solved equations 15606

and 16 by discretizing them using a second order finite difference scheme and solving607

them using a successive over-relaxation solver. To ensure numerical stability, we imple-608

mented a grid-refinement procedure: we first solved the equations on the 40x40 grid and609

then we iterated on refined grids (successively doubling the number of grid points in610

each dimension); we used the solution of the previous iteration as the initial state for the611

successive refined grid. The solution on the refined grid was downsampled to the 40x40612

grid to calculate the growth rate for each cell and we continued this procedure until the613

maximum per cell change in growth rate was less than 1%. All code was implemented614

in Matlab.615

2.4. Analytical limits. We derived several analytical approximations to understand the616

effect of each parameter, which we summarize in subsection 2.5. Here we will consider617

a single cell type at a time and follow the internal, IL, and external, EL, concentration618

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 26, 2019. ; https://doi.org/10.1101/530584doi: bioRxiv preprint 

https://doi.org/10.1101/530584
http://creativecommons.org/licenses/by-nc-nd/4.0/


30

of the limiting amino-acid only:619

∂IL
∂t

= ru · EL − rl · (IL − EL)−
IL

1 + IL
· IL(19)

∂EL

∂t
= −α · ru · EL + α · rl · (IL − EL) +Deff∇2EL.(20)

Where ru, rl, and Deff always refer to the uptake, leakage, and effective diffusion620

constant of the growth limiting amino acid. It is useful to rewrite these equation in621

terms of ϵ = ru+rl

rl
EL:622

∂IL
∂t

= rl · ϵ− rl · IL − IL
1 + IL

· IL(21)

∂ϵ

∂t
= α · (ru + rl) · (IL − ϵ) +Deff∇2ϵ(22)

2.4.1. Limiting amino acid at steady state. Setting the time derivatives to zero and623

solving 21 for IL gives:624

IL(ϵ) =
(ϵ− 1)rl +

√
(ϵ− 1)2(rl)2 + 4 (1 + rl) rlϵ

2 (1 + rl)
(23)

2.4.2. Maximum cell growth rate. We derive the analytical expression for the growth625

rate of an auxotrophic cells surrounded by a large number of producing partners. If we626

assume that the single auxotroph has a negligible influence on the external concentration627

(i.e. all space is occupied by producers which have I = IC), equation 22 gives the steady628

state external concentration of amino acids:629

ϵmax = IC(24)

substituting ϵmax for ϵ in eq. 23 we find:630

Imax
L =

(IC − 1)rl +
√

(IC − 1)2(rl)2 + 4 (1 + rl) rlIC

2 (1 + rl)

µmax =
Imax
L

1 + Imax
L

(25)

This is the growth rate of a single auxotrophs surrounded by a large number of amino631

acid producing partners. We can simplify this expression if we make the following two632

assumptions:633
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Assumption 2.4.1. IC ≫ 1. Biologically this means that a wild type (amino acid634

producing) cell can grow nearly as fast in the absence of amino acids (µ = IC

1+IC
) as in635

the presence of amino acids (µ = 1). We verified experimentally that this assumption636

holds.637

Assumption 2.4.2. rl ≪ 1. Biologically this means that in wild type cells the decrease in638

the concentration of limiting amino acid due to leakage (with rate rl) is small compared639

to the decrease due to growth (with rate 1).640

With these assumptions the growth rate of an auxotroph surrounded by the producing641

partner (eq. 25) simplifies to:642

Imax
L ≈ 1

2
ICrl

(
1 +

√
1 + 4

ICrl

)
µmax =

Imax
L

1 + Imax
L

(26)

2.4.3. Estimating leakage rates. In this subsection we show how we estimated the leakage643

rates from the maximum empirical growth rates of the auxotrophs. In the limit of rl ≪ 1644

and IC ≫ 1, the maximum growth rate (equations 26) depends on the product IC · rl,645

and not on the two parameters separately. Both parameters are unknown but we expect646

IC ≫ 1 (assumption 2.4.1), which we arbitrarily set to 20 (µproducer = 0.95). With this,647

we can estimate the leakage rates rl for each amino acid from µmax of the corresponding648

auxotroph. Note that our result are robust to changes in value assigned to IC as long as it649

is larger then one (we confirmed that our simulations depend only on the product IC · rl650

as long as rl ≪ 1 and IC ≫ 1). The maximum empirical growth rate µmax is estimated651

for each auxotroph by performing a linear regression between the auxotroph’s growth652

rate and the fraction of the producing partner within the interaction range (Fig. 3c-d);653

the maximum growth rate is the value extrapolated when the fraction is equal to one.654

We use linear regression because it is less sensitive to measurement noise than using the655

maximal observed growth rate, and because very few cells are found surrounded by the656

producing partner because of kin clustering.657

2.4.4. Analytical expression for the growth range. In this subsection we show how we658

calculated the growth range, a quantity proportional to the interaction range measured659

experimentally (Fig.4e), from the parameters of the model. Let us consider a symmetric660
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spatial arrangement of types (Fig.4b), with all cells located at x < 0 producing the amino661

acid that cells at x > 0 require for their growth, and vice versa. This arrangement reduces662

the problem to one dimension and we can analytically calculate the cells’ growth rates663

(we will do that for x > 0).664

We can find the external amino acid concentration by solving equation 22 at steady665

state, where the internal concentration is I = IC for x < 0 and I = IL(ϵ) for x > 0:666

d2ϵ

dx2
=


1
r20

(
ϵ− IC

)
if x < 0

1
r20
(ϵ− IL(ϵ)) if x > 0

(27)

where IL(ϵ) is given by equation 23 and

r0 =

√
Deff

α(ru + rl)

For x > 0 the analytical solution cannot be found due to the non-linear term667

IL(ϵ) =
rl

2
(ϵ− 1) + 1

2

√
(ϵ− 1)2(rl)2 + 4rlϵ(28)

where we have simplified equation 23 using assumption 2.4.2 (rl ≪ 1). However it is668

easy to show that669

IL(ϵ) < 1 + ϵrl

and thus the non linear term IL(ϵ) is negligible when ϵ ≫ 1
1+rl

≈ 1. For x ≪ 0 the670

external concentration is the steady state concentration as found in a region of producers671

only, i.e. ϵ(x ≪ 0) = IC ≫ 1 (see subsection 2.4.2). Close to the interface, we expect672

ϵ(x ≈ 0) to be of the order of IC for continuity. Thus, close to the interface we can solve673

a simplified linear ODE:674

d2ϵ

dx2
≈ 1

r20
· ϵ.

The full solution is thus given by:675

ϵ(x) =

C1 · ex/r0 + IC if x < 0

C2 · e−x/r0 if x > 0.

We can solve forC1 andC2 imposing continuity of concentration and flux at the interface:676

C1 · ex/r0 + IC |x=0 = C2 · e−x/r0|x=0

C1

r0
· ex/r0|x=0 = − C2

r0
· e−x/r0|x=0.
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From which we find that C1 = − IC

2
and C2 = IC

2
. Thus the external concentration is677

given by:678

ϵ(x) =

IC
(
1− 1

2
· ex/r0

)
if x < 0

IC

2
· e−x/r0 if x > 0

(29)

Thus within the consumer region the amino acid concentration (E = rl

ru+rl
ϵ) decreases679

exponentially with scale factor r0.680

We are now interested in finding an analytical approximation for the growth range681

(GR), which is the distance from the interface where cells have 50% of the growth rate682

they have at the interface:683

µ(x = GR) =
1

2
· µ(x = 0)(30)

as µ = I
1+I

it follows that684

IL(x = GR) =
IL(x = 0)

2 + IL(x = 0)
(31)

Where IL(x) ≡ IL(ϵ(x)) is given by eq. 28. Substituting ϵ(x) = IC

2
e−GR/r0 gives:685

(32)
rl

4
(ICe−GR/r0 − 2) + 1

2

√
( I

C

2
e−GR/r0 − 1)2(rl)2 + 2rlICe−GR/r0

=

rl

2
(IC − 2) +

√
( I

C

2
− 1)2(rl)2 + 2rlIC

4 + rl

2
(IC − 2) +

√
( I

C

2
− 1)2(rl)2 + 2rlIC

Which we can solve for GR to find:686

GR = r0 · ln

(IC − 4)
(
rl(IC + 2) +

√
(IC − 2)2(rl)2 + 8ICrl

)
+ 8IC

2(IC(1 + rl)− 4rl)

(33)

and we can further simplify using assumption 2.4.1 (IC ≫ 1) to find:

GR = r0 · ln
[
1
2
rlIC

(
1 +

√
1 + 8

rlIC

)
+ 4

]
(34)

Figure S6b shows the error of our analytical approximation of the growth range. As687

long as the growth range is smaller than 20, our simulations match the analytical result688

very well. As the growth range approaches 20 (Fig. S6a, this is same heat map as Fig689

4f), the relative error increases because of the finite size (40x40) of the chamber in our690
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simulations; more specifically, the no-flux boundary conditions lead to overestimation691

of the growth range in the simulations compared to the analytical model.
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Figure S6. Analytical approximation of growth range and
simulations agree. The heat map (b) shows the relative error between
analytical approximation (eq. 34) for the growth range and the growth
range estimated with simulations. The heat map (a) shows the analytical
estimate of the growth range, and shows that the relative error in (b) is
low when the growth range is below 20. Red circle is proline auxotroph
and green circle is tryptophan auxotroph. Leakage is expressed in
normalised units (units of µmax).

692

2.5. Discussion on the effect of parameters. We have found two analytical approximations693

for the maximum growth rate of each auxotroph when surrounded by a large number of694

the amino acid producing partner and for the growth range:695

µmax ≈
rlIC

(
1 +

√
1 + 4

rlIC

)
2 + rlIC

(
1 +

√
1 + 4

rlIC

)(35)

GR ≈

√
Deff

α(ru + rl)
· ln

[
1
2
rlIC

(
1 +

√
1 + 8

rlIC

)
+ 4

]
(36)

We can make some observations:696

• The maximum growth rate does not depend on the uptake rate of amino acids697

but only on the leakage rate.698

• The growth range depends strongly (square-root) on the uptake rate and the699

diffusion constant and weakly (logarithmic) on the leakage rate.700

• The cell density strongly affects the growth range by modulating the effective701

diffusion constant and ratio between intra to extra cellular environment.702
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To remind the reader: Deff

α
depends on the cell density ρ, which affects both the diffusion703

constant Deff = 1−ρ
1+ρ/2

· D and the volume ratio of intra to extra cellular environment704

α = ρ
1−ρ

. So

Deff

α
=

2(1− ρ)2

ρ(2 + ρ)
·D(37)

Figure S7 shows how Deff and Deff

α
depend on density ρ.
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Figure S7. Effect of density of cells on diffusion of molecules.
Dependence of Deff and Deff

α
on density ρ. High cellular densities

reduce the effective diffusion of molecules. In our microfluidic chambers
cellular density is about 0.65.

705

3. Supplementary methods706

3.1. Proportionality of analytical growth range and interaction range. Given a set707

of parameters, we calculated analytically the growth range using Equation 34 and we708

estimated the interaction range with the model. The interaction range was estimated709

as follows: we ran our model on experimentally observed spatial arrangements after710

downscaling the segmented images to a 40x40 grid. We used the model predicted growth711

rates and repeated the correlation analysis described in Methods to extract the predicted712

interaction range. Figure 4e (proportionality between growth range and interaction range)713

is made by changing the uptake of the amino acids and keeping all other parameters fixed714

(see Table S1).715
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4. Supplementary Tables716

We list here all parameters of the individual-based model with their source.717

Parameter Description Value Source

ru1 uptake of proline 1.37 1/sec Literature (2)
ru2 uptake of tryptophan 21.9 1/sec Literature (3)
D1 diffusion of proline 8.79*102 µm2/sec Literature (4)
D2 diffusion of tryptophan 6.59*102 µm2/sec Literature (5)
µmax growth on M9 media +

0.2% glucose
1.29 1/h Measured

rl1 leakage proline 1.61*10−51/sec Fitted (see Sup. Eq.)
rl2 leakage tryptophan 6.08 *10−71/sec Fitted (see Sup. Eq.)
ρ density of cells 0.65 Measured
dX grid (cell) size 1.5 µm Estimated from number of

cells per chamber

Table S1. Parameters of individual-based model. All parameters of
the model are taken from literature or measured, apart from the two
leakage rates, which are estimated as described in section 2.4.3

5. Captions for Movies718

Supplementary Movie S1: Two auxotrophic strains of Escherichia coli growing719

in microfluidic chambers of 60x60 µm. Proline auxotrophic cells are shown in red,720

tryptophan auxotrophic cells in green. The auxotrophic cells grow faster when they are721

close to the complementary partner.722

Supplementary Movie S2: The growth rate of auxotrophic cells depends on the723

identity of neighbours. Cells are coloured based on their growth rate (lighter colours724

indicate higher growth rates). Growth rates are higher for auxotrophic cells close to725

the complementary partner. Proline auxotrophic cells are shown in purple, tryptophan726

auxotrophic cells in yellow.727
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