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Communities of interacting microbes play important roles across 
all habitats on earth. These communities typically consist of a large 
number of species that perform different metabolic processes. The 
functions of microbial communities ultimately emerge from 
interactions between these different microbes. In order to 
understand the dynamics and functions of microbial communities, 
we thus need to know the nature and strength of these interactions. 
Here, we quantified the interaction strength between individual 
cells in microbial communities. We worked with synthetic 
communities of Escherichia coli bacteria that exchange 
metabolites in order to grow. We combined single-cell growth rate 
measurements with mathematical modeling to quantify metabolic 
interactions between individual cells and to map the spatial 
interaction network within these communities. We found that cells 
only interact with other cells in their immediate neighborhood. 
This short interaction range limits the coupling between different 
species and reduces their ability to perform metabolic processes 
collectively. Our experiments and models demonstrate that the 
spatial scale of biotic interaction plays a fundamental role in 
shaping the ecological dynamics of communities and the 
functioning of ecosystems. 

Biological interactions are pervasive in nature, where organisms across all 
domains of life are connected through dense interaction networks1. These 
interactions influence what individual organisms do -  the expression of their 
phenotypic traits and their rates of growth, reproduction and survival. The 
effects of interactions on individual organisms scale up to determine the 
dynamics and functions of ecosystems2. In natural systems, these interactions 
often emerge in spatially structured settings, where individuals interact 
preferentially with other individuals that are close in space3. To understand 
and predict the properties of such structured communities, we thus first need 
to understand the spatial interaction network between individual organisms, 
that is, understand the nature and strength of interactions between 
individuals as a function of their spatial position in a community. Then, we 
need to understand how these interactions scale up to give rise to processes at 
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the community level4.  

Our goal here was to analyze how local interactions in spatially structured 
communities determine community functions and dynamics. We focused on 
communities of interacting microbes. Microbial communities play important 
roles in all habitats on our planet. For example, microbial communities in the 
environment drive the global cycling of elements5, while the microbial 
community in our gut affects our physiology, cognition and emotion6. These 
community functions are based on biotic interactions between species. 
Microbial communities typically consist of hundreds to thousands of different 
microbial species that interact with each other in numerous ways7. These 
interactions are often based on diffusion-mediated exchange of molecules 
between cells8–10. Many microorganisms are unable to synthesize all the 
cellular building blocks required to grow and thus take up metabolites 
released by other cells11–13; moreover, microorganisms often consume 
resources partially and exchange metabolic intermediates with other cells14,15; 
finally, many microorganisms exchange signaling molecules with other cells to 
coordinate their activities16. 

Most of these microbial interactions arise in a spatially structured situation. 
The majority of microorganisms across all habitats grows in biofilms, which 
are genetically diverse surface-associated communities embedded in a 
extracellular polymeric matrix17. In such spatially structured communities, 
one expects that the strength of the interaction between two organisms – that 
is, between two individual microbial cells – declines with increasing distance 
between them. A number of studies have predicted or observed that the 
strength of these interactions decays with the distance between cells14,18–22. 
For example, mathematical models predict that yeast strains can exchange 
cellular building blocks across a range of about 100 µm, and experiments 
revealed that this influences the spatial self-organization of simple 
communities composed of such strains18,23. In general, when the spatial range 
across which cells interact is small, the spatial arrangement of different cell 
types determines which cells interact with each other. Therefore, the 
interaction range between cells can strongly affect the collective functions and 
the dynamics of communities8,21,24–26. The interaction range is often an 
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arbitrary parameter in theoretical models24,25 or is experimentally measured 
in a heuristic and system specific way that cannot be easily generalized19,27. 
We lack direct measurements of the interaction range between individual cells 
and a mechanistic understanding of the factors that determine this spatial 
scale. Progress in this direction would allow to build a general framework to 
predict which ecological interactions emerge in microbial communities and to 
understand how these interactions shape community properties.  

Our aim here was to develop such a general framework. More specifically, our 
first main goal was to directly measure the interaction range in assembled 
microbial communities. Our second main goal was to obtain a mechanistic 
understanding of the factors that determine the interaction range in order to 
predict the interaction range in other systems.  Our third goal was to assess 
the consequences of this interaction range at the level of the community. We 
combined time-resolved quantitative single cell measurements in a spatially 
structured synthetic community with mathematical modeling to address these 
goals.  

Results 

We focused on a scenario where two bacterial genotypes exchange cellular 
building blocks that are essential for growth, a situation that is widespread in 
natural microbial communities11,28. In such a situation, one expects that the 
interaction range between cells will strongly affect the growth of individuals 
and communities. This can be illustrated with a simple simulation of the 
cellular dynamics in a system composed of two interacting partner species 
(Fig. 1a). The simulation rests on three general assumptions: first, each cell 
can only receive compounds from cells belonging to the partner species that 
reside within the interaction range; second, the growth of individual cells 
depends on the fraction of the cells of the partner species within the 
interaction range; third, if a cell divides, it places an offspring on a 
neighbouring site. This simple simulation reveals that the average growth rate 
of individual cells is low when the interaction range is small (Fig. 1b). This key 
finding originates from a simple mechanism: most individuals are surrounded 
by their offspring; if they interact on a small spatial scale, they mostly interact 
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with these offspring from which they cannot obtain the cellular building 
blocks they need. This finding is consistent with previous theoretical 
studies24,25. This effect becomes stronger when organisms depend on 
compounds from two or more other species: a small interaction range reduces 
the probability that an individual is close enough to all of these partners 
simultaneously (Fig. 1b). The simulation shows that short-range interactions 
can reduce the growth rate of cells whenever these cells need to exchange 
compounds with other genotypes in order to grow, in line with previous 
observations29.  

 

Fig. 1: Interacting locally lowers reproductive success. a A grid is populated 

by two types of cells (black or white dots). The two types exchange compounds to 

reproduce, and place offspring on adjacent sites. The reproductive success of an 

individual increases linearly with the fraction of the partner cells within their 

interaction range. In the example shown here, the interaction range is one grid unit. 

b The reproductive success of individuals is lower in consortia with smaller 

interaction range. This decrease is already visible in consortia composed of two 

interacting types (as in panel a). It becomes more pronounced in consortia composed 

of three or four types, where an individual cell can only grow if all the other types 

reside in the individual’s interaction range. 

Cells in dense microbial communities interact on a range of a few 
cell lengths. Our first major goal was to quantify the interaction range 
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experimentally. We constructed a microfluidic device for growing cells in 
monolayer communities and developed an analytical method to extract time-
resolved quantitative single-cell data (Fig. 2). We focused on a synthetic 
consortium composed of two auxotrophic Escherichia coli strains. The first 
strain is unable to produce the amino acid proline and the second strain is 
unable to produce the amino acid tryptophan (Fig. 2a). Because cells naturally 
leak out amino acids, the two auxotrophs can grow together by exchanging the 
two amino acids through diffusion28,30,31. We grew our consortia in the 
microfluidic device and used automated image analysis to identify and track 
single cells so that we could measure their growth rate (Fig. 2b, Sup. Video 
S1). The goal of this analysis was to determine the spatial range from which a 
single cell could retrieve amino acids, that is, their interaction range. How fast 
an individual cell grows is expected to depend on the amount of the amino 
acid received, and this in turn depends on the number of partner cells inside 
the interaction range. In order to determine the size of the interaction range, 
we thus looked for the spatial range whose cellular composition best predicted 
the growth rate of individual cells (Fig. 2c, Sup. Video S2). Therefore, we 
measured the fraction fd of the partner within a distance d from a cell and 
determined the correlation between this fraction and the cells’ growth rate, for 
a large number of individual cells. The interaction range is then defined as the 
distance d where this correlation is maximal (Fig. 2d). 

This analysis revealed that the interaction range is on the order of only a few 
cell lengths (Fig. 2d). This is found consistently across ten biological replicates 
(~10,500 cells analysed in total). Specifically, the interaction range of the 
tryptophan auxotroph cells is 3.2±0.4 µm (mean ± standard error of the 
mean), while the interaction range of the proline auxotroph cells is 
significantly larger at 12.1±0.5 µm (p<10-5, paired t-test, n=10, Fig. 2e). In 
other words, these cells live in a small world: they only interact with a small 
group of individuals around them. Cells can only grow well if their partner is 
among these individuals (Fig. 2f-g). In control experiments where amino acids 
were provided with the growth medium, the growth rate of individual cells 
does not depend on the proximity to the partner (Fig. S1).  
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Fig. 2: Auxotrophic cells that exchange cellular building blocks interact 

on a small range. a Synthetic communities of two auxotrophic strain of E. coli that 

depend on each other and that are labeled with constitutively expressed fluorescent 

proteins (here depicted as yellow and purple). b False colour image of a microfluidic 

chamber where cells grow in a monolayer. Continuous flow of culture media at the 

top of the chamber removes cells as soon as they are pushed out of the chamber. c 

Left: cells are segmented and tracked. Right: Cells are colour-coded based on their 

individual growth rate, with brighter colours indicating higher growth rates. Cells 

that are surrounded by the partner grow faster than cells that are surrounded by their 

own type. White scale bar 5 µm. d We calculated the correlation coefficients between 

the growth rates of individual cells and the fraction of the partner in a given 

neighbourhood size. When we plot the correlation coefficient as a function of the 

neighbourhood size, we observe that the strength of the correlation is maximal for an 

intermediate neighbourhood size (marked by dashed lines); we call this 

neighbourhood size the interaction range. e The two auxotrophs have different 

interaction ranges (10 biological replicates, ~10,500 cells total). f-g Both auxotrophs 

grow faster with increasing fraction of the partner within the interaction range. 

Tryptophan auxotrophs (ΔT, f) generally have lower growth rates than proline 

auxotrophs (ΔP, g), as shown by the slopes of the linear regression (0.75 for ΔP and 

0.21 for ΔT). Black dots: single cells (1,985 ΔP and 1,769 ΔT cells); Open symbols: 

binned median values; lines: linear regression on binned values.  
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A mathematical model offers a mechanistic explanation for the 
small interaction range. Our second major goal was to obtain a 
mechanistic understanding of the factors that determine the interaction 
range. Why do cells only interact across such a small spatial range? We 
addressed this question with an individual-based model (Fig. 3a), where cells 
occupy a site on a grid with size 40x40. At every grid site, we describe the 
internal and external concentration of the two exchanged amino acids with a 
set of differential equations (see Fig. 3b and Methods for details). We assumed 
that the growth rate of auxotrophic cells is limited by the amino acid that they 
need, while they produce enough of the other amino acid so that it does not 
limit their own growth. Cells take up amino acids actively and leak them 
passively in the environment, where they diffuse. All model parameters were 
taken from literature, or were directly measured, apart from the two leakage 
rates, which were estimated from the data (Supplementary Information 
3.4.2).  

 
Fig. 3: Mathematical model reveals mechanism of local interactions. a 

Individual-based model where amino acids are passively leaked, diffuse in the 

environment and are actively taken up. b At every grid site, we describe the internal 

(I) and external (E) concentration of amino acids with a set of differential equations 
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(here shown for one amino acid only). These equations assume that the growth rate 

of auxotrophic cells is limited by the amino acid that they need, that cells take up 

amino acids actively (with rate ru) and leak them passively into the environment 

(with rate rl ), where they diffuse. The effective diffusion constant (Deff) is lower when 

the density of cells ρ is higher. c The correlation analysis based on the model (dark 

curves) matches the results obtained from experimental data (light curves, identical 

to Fig. 2d). The predicted interaction range for ΔP is 12.8 µm (compared to 12.5 µm 

in the experimental measurements, p=0.25, t-test) and for ΔT is 3.0 µm (compared 

to 3.2 µm in the experimental measurements, p=0.51, t-test). d The predicted and 

experimentally measured growth rates are strongly correlated (r2=0.95 for ΔP and 

r2=0.99 for ΔT, Pearson correlation). We grouped cells based on the fraction of the 

complementary partner in their interaction range and for each group we compared 

the measured growth rate (x-axis, same data as Fig. 2f-2g) to the predicted growth 

rates (y-axis). Each symbol represents a single group.   

We first tested if our model can predict the interaction range that we 
experimentally measured. For that, we applied the model to our measured 
spatial arrangements of the two cell types, calculated the concentration of 
amino acids in space by solving the equations at steady state, and 
subsequently calculated the theoretical growth rates of individual cells from 
the local concentration of these amino acids. Then we estimated the 
interaction range by correlating the theoretical growth rates of cells with the 
fraction of their partner in their neighbourhood, as we did with the 
experimentally measured growth rates. The interaction range we found 
deviated less than 7% from the experimental interaction range (Fig. 3c). Our 
model thus predicts the interaction ranges that we measured experimentally. 
Moreover, our model predicts that the growth rate of the auxotrophs increases 
with the fraction of the partner within the interaction range, in agreement 
with the experimental data (Fig. 3d). We conclude that our model is consistent 
with the experimental data: the mechanisms of amino acid exchange we 
propose can explain how cells interact in these communities. 

The interaction range is set by few key parameters. Our model reveals 
that the short interaction range that we measured is mainly a consequence of 
high uptake rates of amino acids and dense packing of cells. This becomes 
evident when we look at a second length scale, which is directly proportional 
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to the interaction range: the growth range, the length scale describing the 
decrease in growth away from a straight interface separating the two cell types 
(see Fig. 4a). When the two cell types are in such a symmetric configuration, 
the concentration of amino acids can be approximated analytically, and from 
this the growth of the two cell types can be predicted (Supplementary 
Information 3.4.3). The growth range of each type in this symmetric 
configuration is proportional to its interaction range in any complex spatial 
configuration (Fig. 4b). The analytical expression of the growth range of each 
auxotroph is (see Fig. S9 for comparison with the numerical solution):  

𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑛𝑔𝑒 ≈
𝐷!""

𝛼 (𝑟! + 𝑟!)   ln
𝑟!

𝛾 1+ 1+
4𝛾
𝑟!  + 4  

where rl and ru  are the leakage and the uptake rates of the amino acid each 

auxotrophs needs, 𝛾 = !!"#

!!
  where 𝐼!   is the constant internal concentration of 

the amino acid in producing cells and 𝜇!"# the maximal growth rate of each 

auxotroph (equal to the growth rate of the wild type in our case; see Fig. S7).  

𝐷!"" is the effective diffusion constant which accounts for the density of cells, 

and α the ratio between the volume of intra- and extracellular environment; 

the ratio of these parameters depends on the density ρ of cells: 

𝐷!""

𝛼 =
2 (1− 𝜌!)
𝜌(2+ 𝜌)  𝐷 

From the mathematical expression, we see that the growth range (and thus 
the interaction range) depends on the uptake, leakage and diffusion rates of 
the amino acids and on the density of cells. Specifically, the growth range (and 
the interaction range) is small in consortia where the leakage rate is low, the 
uptake rate of the exchanged compounds is high compared to their diffusion 
(Fig. 4c), and the density of cells is high. High cell densities reduce the 
interaction range by reducing effective diffusion (Fig. S10). This means that 
denser cellular aggregates tend to have cell-cell interactions that are more 
localized, and therefore cellular density is an important parameter modulating 
interactions in these aggregates32–34. While cell density alters the interaction 
range of different types in a consortium in the same way, the other parameters 
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modulate the interaction range of each cell type separately. The difference in 
interaction range between types depends on the difference in uptake, leakage 
and diffusion constants of the amino acids they exchange. Diffusion constants 
typically vary only over a small range between different amino acids and can 
thus not explain large differences in the interaction ranges. However, uptake 
and leakage rates can vary substantially between amino acids (for example the 

ratio between the diffusion constants of tryptophan and proline  !!
!!

  is 0.75, 

while the ratio between the rates at which the two amino acids are taken up, 

 !!
!

!!
! , is 12). From the analytical expression of the growth range, we can show 

that the growth range (and the interaction range) depends more strongly on 
the uptake rate than on the leakage rate (Fig. 4c and Fig. S8). While leakage 
rates have a minor effect of the growth range (how far a cell can grow away 
from the partner), they have a major effect on the growth rates of cells (how 
fast cells grow). More precisely, we can show that leakage rates set the 
maximum growth rate 𝜇!"# that an auxotroph can reach when fully 

surrounded by the partner (Supplementary Information 3.4.1): 

𝜇!"# ≈  𝜇!"#  
𝑟!

𝛾 1+
2 𝛾
𝑟!   − 1  

The growth range and 𝜇!"# vary independently, being primarily modulated by 

the uptake rates and the leakage rates, respectively. Our findings apply 
generally to any dense microbial assembly where molecules are exchanged by 
leakage, diffusion and uptake. For example, the same model could estimate 
the length scale of cell-cell communication via molecules that are taken up or 
degraded by the recipient, such as quorum-sensing molecules.  
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Fig. 4: Interaction range is small when uptake rates are high. a For a 

symmetric arrangement with a straight interface between the two types, we can 

analytically calculate the region (shaded) in which the cellular growth rate is at least 

half of the maximal growth rate observed at the interface; we call this region the 

growth range. The growth range can be calculated from biochemical parameters. b 

The growth range is proportional to the interaction range (r2=0.95 for ΔP and 

r2=0.99 for ΔT, Pearson correlation). When we decrease, in the model, the rate at 

which cells take up amino acids, the growth range and the interaction range increase; 

each open symbols shows the growth range and interaction ranges calculated using 

our model for different values of the uptake rate of amino acids. The growth range is 

calculated analytically while the interaction range is estimated numerically. c Growth 

range as a function of leakage and uptake rate (relative to maximum growth rate and 

diffusion constant respectively). Growth range (and interaction range) of the 

tryptophan auxotroph (yellow circle) and proline auxotroph (purple circle) are small 

because the ratio between uptake and diffusion is high.  

Interaction range and patch size are two different length scales. 
According to our mechanistic model, the interaction range represents the size 
of the neighbourhood from which cells can retrieve the amino acids produced 
by the partner. It might seem intuitive to measure this neighbourhood using a 
simpler quantifications such as the patch size of the different genotypes35. We 
tested the validity of this method and found that interaction range and patch 
size are potentially two different length scales: we verified that the interaction 
range of two auxotrophs varies less than 50% for the range of patch sizes 
observed in our chambers (a small change compared to the fourfold difference 
in interaction range between the auxotrophs, Fig S3). The reason is that the 
interaction range is set by the cell density and few biochemical parameters 
(uptake relative to diffusion), while patch size depends mostly on the physics 
of cell division and movement. In general, we see no significant correlation 
between size of patches and average growth in these patches (Fig. S4).  

A small interaction range affects growth and dynamics of the whole 
community. How do short-range interactions between individual cells affect 
community-level dynamics? Our communities show consistent dynamics in 
time: within about 25 hours, all 61 replicate communities reach a steady state 
composition, and in all but two of the communities the tryptophan auxotroph 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 21, 2019. ; https://doi.org/10.1101/530584doi: bioRxiv preprint 

https://doi.org/10.1101/530584
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

is in minority (median fraction of total biomass = 0.23, Fig. 5a). This shift in 
the composition of the community arises from the individual-level properties 
that we measured: the proline auxotroph tends to increase in frequency 

because of a double advantage: it has a higher 𝜇!"# and a larger interaction 

range than the tryptophan auxotroph; as a consequence, the growth rate of the 
proline auxotroph is less sensitive to the spatial arrangement. The differences 
in interaction range and 𝜇!"# drive the community to its equilibrium 

composition where the tryptophan auxotroph is in minority.  

A final and important question is whether the small interaction range between 
cells limits the growth of the community as a whole. This question brings us 
back to our central hypothesis, that a small interaction range limits the 
exchange of resources and hinders collective metabolism because many cells 
reside within groups of their own type. We therefore tested if communities 
with higher level of mixing of the two cell types grew faster. The average 
growth rate of cells in a community is determined by several factors, including 
the proportion of the two types and their level of mixing. We measured growth 
of the 61 communities after 16 hours using an image analysis method based on 
optical flow, which provides an estimate of the average growth rate of cells in 
each chamber. We found that communities grew faster when they had a 
higher level of mixing of the two types (Fig. 5b-c). 

We further tested the effect of mixing on the average growth of our 
communities using our model. Specifically, we tested the prediction of our 
simple cellular automaton, that cells in our communities would grow faster if 
the interaction range was larger or if the spatial arrangement was more mixed. 
We tested these predictions by applying our model to experimentally observed 
and computationally altered spatial arrangements. Specifically, we 
randomized the observed spatial arrangements to disrupt kin clusters and we 
found that the average predicted growth rate of individuals increases (Fig. 5d). 
Likewise, if we simulate a closed system (corresponding for example to a large 
biofilm) where no amino acids are lost from the community, we find that 
lowering the uptake rates of amino acids and thereby increasing the 
interaction range leads to an increase of the average predicted growth rate of 
individuals (Fig. 5e). However, there is a tradeoff: in systems that are open 
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and where metabolites can diffuse away from the cells (like our chambers), 
very low uptake rates can also reduce the average growth rate because of 
diffusional loss (Fig. S5).  

 

Fig. 5: The small interaction range between cells reduces productivity of 

the consortium.  a Communities equilibrate at compositions of 23% (median, 

n=61) of the tryptophan auxotrophs; deviations in two replicates are due to large 

clusters of tryptophan auxotrophs in the back of the chamber. b-c Growth of the 

communities increases with the mixing of the two cell types (partial correlation 

analysis with fraction as control variable Spearman ρ = 0.44, p<10-3, n=61). Each dot 

shows growth and mixing of one community. In panel c, also the fraction of 

tryptophan auxotroph is shown; the plane depicts the multiple linear regression of 

the growth rate on the mixing and the fraction of tryptophan auxotroph (the colour of 

the surface indicates the growth rate); data points above the plane are shown in 
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bright red, while data points below the plane are shown in dim red). d Randomizing 

community arrangements leads to higher mixing and higher predicted average 

growth rates of individuals (number of randomizations = 20, p<10-5, paired t-test, 

n=22). This indicates that the unmixing of the two types (which is removed by 

randomizing the arrangements) decreases average growth rates. e The model 

predicts an increase in the average growth rate (relative growth above one), when the 

growth range (and thus interaction range, see Fig. 4b) increases. Here we simulated a 

closed system, where amino acids are not lost from the system through diffusion; the 

growth range was varied by changing the uptake rate of amino acids in the model.  

Discussion 

Here we developed a method to directly measure the interaction range that 
can be applied to a large number of microbial systems. We focused on a 
synthetic community of two genotypes exchanging amino acids and we found 
that the cells in our community interact on a short range and that this lowers 
their growth rates. In general, we expect the interaction range to 
fundamentally affect the functioning of any assembly of interacting 
microorganisms. The specific effects will depend on the nature of the 
interactions. For example, short-range interactions can stabilize the 
cooperative production of molecules, as they ensure that these molecules are 
only accessible to cells that also contribute to production, and are inaccessible 
to non-producing individuals21,36. In contrast, short-range interactions 
generally can impede mutualistic cross-feeding18, although they can have a 
stabilizing effect by preventing ecological invasion by non-contributing 
mutants23.  

The ecological and evolutionary outcome of cooperation and competition can 
change dramatically when interactions are limited to a small 
neighbourhood8,29,37 and therefore the interaction range is a crucial feature of 
any spatially structured ecological system. Here we found that the interaction 
range between individuals is on the order of a few cell lengths in a microbial 
assembly where the production of cellular building blocks is distributed across 
different cell types. We predict that the interaction range is generally small 
whenever the density of cells is high and the uptake of the molecules 
mediating the interaction is fast compared to their diffusion. We thus expect 
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the interaction range to be small in dense assemblies where cells exchange 
cellular building blocks, signaling molecules or metabolites that bind38 or 
digest extracellular nutrients39,40. Finally, we showed that, if interaction 
ranges are small, the spatial unmixing of cell types through local growth can 
hinder metabolic exchange between different cell types and reduce 
community growth.  

Our work suggests that knowing at which spatial scale organisms interact is 
crucial for understanding the ecological dynamics and functions of 
communities. Here, we worked with microbial systems, where interspecies 
interactions are often based on the uptake and release of diffusible 
metabolites. In plant communities, the ecological dynamics are mostly shaped 
by competition for light and nutrients41 as well as by facilitation42. In 
communities of predators and prey, interactions are based on encounter rates 
and thus by the movements of individuals43. In all these cases, the interaction 
strength is expected to decline with distance between individuals. 
Understanding how local interactions scale up to determine the dynamics and 
functions of such spatially structured communities is thus a central goal.   

Methods 

Strains 
All experiments were performed using strains derived from E. coli MG1655; 
these strains are ΔtrpC-GFP (MG1655 trpC::frt, PR-sfGFP), ΔtrpC-RFP 
(MG1655 trpC::frt, PR-mCherry), ΔproC-GFP (MG1655 proC::frt, PR-sfGFP), 
and ΔproC-RFP (MG1655 proC::frt, PR-mCherry). The ΔproC strains are 
unable to produce proline due to a deletion in proC, the ΔtrpC are unable to 
produce tryptophan due to a deletion in trpC31. The auxotrophic strains were 
made by transferring the respective kanamycin cassettes from the keio-
collection44 into TB204 and TB20545 using lambda Red mediated 
recombination46. TB204 and TB205 are E. coli MG1655 derivatives that 
constitutively express sfGFP or mCherry from the lambda promoter (PR) from 
the chromosome. In brief, the kanamycin cassette including the homologous 
flanking regions were amplified by PCR from JW0377 (proC::kan) and 
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JW1254 (trpC::kan)44 and transformed into TB204 and TB205 harbouring the 
pSim8 plasmid (kindly provided by Donald L. Court). Primer sequences used: 
U_proC_fw: CAT AAA GTC ATC CTT TGT TGG G 
D_proC_rv: CTT TAC GGA TTA GTG TGG GG 
U_trpC_fw: AAC GTC GCC ATG TTA ATG CG 
D_trpC_rv: GAA CTG AGC CTG AAA TTC AGG 

The kanamycin cassette was transferred into a fresh strain of TB204 or TB205 
using P1 mediated generalized transduction. Upon successful transduction, 
the phenotypes of the strains were confirmed (no growth without proline or 
tryptophan) and the kanamycin cassettes removed from the genome using the 
FLP-recombinase from plasmid pCP2046. We confirmed the ability of our two 
auxotrophs to grow together by receiving the amino acid they cannot produce 
from their partner, as reported in previous work31. 

Media and growth condition 

Monocultures of the two auxotrophs strains were started from a single colony 
taken from a LB-agar plate and were grown overnight at 37°C in a shaker 
incubator in M9 medium (47.76 mM Na2HPO4, 22.04 mM KH2PO4, 8.56 mM 
NaCl and 18.69 mM NH4Cl) supplemented with 1mM MgSO4, 0.1 mM CaCl2, 
0.2% glucose (all from Sigma-Aldrich), 50 µg/L of L-proline (434 mM) and 20 
µg/L L-tryptophan (98 mM) and 0.1% Tween-20 (added to facilitate loading 
of cells in microfluidic device). Cells were loaded in stationary phase in a 
microfluidic device and grown in the same media. After approximately 10 
hours, cells exited lag phase and started to fill the chambers. The medium was 
then switched to M9 medium + 0.2% glucose + 0.1% Tween-20 with no amino 
acids. This medium was fed for the whole duration of experiment 
(approximately three days). Imaging was started three hours before switching 
to this medium, to have a control of cellular growth with amino acids in the 
medium. 

Microfluidic experiment 

The microfluidic devices consisted of chambers of 60x60 µm and 0.76 µm in 
height facing a feeding channel of 22 µm in height and 100 µm in width. 
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Masks for photolithography were ordered at Compugraphics (Jena, 
Germany). The master mold was made on a silicon wafer, by applying SU8 
photoresist in two steps (the first step to make the layer for the growth 
chambers and the second step to make the layer for the feeding channel). To 
make the chips used for the experiments, Polydimethylsiloxane (PDMS, 
Sylgard 184 Silicone Elastomer Kit, Dow Corning) was mixed in a ratio of 

1.5:10 and poured on the dust-free master mold, degassed in a desiccator for 

30 minutes, and baked for around one hour at 80°C for curing. PDMS chips of 
approximately 2 cm × 3.5 cm were cut out around the structures on the wafer. 
Holes for medium supply and outlet were punched (diameter of holes 1.2 
mm). PDMS chips were bound to round (50 mm diameter) glass coverslips 
(Menzel-Gläser, Braunschweig, Germany) by treating them for 30 seconds at 
maximum power in a Plasma Cleaner (PDC-32G-2, Harrik Plasma, New York, 
USA), and left on a hated plate at 100°C for one minute for binding. Before an 
experiment, a small amount of medium was flushed into the channels using a 
pipette to wet the chambers. Then air was pushed through the main channel 
(medium remained in the chambers). Cells in stationary phase, from 
overnight culture (approximately 14 hours) were concentrated approximately 
100 times by centrifugation (5,000×g, 5 min.) and loaded into the chip using 
a pipette. Cells were pushed in the side chambers with the help of small air 
bubbles flowing through the main channel. Once a sufficient number of cells 
were pushed inside the chambers, fresh medium was pumped through the 
flow channel. For all experiments, syringe pumps (NE-300, NewEra Pump 
Systems) with 50 ml syringes containing the medium were used. Tubing 
(Microbore Tygon S54HL, ID 0.76 mm, OD 2.29 mm, Fisher Scientific) was 
connected to the syringes using 20G needles (0.9 mm × 70 mm), which were 
directly inserted into the tubing. Smaller tubing (Teflon, ID 0.3 mm, OD 0.76 
mm, Fisher Scientific) was then inserted into the bigger tubing and directly 
connected to the inlet holes in the PDMS chip. Medium switches were 
performed by disconnecting the bigger tubing from the syringe and 
reconnecting it to new syringes. All experiments were run at a flow rate of 0.5 
ml/h. The flow rate is high enough that amino acids do not accumulate in the 
feeding channel and are not exchanged via the main channel. In fact no 
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growth was observed in chambers hosting only one of the two auxotrophs 
during the whole duration of the experiment.  

Microscopy 

Time-lapse microscopy was done using fully automated Olympus IX81 
inverted microscopes (Olympus, Tokyo, Japan). Images were taken using a 
100X NA1.3 oil objective (Olympus) with 1.6X manual auxiliary magnification 
and an ORCA-flash 4.0 v2 sCMOS camera (Hamamatsu, Hamamatsu, Japan). 
Fluorescent imaging was done using a X-Cite120 120 Watt high pressure 
metal halide arc lamp (Lumen Dynamics, Mississauga, Canada) and Chroma 
49000 series fluorescent filter sets (N49002 for GFP and N49008 for RFP, 
Chroma, Bellows Falls, Vermont). Focus was maintained using the Olympus 
Z-drift compensation system and the entire setup was controlled with 
Olympus CellSens software. The sample was maintained at 37°C with a 
microscope incubator (Life imaging services, Basel, Switzerland). Several 
positions were imaged on the same microfluidic device and images were taken 
every ten minutes. 

Image analysis 

All image processing was done using Matlab (version 2016A and newer, 
MathWorks, Natick, Massachusetts) and Vanellus software (written by D. J. 
Kiviet, accessible at https://github.com/daankiviet/vanellus). Time-lapse 
frames were first registered and cells were then segmented using customized 
segmentation algorithms. Two different algorithms for segmentation were 
used: the ‘segmentation of biomass algorithm’ and the ‘segmentation of cells 
algorithm’. The ‘segmentation of biomass algorithm’ identifies the green and 
red biomass in the chamber: images were first cropped along the profile of the 
microfluidic chambers (up to 8 µm from the outlet), and biomass was 
segmented on the phase contrast image and assigned to its relative colour 
after deconvolution; the algorithm was optimized to give the most accurate 
estimation of the area occupied by cells of each type and not to segment the 
single individuals. The ‘segmentation of cells algorithm’ identifies individual 
cells for subsequent single cell growth estimation (elongation rate). In this 
case, cells were segmented on the green or the red fluorescent image, 
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according to their fluorescence colour. Single cell location was tracked using 
an optical flow based algorithm (described below) and the tracking was 
manually corrected to prevent mistakes. Subparts of the chambers were 
randomly selected for the single cell segmentation and tracking and 250 cells 
per chamber were analysed on average, giving a total of 15,475 cells across 61 
chambers. The area close (within 8 µm) to the open end of the chamber was 
not considered for analysis, as amino acid concentrations in this area are 
lower because they are washed out into the main flow channel. The tracking 
algorithm based on optical flow can be described in three steps: 1) estimate 
vector field of movement M between subsequent segmented images S1 and S2  
using Farneback47 algorithm 2) back-transform the second image 
S2,backtransformed = - M • S2, to obtain a prediction of how S1 should look like 
based on the vector field of motion 3) for each cell in S1 determine the area 
overlap with cells in  S2,backtransformed ; cells in S1  are tracked to cells in S2  based 
on maximum overlap area.  

Cell elongation rate  

Cell elongation rates (i.e. growth rates) were calculated by fitting the 
exponential curve L(t)=L(0) 2µ·t to the cell length L over time. The fitting was 
done using a linear fit on the logarithm of the cell length over a sliding time 
window of 5 time-points (40 minutes). Length of a cell was measured as the 
length of the major axis of the ellipse that approximates the cell, i.e. the ellipse 
that has the same normalized second central moments as the cell.  

Correlation analysis 

We quantified the composition of the neighbourhood of a focal cell as the 
fraction of the partner present in that neighbourhood, e.g. in the case of the 
tryptophan auxotroph we quantified the fraction ΔproC/(ΔproC+ΔtrpC). 
ΔtrpC and ΔproC are the areas (in pixel) occupied by each auxotroph, 
therefore they are a measurement of biomass and not of cell number. To 
calculate the fraction above, we first identified biomass of the two types as 
described in the image analysis section; then we calculated the area in pixel 
that each cell type occupies within increasing distances from the focal cell’s 
perimeter. For a given distance, we plotted the fraction (x-axis) against the 
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growth rate (y-axis) for all cells and we calculated Spearman's rank correlation 
coefficient (no assumption on the functional relationship between variables). 
The correlation coefficient is maximal at a specific distance, which we call 
interaction range. We use linear regression to characterize the relationship 
between the growth rate of the cells and the fraction of the amino acid 
producing partner present within the estimated interaction range. For Fig. 2d, 
the correlation is calculated as Spearman ρ on 1,985 data points for proline 
auxotrophs and 1,769 for tryptophan auxotrophs, both from four biological 
replicates (with 22 chambers in total). The same analysis performed when 
cells are fed amino acids shows that growth does not depend on the 
neighbours when amino acids are present in the medium (Fig. S1).  

Individual-based model     
We consider two cell types living on a 40x40 squared grid: the first type can 
only produce amino acid 1, and its limited in growth by the supply of amino 
acid 2; the second type can only produce amino acid 2, and its limited in 
growth by the supply of amino acid 1. We track the spatial distribution of the 

internal (I) and external (E) amino acid concentration as function of the 
location in the monolayer  (x, y) and time (t). We expect these concentrations 
to be constant in the direction perpendicular to the monolayer of cells (z-
direction), thus we integrate over the z-direction. For brevity, we will omit the 
variables (x, y, t) in the notation. We make the following assumptions:  
a)  Cells maintain a constant internal concentration I of the amino acid they 
can produce.  
b)  Growth of a cell is limited only by the amino acid the cell cannot produce; 
growth is modeled using the Monod equation µ =µwt I / ( I + K), where K is 
the concentration at which cells grow at half maximum speed. 
c)  Both cell types can grow at the same rate µwt when I>>K, where µwt  is 
growth of the wild type. This was experimentally assessed (see Fig. S7). 
d)  Cells take up amino acids actively30, and the process is approximated with 
linear kinetics: uptake = ru E , where ru is the uptake rate and E is the external 
concentration. Linear kinetics approximates Monod kinetics if the 
concentrations of external amino acids E  are low, as is the case in our 
experimental system. 
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e)  Cells leak amino acids through passive diffusion through the cellular 
membrane30 leakage = r l (I - E), where r l is the leakage rate. 
f)  Diffusion in the extracellular environment is modeled as diffusion in a 

crowded environment 48  𝐷!"" =  𝐷(1− 𝜌)/(1+ 𝜌/2) , where D is the diffusion 

constant and ρ the cell density. 
g)  The ratio between the volume inside a cell and the available volume outside 
of a cell is constant and equal to  𝛼 =  𝜌 /(1− 𝜌 ) .  

With these assumptions, we can write the following equations for the internal 
concentration of amino acids for a cell of the first type - which produces amino 
acid 1, and not amino acid 2:  

𝜕𝐼!
𝜕𝑡 = 0 

𝜕𝐼!
𝜕𝑡 = 𝑟!! 𝐸! − 𝑟!!  𝐼! − 𝐸! − 𝐼! µ!"𝐼! /(𝐼! + 𝐾! ) 

and for the second type - which produces amino acid 2 and not 1: 

𝜕𝐼!
𝜕𝑡 = 0 

𝜕𝐼!
𝜕𝑡 = 𝑟!! 𝐸! − 𝑟!!  𝐼! − 𝐸! − 𝐼! µ!"𝐼! /(𝐼! + 𝐾! ) 

The external concentration of each amino acid is: 

𝜕𝐸!
𝜕𝑡 = − α 𝑟!! 𝐸! + α 𝑟!!  𝐼! − 𝐸! + D!

!""∇! E!  

All parameters are taken from literature or are measured, with the exception 
of the leakage rates, which are estimated from data (see Table S1). These 
equations can be used to predict cells’ growth rates in real or artificial 
arrangements of the two cell types. See Supplementary Information, section 3, 
for a discussion about the effect of these parameters on the length scale of 
interactions, and for more details on the model. 
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Cellular automaton 

The cellular automaton models a consortium of two or more types of 
organisms that live on a grid and benefit from the presence of the other types. 
The model rests on few general assumptions: first, individuals place offspring 
close to themselves; second, reproductive success of individuals depends on 
the fraction of neighbours of the other type within the interaction range, the 
sole parameter in the model.  

An operative description of the cellular automaton follows: individuals reside 
in a spatially structured setting, each occupying a site on a 40x40 grid; each 
site has 8 adjacent sites on the grid (Moore neighbourhood) and boundary 
condition wrap the grid into a torus.  For the communities consisting of two 
types, there are individuals of types 0 and 1. At every time step an individual 
dies at a random location on the grid and it is replaced with an individual of 
type 0 or 1. It will be of type 0 with probability P(0): 

𝑃(0) =
𝛿!  𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠!

!"#!$%&' !"#!$!#%&'(
!

𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠!
!"#!"#$% !"#!$!#%&'(
!

 

where 𝛿!  is the Dirac delta function, which is one if grid site i contains type 0 
and zero otherwise. The reproductive success of each individual i is: 

𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠! =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑡𝑦𝑝𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠  

Individuals interact with all other individuals within a neighbourhood of 
range R (a square-shaped neighbourhood). For communities with more than 
two types, the reproductive success is equal to the fraction of neighbours that 
is most rare in the neighbourhood: 

𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑠𝑢𝑐𝑐𝑒𝑠𝑠! =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑎𝑟𝑒𝑠𝑡 𝑡𝑦𝑝𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠  

All the rest is easily extended from the two types community described above 
to communities of more than two types. To compare consortia with a different 
number of types, the reproductive success is normalized by the reproductive 
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success the consortium has in well-mixed conditions (𝑅 → ∞), which is 1/2 for 

two types, 1/3 for three and 1/4 for four.  

Starting from different initial configurations and varying proportions of the 
types, we let the system evolve and stop the simulation after the system has 
attained a dynamical equilibrium where the average reproductive success of 
individuals remains approximately constant. Average steady state 
reproductive success result from 100 independent runs of the cellular 
automaton. The cellular automaton is implemented in C++.  

Dataset and statistical analysis 

The dataset consists of 13,670 cells, from 61 chambers, grouped into ten 
biological replicates including both fluorescent label combinations. Four 
biological replicates were done with ΔtrpC-GFP and ΔproC-RFP (consortium 
1) and six were done with ΔtrpC-RFP and ΔproC-GFP (consortium 2). Each 
biological replicate corresponds to one channel in a microfluidic chip and for 
each channel on average 6 chambers were analysed (range: 3-9). Inside each 
chamber, on average 224 cells were tracked in time, as described in the Image 
analysis method section. The experiments were performed in three 
independent runs using different microfluidic chips and different batches of 
media (first chip with four replicates of consortium 1, second chip with two 
replicates of consortium 2 and third chip with four replicates of consortium 
2). The interaction range and relation between growth and neighbourhood 
were estimated separately for consortium 1 and 2. The interaction ranges are 
consistent for the two consortia (Fig. 2d shows consortium 1, Fig. S6a shows 
consortium 2), but the fluorescent label affect the growth rate to some extent: 
the ΔtrpC-RFP grows generally slower than the ΔtrpC-GFP (Fig. 2f-g shows 
consortium 1, Fig. S6b-c consortium 2). To assess the variability of the 
estimate of the interaction range, we repeated the analysis for each replicate in 
isolation (results are shown in Fig. 2e).  

Mixing and average growth rate in the chambers 

The level of mixing of the two cell types in each chamber was measured as the 
ratio between the length of the boundaries between the two types and the total 
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 area they occupy together: 

𝑚𝑖𝑥𝑖𝑛𝑔 =
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑦𝑝𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑  

A higher boundaries to area ratio indicates higher levels of mixing. The 
boundaries between types were estimated using a computationally efficient 
proxy: we scanned the images in one direction and counted the number of 
transitions between one type and the other; the total number of transition is a 
measure of the length of the interface between the two types. In Fig. 5b-c, we 
normalized the measurement of mixing for our 61 chambers to values between 
zero (chamber with lowest mixing) and one (chamber with highest mixing).  

The average growth rate in the chambers was estimated using a method based 
on optical flow (using Farneback algorithm47). First, a rectangular region was 
drawn, that had the same width as the chamber and 2/3 of its depth 
(excluding the third of the chamber close to the opening, where movement of 
cells is too fast to have a reliable optical flow estimate). As cells grow and flow 
out of the chamber, they move out of the selected region. Let 𝐵(𝑡) be the 

biomass in the selected region at time t; during a time period Δ𝑡, the biomass 

𝐵(𝑡) varies due to growth 𝜇 𝑡  and to flow outside of the selected region Φ 𝑡 . 

We can thus write the following equation: 
Δ𝐵 𝑡
Δ𝑡 = 𝜇 𝑡 ⋅ 𝐵 𝑡 −Φ 𝑡  

This equation can be used to calculate the growth rate as: 

 𝜇 𝑡 =
1

𝐵 𝑡 ⋅
Δ𝐵(𝑡)
Δ𝑡 +Φ 𝑡  

We estimated Φ 𝑡  from the two separate fluorescent channels, i.e. we 

estimated Φ 𝑡  as the sum of the optical flow measured on the red and on the 

green channels separately. All quantities are calculated over a time window 

Δ𝑡 = 2ℎ around time t = 16h after the amino acids were removed, and the 

optical flow is averaged over a strip (20 pixels wide) around the border of the 
selected region. 
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