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In epilepsy patients, language lateralisation is an important part of the presurgical diagnostic process. Using task-based
fMRI, language lateralisation can be determined by visual inspection of activity patterns or by quantifying the difference in
left- and right-hemisphere activity using variations of a basic formula [(L-R)/(L+R)]. However, the values of this laterality
index (LI) depend on the choice of activity thresholds and regions of interest. The diagnostic utility of the LI also depends
on how its continuous values are translated into categorical decisions about a patient’s language lateralisation. Here, we
analysed fMRI data from 712 epilepsy patients who performed a verbal fluency task. Each fMRI data set was evaluated
by a trained human rater as depicting left-sided, right-sided, or bilateral lateralisation or as being inconclusive. We used
data-driven methods to define the activity thresholds and regions of interest used for LI computation and to define a
classification scheme that allowed us to translate the LI values into categorical decisions. By deconstructing the LI
into measures of laterality (L-R) and strength (L+R), we also modelled the relationship between activation strength and
conclusiveness of a data set. In a held-out data set, predictions reached 91% correct when using only conclusive data
and 82% when inconclusive data were included. Although only trained on human evaluations of fMRIs, the approach
generalised to the prediction of language Wada test results, allowing for significant above-chance accuracies. Compared
against different existing methods of LI-computation, our approach improved the identification of inconclusive cases and
increased the accuracy with which decisions for the remaining data could be made. We discuss how this approach can
support clinicians in assessing fMRI data on a single-case level, deciding whether lateralisation can be determined with
sufficient certainty or whether additional information is needed.
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Introduction

In patients with refractory focal epilepsies, brain surgery is
recommended as an effective treatment option (Kwan et al.,
2009). To plan such an intervention, presurgical diagnostics
aim to identify both the epileptogenic cortex and eloquent
parts of the cortex that need to be spared in order to avoid
cognitive deficits (Rosenow, 2001; Labudda et al., 2010).
Language is of vital importance for everyday functioning
and is usually strongly lateralised to one hemisphere of
the brain (Knecht, 2000). In such a case, unilateral resec-
tion of eloquent cortex cannot be well-compensated by the
contralateral homologue, making language lateralisation
one key objective of presurgical diagnostics (Binder et al.,
1996; Sabsevitz et al., 2003). While most people in the
general population show left-lateralised language functions
(Springer et al., 1999), the ratio of atypically lateralised
cases is higher in epilepsy patients. It is estimated that
around 20% of the patients show bilateral or right-sided

lateralisation of language functions (Springer et al., 1999).
For brain surgery to be safe and beneficial, the certainty
regarding the patient’s language lateralisation needs to be
maximised.
To determine language lateralisation, both invasive and
non-invasive methods can be used (Binder et al., 1996;
Rutten et al., 2002; Woermann et al., 2003). Among the
non-invasive methods, functional MRI is recommended
as a reliable diagnostic tool for the lateralisation of lan-
guage functions (Binder, 2011; Szaflarski et al., 2017). A
frequently used paradigm to estimate language lateralisa-
tion with fMRI is verbal fluency, a task in which the patient
silently generates as many words as possible belonging to a
certain category (Henry and Crawford, 2004). The words to
be generated need to belong to either a semantic category
(for example, fruits or animals) or a phonological category
(for example, words beginning with S). A verbal fluency task
mainly measures language production, activating regions
in the inferior frontal gyrus (IFG), including Broca’s area
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(Gaillard et al., 2000; Arora et al., 2009). Depending on the
broadness of the comparison condition, other areas such
as the supplementary motor area (SMA), visual word form
area (VWFA) in the fusiform gyrus, and Wernicke’s area will
also show activity, giving rise to a distributed but lateralised
language network (Lurito et al., 2000; Price, 2010).
One way to determine the language lateralisation of a pa-
tient based on fMRI results is to compute a single laterality
index (LI) from the emerging voxel-wise activity patterns.
This index indicates the difference in language-related
activity in the left versus the right hemisphere (Chlebus
et al., 2006; Jansen et al., 2006). Such an index is usu-
ally computed by counting the voxels in each hemisphere’s
language-related areas falling above a predefined activity
threshold. This approach requires the evaluator to decide
which activity threshold and regions of interest (ROIs) to
evaluate (Gaillard et al., 2002; Adcock et al., 2003). Once
the number of above-threshold voxels in a certain brain
area has been computed, the difference between the left
and right side is expressed in a single value. The most
common formula used is (L-R)/(L+R), which gives the dif-
ference between the above-threshold voxels in a region
of interest in the left and right hemispheres divided by the
sum of the above-threshold voxels in both hemispheres
(Seghier, 2008).
Finally, the resulting score must be translated into a cat-
egorical decision by using a cut-off so that, for example,
cases with LI values above +0.2 will be categorised as
left-lateralised, cases below -0.2 as right-lateralised, and
cases in between as bilateral (Wilke et al., 2011). Defining
these cutoffs is difficult, partly because the sample sizes of
validation studies tend to be small (Dym et al., 2011). For
example, if a sample includes only one atypical case with
an LI value close to -1, a wide range of cutoffs can produce
perfect accuracies.
Nevertheless, many approaches based on variants of lat-
erality indices have demonstrated high concordance with
invasive measures (Jones et al., 2011; Janecek et al., 2013)
or language-related clinical variables such as handedness
or age at onset (Berl et al., 2014). Still, the common LI
has been criticised because it is threshold-dependent and
ignores the high inter-individual variability of fMRI activity
strength (Suarez et al., 2009; Strandberg et al., 2010).
For instance, in a patient with very poor activity, nine above-
threshold voxels in the right hemisphere and one above-
threshold voxel in the left hemisphere might remain after
applying a moderate threshold. The resulting LI would be
(1-9)/(1+9) = -0.8, indicating atypical, right-sided language
dominance. In contrast, the underlying fMRI activity pattern
would most likely be considered inconclusive by a human
expert, as the overall signal would be insufficient to draw
conclusions about the functional organisation of language.
Hence, a fixed threshold LI will assign the most extreme
scores to the patients with the fewest above-threshold vox-
els (i.e., with the poorest data quality). To address this prob-

lem, more sophisticated methods use variations of adaptive
thresholds (Wilke and Lidzba, 2007). There, weaker acti-
vations are thresholded at lower levels, ensuring that the
LI computation is always based on an adequate amount of
data in the individual case. However, if an adaptive thresh-
old allows more random noise to pass the lower threshold,
the difference between left and right hemisphere will di-
minish, and poor-quality data will be reflected in LI values
closer to zero, indicating bilaterality. Because of these is-
sues, methods for LI computation critically rely on data
pre-selection (Wilke and Lidzba, 2007) usually based on a
subjective criterion. In summary, the reliability of analysing
a language-fMRI arguably depends upon (i) deciding how
to compute the LI, (ii) from which regions of the brain to ex-
tract data, (iii) how to translate the continuous LI values into
categories of lateralisation, and (iv) how to decide which
data sets do not allow for making a decision with sufficient
confidence.
In the present study, we aimed to evaluate how the fMRI ac-
tivity patterns from a verbal fluency task can be best used
for assessing the type of language lateralisation of a patient
with epilepsy. We used the common LI [(L-R)/(L+R)] ap-
plied to different activity thresholds and ROIs. We trained a
classifier to determine the cutoffs that best allow for group-
ing the continuous LI values into categories of lateralisation.
These categories were based on a trained specialist’s free
inspection of the fMRI data (Woermann et al., 2003). Each
data set was categorised as indicating left, bilateral, or right
language lateralisation or as being inconclusive (i.e., refrain-
ing from making a decision). To improve the identification
of inconclusive data, we deconstructed the LI formula into
a measure of lateralisation (L-R, its numerator) and ac-
tivity strength (L+R, its denominator). This was aimed at
addressing the ambiguity of the single-value LI discussed
above, especially in the case of low-quality data.
To compare the performance of our approach against a
benchmark, we used already established methods of LI
computation (Wilke and Schmithorst, 2006; Wilke and
Lidzba, 2007) as a frame of reference. Finally, we vali-
dated our approach using language Wada test results as
the gold standard for language lateralisation.

Methods
2.1 Participants
The study included fMRI data from 712 patients with epi-
lepsy who were undergoing a presurgical evaluation. All pa-
tients performed an fMRI verbal-fluency task at the Epilepsy
Centre Bethel between September 2011 and March 2018.
The start of the inclusion period was determined by the
installation of a 3T scanner at the study site. All data were
acquired as part of the centre’s presurgical evaluation pro-
gramme, and data were analysed retrospectively. The study
was approved by the ethics board of Bielefeld University
(2017-184). The full data set for the present study com-
prised 783 fMRI sessions, as some patients were scanned
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Figure 1. Example of laterality scores depending on the proportion of above-threshold voxels. L-R: the behaviour of the numerator of the laterality index (LI),
depending on the proportion of above-threshold voxels in the left and right hemisphere. L+R: the behaviour of the denominator of the LI. (L-R)/(L+R): the LI itself, i.e., the
ratio of numerator and denominator. Three hypothetical cases are presented as dots: The grey case has a low voxel count in both hemispheres (L=0.01, R=0.09), the green
case has a moderate voxel count in both hemispheres (L=0.46, R=0.54) and the blue case has a high voxel count in the right hemisphere only (L=0.10, R=0.90). While
the grey and green case are identical in their left-right difference (L-R), the grey case differs from the others in its low overall activity (L+R). This in turn makes its LI score
identical to the blue case. Depending on the approach used, one could decide to label the activity of the grey case as being suggestive of bilaterality (L-R is low) or of strong
right-lateralisation (LI is high). The former approach would be taken by adaptive thresholding methods while the latter approach would be employed by fixed-threshold
methods. However, another possibility could be to use the information about the strength of overall activity (L+R is low) to classify this case as inconclusive.

on multiple occasions. Of the included patients, 46% were
female, the median age was 28 years (range: 4–74), and
81% were right-handed.

2.2 MRI data acquisition
Data were collected on a 3T Siemens Verio MR scanner.
High-resolution T1-weighted structural data were collected
for each patient using a 32-channel head coil with 192
sagittal slices, slice thickness of 0.8 mm, and 0.75 x 0.75
mm in-plane resolution. For fMRI data, a 12-channel head
coil was used, and data were collected using the following
parameters: 21 axial slices per volume, 3x3 mm in-plane
resolution for each slice, and a thickness of 5 mm. A
repetition time (TR) of 3 seconds was used with an effective
acquisition time of 1.8 seconds per volume; there was a
1.2-second pause between TRs to allow for the audible
presentation of verbal instructions. Over a period of 10
minutes, 200 volumes (excluding two dummy scans) were
collected.

2.3 fMRI task
The verbal fluency task consisted of covert word produc-
tion of either semantic or phonemic categories such as
“animals” or words beginning with the letter “S.” A block
of verbal fluency lasted 30 seconds, and the blocks were
alternated with a 30-second resting condition when the
patients were asked to stop generating words and relax.
There were 10 blocks for each condition, each triggered by
a verbal instruction given via the MRI intercom, resulting
in a task length of 10 minutes. If necessary, patients were
trained to perform the task beforehand by a neuropsycholo-
gist, with some patients receiving specifically tailored lists
of categories in accordance to their abilities and interests.

2.4 Visual evaluation
To provide a reference for the evaluation of the LIs, the
assessment by a trained specialist (FGW) for each case
was derived from clinical records. This assessment was
based on an unrestrained visual inspection of the whole-
brain activity patterns, which included varying the threshold
at which the activity distribution was deemed meaningful.
Visual inspection included an assessment of data quality;
stimulus-associated movements (often present along tissue
borders) or the absence of a default mode network activa-
tion pattern during rest were used to identify low-quality
data. Also, the specificity of the activity patterns was con-
sidered so that more weight was given to a pattern that
encompassed the IFG, SMA, and VWFA as opposed to
a pattern of activity that was restricted to the precentral
gyrus, which might be due merely to the patient co-moving
their lips. Each fMRI was coded as either left-hemispheric,
right-hemispheric, bilateral, or inconclusive language lat-
eralisation. Accordingly, the sample consisted of 527 left-
lateralised (67%), 75 bilateral (10%), 47 right-lateralised
(6%), and 134 inconclusive (17%) cases. Excluding the
inconclusive cases, the distribution of lateralisation was
81% left, 12% bilateral, and 7% right.

2.5 Data preprocessing
For statistical analyses, data were preprocessed using
SPM12 with the following steps: First, the fMRI time se-
ries was movement corrected using the realignment func-
tion. Then, the images were directly normalised to the
echo-planar imaging (EPI) template, up-sampled to 2 mm
isotropic voxels, and smoothed with a Gaussian kernel of
6mm full-width at half-maximum (FWHM) to improve the
signal-to-noise ratio. This approach was chosen over de-
riving the normalisation parameters from the co-registered
structural scans, as the direct transformation of EPI images
proved more robust for many patients, especially when
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Figure 2. Distribution of Wada test scores. Results for the bilateral and unilateral Wada tests. Histograms indicate the number of cases with a Wada test score falling
into the respective bin. Lines at the bottom of the plots indicate individual values (overlapping values indicated by stronger hue). Red, green and blue colours indicate the
classification of the scores into left, bilateral and right, using the procedures described in Kurthen et al. (1994) and Wellmer et al. (2005). In the final sample, 39 patients
were left-lateralised (63%), 10 were bilateral (16%) and 13 were right-lateralised (21%). This classification was also confirmed using an unsupervised clustering method
(K-means clustering, searching for a three-cluster solution), which grouped all data in the same way.

lesions or signal dropouts were present (Calhoun et al.,
2017).

2.6 Generation of statistical maps
Voxel-wise whole-brain analyses were performed for each
patient using SPM12. The block-wise activity was modelled
with a canonical hemodynamic response function (HRF).
Movement parameters were included as regressors of no
interest. A map of t-values was then computed for the
comparison of “verbal fluency > rest,” and these maps were
used in the subsequent steps to compute laterality indices.

2.7 Study design
To arrive at unbiased estimates of accuracy, we split the
sample into a training and a testing set, with two thirds of
the data used for training and one third held out for testing.
As the distribution of classes was uneven (i.e., there were
many more left-lateralised patients than atypical patients),
we used stratified splitting, so that the base rate for each
class was preserved in both splits. Different parameters of
t-value thresholds and ROI sizes were used on the training
data. Only after training, the best parameter combinations
were used to predict the held-out testing data set of 262
fMRI sessions. We used a linear support vector classifier
(SVC), which allowed for making probabilistic predictions.
This means that the probability of a data set belonging to
each class of lateralisation can be expressed as a value
between 0 and 1, which allows the degree of certainty to be
assessed for each decision (Wu et al., 2004). The splitting
and classification of data was implemented using the free
software library scikit-learn 0.18 (Pedregosa et al., 2011)
in Python 2.7. Code underlying all analyses is available at
github.com/mwegrzyn/laterality-index-deconstruction.

2.8 Group analysis and definition of regions of inter-
est

The training data were used to compute maps of average
activity for each class of language lateralisation as defined
by the human evaluator (left, bilateral, right, or inconclu-
sive). Whole-brain one-sample t-tests for each of the four
groups were performed using nilearn 0.3 (Abraham et al.,
2014) in Python 2.7. Furthermore, the group results for the
left- and right-lateralised cases, as defined by the human
evaluator, were used to create ROIs. To arrive at a rep-
resentative map of differences between the dominant and
non-dominant hemispheres, the data were transformed as
follows. First, the right-lateralised cases were flipped from
left to right so that the dominant hemisphere was on the
left for all patients. Then, for all of these images, another
flipped image was created and subtracted from the original,
resulting in images with a left-right difference value for each
voxel. Subsequently, the left-right difference images of all
patients were used to compute a whole-brain one-sample
t-test, resulting in a map where each voxel’s positive t-value
on the left side indicated stronger lateralisation to the left.
This map of the left hemisphere was then turned into binary
masks at different levels of activity. We generated 20 binary
maps, starting with all voxels of the map and subsequently
dropping 5% of the lowest scoring voxels until only the top
5% of the original map (i.e., the most significant values)
remained. To generate ROIs for the right hemisphere, the
map was flipped along the x-axis, providing a mirror-image
of all regions on their contralateral homologue of the brain.

2.9 Computation and deconstruction of the LI
From each patient’s t-map, the values of all voxels inside
the left and right language ROIs were extracted. From the
lowest to the highest t-values present in the brain map, the
percentage of above-threshold voxels was determined –
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Figure 3. t-value maps from the group level whole-brain analyses. Higher activity for the task is plotted in red and higher activity during rest is plotted in blue. As
groups are of different sizes, the threshold for each map has been adjusted for the respective sample size. The required alpha level for a medium effect (d=0.5) and 80%
power was computed using GPower 2.1. For the left-sided group (n=351) the critical t is equal to 8.47. For the bilateral group (n=50), t=2.68. For the right-lateralised
group (n=31), t=1.93. For the inconclusive group (n=89), t=3.85. Bars on the right-hand side show colour-coding of t-values. Full unthresholded maps are available online:
neurovault.org/collections/3887.

that is, starting at the point when all voxels crossed the re-
spective threshold up to the point where no voxels crossed
the threshold. Next, the LI, defined as (L-R)/(L+R), was
computed. Each LI can be broken down into its numera-
tor (L-R), which reaches its maximum when the absolute
difference in the above-threshold voxel is highest, and the
denominator (L+R), which decreases as the threshold in-
creases. To take full advantage of the information contained
within the LI, we explored a two-dimensional approach that
uses L-R (the numerator) as a measure of laterality and
L+R (the denominator) as a measure of activation strength
(Fig. 1).

2.10 LI-Toolbox as benchmark
To compare our approach against a benchmark, we com-
puted laterality indices using the LI-Toolbox (Wilke and
Lidzba, 2007) as implemented in SPM12. To be compre-
hensive, we used all of the following methods for LI compu-
tation: (i) a fixed-threshold method at the default value of
t=3 where the LI is based on the voxel count; (ii) an adaptive
method in which the threshold is set at the mean intensity
of the voxels; and (iii) a bootstrap method with its overall
LI. For all variations of the LI we used standard settings as
recommended in Wilke and Lidzba (2007) and Wilke and
Schmithorst (2006). A frontal lobe mask with midline ex-
clusion served as the ROI. Corresponding to the approach
outlined in section 2.7, the different toolbox-based LI values

of all patients from the training set were used to construct
linear SVCs, which were then used to predict the labels of
the test data.

2.11 Validation with Wada test results
2.11.1 Wada test procedure
Wada testing was performed by internal carotid artery in-
jection of 200 mg amobarbital via a transfemoral catheter
separately for each hemisphere. For children, size adapted
doses were administered (100mg to 150 mg). Before the
intracarotid amobarbital procedure (IAP), cerebral angiog-
raphy was performed. The IAP language test protocol
assessed seven language functions: (1) series repetition
(counting); (2) following verbal commands by pointing to
an image (four tasks); (3) following body commands (two
tasks); (4) visual confrontation naming (four tasks); (5) rep-
etition of sentences or proverbs (two tasks); (6) reading
sentences aloud (two tasks); and (7) spontaneous speech.
For each of the seven functions, a score of 2 points could
be reached.

2.11.2 Categorisation of Wada test results
For bilateral Wada tests (n=44), lateralisation indices were
calculated as LI=[(L-R)/(L+R)]*(n/m) (n: score of best hemi-
sphere; m: highest possible score; Kurthen et al. 1994).
For unilateral Wada tests (n=21), the hemispheric lan-
guage capacity was calculated as HLCh=h/m (h: score
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of tested hemisphere, m: highest possible score; Wellmer
et al. 2005). The distribution of the LIs and HLCs is illus-
trated in Fig. 2. The LI scores were categorised as follows:
LI>0.5: left-sided dominant; LI<0.5 right-sided dominant;
-0.5≥LI≥0.5: bilateral. This follows the categorisation of
Kurthen et al. (1994), treating cases showing “incomplete”
lateralisation as lateralised instead of bilateral. The HLCh
scores were categorised as follows: HLCh=0: the tested
hemisphere h is dominant; HLCh≥0.8: the tested hemi-
sphere is not dominant; 0<HLCh<0.2: patients in this range
(n=3) were excluded from further analyses because of the
possibility of negative bilaterality (Wellmer et al., 2005).

2.11.3 Prediction of Wada test results
The same classifiers that were used to predict the human
evaluations were used to predict the result of the Wada test
(left, bilateral, right) from the fMRI data. This means that all
Wada test results were only used for testing, but not to train
the classifier. Also, the fMRI data of all patients with Wada
test results were only part of the test set (see section 2.7
study design), and no data from patients with Wada test
results were used during training. The predictions of the
LI-Toolbox, computed as described in section 2.10, were
also validated with the Wada test results using the same
procedures.

Results

3.1 Analyses at the group level
The whole-brain activity patterns for the training data are
shown in Fig. 3. At the group level, a clear activation pattern
emerged including IFG, fusiform gyrus, and SMA. There
was also activity in the thalamus on the dominant side and
the contralateral hemisphere of the cerebellum. This pat-
tern held true for both left- and right-lateralised cases. The
same set of regions was activated for the bilateral cases,
although without signs of hemispheric differences, as would
be expected. The inconclusive cases showed only a small
above-threshold cluster in the SMA and some indication of
frontal activity. In addition, all groups showed more activity
in the precuneus and orbitofrontal areas during rest and
in the superior temporal and angular gyri. This indicates
engagement of the default mode network during periods of
rest. Of note, supra-threshold activity in Wernicke’s area
during verbal fluency was lacking in all groups.
When computing a pattern of differences between each
voxel in the dominant vs. non-dominant hemisphere and
when setting a threshold to include all voxels with t-values
greater than zero, the result was an ROI that included all
grey matter regions except those associated with the de-
fault mode network. When only the top 5% of voxels with
highest t-values were included (i.e., the 95th percentile),
only frontal areas and part of the fusiform gyrus constituted
the ROI (Fig. 4).

Figure 4. Generation of ROIs. The top brain map shows the results of the one-
sample t-test of all voxels in the dominant (left) vs non-dominant (right) hemisphere
against zero (for all patients with left- and (mirrored) right-sided lateralisation). The
lower maps show example ROIs when including all voxels in the dominant hemi-
sphere larger than zero or when including only the top 5% (95th percentile). The
difference map is available online: neurovault.org/images/113673.

3.2 Finding optimal parameters
For each combination of activity threshold and ROI size,
the training data set was used to compute the accuracy
with which the different lateralisation categories could be
predicted. To this end, the training data (n=521) were split
randomly into two halves with one half used to train the SVC
and the other half to compute its accuracy. This nested
cross-validation was performed for 100 random splits of
data, and the average accuracy was computed for each
combination of parameters. This gave rise to a heatmap of
accuracies (Fig. 5) across different thresholds of t-values
(x-axis) and ROI sizes (y-axis).

To evaluate whether the accuracies were larger than
expected by chance, a binomial test was carried out to test
the accuracy of each parameter combination against guess-
ing (alpha=.001). The guessing rate (defined as the base
rate of the largest group) for the three-class case was 81%,
so that above-chance accuracies must reach at least 87%
to be considered meaningful. On the other hand, when
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Figure 5. Accuracy maps for different classification rationales. The maps show colour-coded accuracies for different t-thresholds (x-axis) and ROI sizes (y-axis).
Predictions were based on random splits of the training data set into two halves. The lowest accuracies are plotted in dark blue and the highest in dark red. The red colour
indicates that an accuracy score is significantly better than guessing at p<.001.

all four classes were included, the guessing rate dropped
to 67%, and the above-chance accuracies must reach at
least 74% to be meaningful. As shown in Fig. 5, both the
common LI and the two-dimensional approach with later-
ality and strength allowed for above-chance predictions.
This held true when only conclusive cases were included
in the analyses or if all data were used. The LI and the
two-dimensional approach reached accuracies of 92% and
91% respectively for the three-class case and accuracies
of 81% and 84% respectively for the four-class case. How-
ever, the two approaches differed in the parameter space
that allowed for robust above-chance classification. When
only conclusive data were used, both approaches needed
t-value thresholds around three to allow for successful clas-
sification. However, the common LI worked well for a wide
range of ROI sizes, while the two-dimensional approach
required more circumscribed ROIs. When inconclusive
data were included, the t-value thresholds required by the
two approaches differed more prominently. The common
LI needed higher thresholds with t-values in the range of
three to nine, while the two-dimensional approach did not
require a raise in the threshold and still reached its highest

accuracies for t-values around two or three. To better un-
derstand the differential behaviour of the approaches, we
first evaluated the confusion matrices for the top parame-
ter combinations for each approach and then plotted the
underlying raw data.

3.3 Prediction using the test data
To evaluate how well new data could be predicted and what
kinds of mistakes were made in doing so, all above-chance
parameters from the computed threshold x ROI maps were
used on the held-out testing data set of 262 fMRI sessions.
This means that for each held-out patient’s data, the predic-
tions from all above-chance parameter combinations (red
in Fig. 5) were averaged together. Then, each data set was
assigned to the group for which the predictions indicated
the highest probability (winner-takes-all). This allowed us
to determine the number of correct classifications and the
number of specific confusions between classes (Fig. 6).

The resulting overall accuracies for the test data were
almost identical to the top accuracies from the training data
set. For the common LI, the held-out data were classified
correctly in 91% of the cases when only conclusive data
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Figure 6. Confusion matrices for the four types of prediction. Results for
predicting the test data set using held-out 262 fMRIs data sets are shown. Either
the LI or its deconstruction into laterality and strength was used, and inconclusive
cases were either excluded or included in the sample. Each row of the matrix
sums up to 100% (save rounding errors), as it represents the true cases. The
columns represent the predictions made. Correct predictions are plotted along the
diagonal in blue. Confusions are plotted off-diagonal in red. Abbreviations: L=left;
B=bilateral; R=right; I=inconclusive.

were used and in 82% of cases when inconclusive data
were included. Accuracies for when the LI was decon-
structed into laterality and strength reached 89% and 82%,
respectively. Fig. 6 further illustrates the results with the
diagonal showing correct predictions and the off-diagonal
cells showing confusions. When only conclusive cases
were included, both approaches showed similar patterns
of hits and confusions with high accuracies for the left-
and right-lateralised cases and frequent confusions of bi-
lateral cases with left-lateralised cases. When inconclu-
sive cases were added, the two approaches seemed to
diverge more; the LI still confused bilateral cases with left-
lateralised cases. On the other hand, the two-dimensional
approach tended to mistake bilateral and right-lateralised
cases for inconclusive cases more often.

3.4 Visualisation of all laterality scores
To better understand the way the different approaches
reached their maximum accuracies, we plotted the dis-
tribution of data for the best parameter combination of each
approach. Here, each patient’s laterality score is the av-
erage of all scores from the above-chance parameters.
Fig. 7 shows that when only conclusive cases were in-

cluded, there was a clear separation of classes using the LI.
When inconclusive cases were included, the use of higher
thresholds led to more extreme values (i.e., laterality scores
approaching +1 and -1), especially for the left-lateralised
cases, which showed overall more extreme scores. As the
high thresholds (and the low denominators of the LI) led
to more scores at the extremes and fewer around zero,
the bilateral cases were pushed away from the middle of
the scale. Finally, some cases were missing from the plot
because at the high thresholds, the denominator of the LI
was equal to zero, and no score could be computed.

For the two-dimensional approach, the data were plot-
ted with the numerator (L-R) on one axis and the denomina-
tor (L+R) on the other. Accordingly, in Fig. 8, each case has
one mean score for each dimension. With conclusive data
only, we see that the bilateral class spread out as strength
increased. Thus, a case was more likely to be classified as
bilateral when activation strength was high and more likely
to be left- or right-lateralised when activation strength was
low. This mimicked the one-dimensional LI, where a differ-
ence score based on low activation strength led to a strong
laterality score (e.g., nine voxels in the right-hemisphere
and one voxel in the left hemisphere is equal to -0.8), while
the same absolute difference at a high level (e.g., 54 voxels
in the right-hemisphere and 46 voxels in the left hemisphere
is equal to -0.08) would be more indicative of bilaterality.

However, when inconclusive cases were included, the
two-dimensional approach differed more prominently from
the LI. For the common LI, the inconclusive cases did not
have predictable values, but in the two-dimensional ap-
proach, they occupy a specific part of the prediction space
– namely, a case was classified as inconclusive if it had
both low strength and low laterality values. In contrast, a
case that also had low laterality values but showed high
activity strength was classified as bilateral.
To illustrate how these analyses might be used on the level
of individual patients, Fig. 9 illustrates the results of two
cases.

3.5 Comparison with benchmark
To move beyond a comparison against guessing, we re-ran
the above analyses using three variations of LI computa-
tions as implemented in the LI-Toolbox (Wilke and Lidzba,
2007) to train SVCs and then predict the language later-
alisation determined by the human evaluator. To illustrate
the behaviour of the bootstrap-LI (Wilke and Schmithorst,
2006), Fig. 10 shows the distribution of the LI values of
all cases and the prediction space based on the training
data. This follows the same rationale as described in sec-
tion 3.4. The bootstrap-LI allowed to reach 92% correct
predictions when only conclusive cases were included and
76% when inconclusive cases were also present. In the
four-class case, there were more inconclusive cases with
LIs around zero than there were bilateral cases, prohibiting
the identification of bilaterality altogether.
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Figure 7. Distribution of data and predictions for top parameter combinations for the LI. The upper part of each plot shows the data as a distribution along the x-axis,
with the background colour indicating the probabilistic prediction of the classifier. The human evaluation of each fMRI is indicated by the colour of the dots. The mean LI
of each case on the axis was computed as the mean score from all above-chance parameter combinations (see Fig. 5). As positive LI scores are indicative of left-side
dominance, the x-axis is inverted and goes from +1 to -1, so that the left side of the plot shows the left-lateralised cases. The lower panel of each plot shows the probabilities
of belonging to each class along the range of LI values.
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Figure 8. Distribution of data and predictions for top parameter combinations for the two-dimensional space. The x-axis of each plot shows laterality of the data
(L-R), and the y-axis shows the overall activation (L+R). As positive LI scores are indicative of left-side dominance, the x-axis is inverted and goes from +1 to -1, so that the
left side of the plot show the left-lateralised cases. The mean LI of each case on the axis was computed as the mean score from all above-chance parameter combinations
in Figure 5. The background colour shows the average behaviour of the classifier combinations, as a colour-coded probability value. The boundary of the classifier which
separates the inconclusive class from the rest is drawn as a white contour. The human evaluation of each fMRI is indicated by the colour of the dots.

Overall, the accuracies of all three approaches of the LI-
Toolbox were comparable to our analyses (Fig. 11). Within
the LI-Toolbox, there was no significant difference between
adaptive, bootstrap, and fixed-threshold methods.

3.6 Validation with Wada test results
To validate all of the above analyses, we selected 80 fMRI
data sets from 62 patients for which Wada test results were
available. Instead of predicting the human evaluations (left,
bilateral, right, inconclusive), we now tried to predict the
Wada test result (left, bilateral, right). The same classifiers
as above were used (i.e., derived from the training set with
human evaluations as labels). No new or additional training
on the Wada scores was performed.
The results for the different approaches are depicted in
Fig. 12. When using the LI-Toolbox immediately, without
preselecting the fMRI data regarding their conclusiveness,
accuracies between 71% and 75% were reached. When
using our two-dimensional approach to first exclude cases
deemed inconclusive (34 fMRI data sets according to our
approach) and then try to predict the Wada result of the
remaining cases, a higher accuracy of 83% for the remain-
ing 46 cases was reached. When combining the differ-
ent approaches (i.e., ours to exclude inconclusive cases
and the LI-Toolbox to classify the remaining ones), accu-
racies of 85% correct were reached. Accuracies for our
2D approach and 2D-LI hybrids were all significantly above
63% chance. That the pre-selection of inconclusive data
contributed to increasing the accuracy is illustrated at the
bottom of Fig. 12. There, only the Wada test results of

cases deemed inconclusive by the human evaluator were
predicted. Our approach excluded 20 of the 21 inconclusive
cases and made a correct prediction for the one remaining
case, while the adaptive LI was significantly below guessing
(always guessing left, indicated by the dashed line, being
the superior strategy).

Discussion
In the present study, we used data from a large sample of
epilepsy patients performing an fMRI verbal fluency task.
We aimed to evaluate how well an experienced human
evaluator’s assessment of language lateralisation, based
on free visual inspection of whole-brain fMRI patterns, can
be predicted from an LI value.
When using high-quality data (i.e., excluding inconclusive
cases based on low fMRI activity), above-chance accu-
racies of up to 92% correct classifications were reached.
This is in accordance with previous studies on language
lateralisation based on conclusive fMRIs, indicating that
estimating laterality from high-quality fMRI activity data is
robust (Woermann et al., 2003; Jones et al., 2011; Janecek
et al., 2013). Given the large amount of data reduction that
goes into computing an LI, this level of accuracy is notewor-
thy. When including inconclusive data, and thereby more
closely simulating the clinical context (in which noisy data
are not unusual), the common LI also produced high ac-
curacies and was as good as a two-dimensional approach
that allows grouping the data both by laterality (L-R) and by
strength (L+R). That increasing the dimensionality of the
data does not allow for better classification indicates that
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Figure 9. Examples of classifying individual fMRI data sets. For each fMRI, three sample slices of whole-brain activity are shown on the left hand (threshold at t=3);
the middle plot shows the prediction space for the two-dimensional approach; the probabilities of belonging to each class are plotted as percentages on the right-hand plot.
The four classes are represented by the colours red (left), green (bilateral), blue (right) and grey (inconclusive), as in the other figures.
Patient A underwent fMRI language lateralisation twice, with the two measurements more than one year apart. Both times, the human evaluator assessed the activity
pattern as bilateral, which was later confirmed by Wada-testing (bilateral Wada LI was -0.24). The 2d-method was too conservative the for the first measurement, but
correctly classified the second fMRI (which showed stronger activity but no change in laterality) as bilateral.
Patient B underwent fMRI language lateralisation twice on the same day, as the human evaluator assessed the first fMRI to be inconclusive. The second fMRI (which
showed stronger activity and pronounced right-lateralisation) was assessed as being indicative of right-lateralised language. This is also captured by the predictions of the
2d-method. The patient later underwent Wada testing which confirmed the right-lateralised language (bilateral Wada LI was -1).
Code used to generate the results is available at github.com/mwegrzyn/laterality-index-deconstruction.
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Figure 10. Distribution of data and predictions for the bootstrap-LI. The upper part of each plot shows the data as a distribution along the x-axis, with the background
colour indicating the probabilistic prediction of the classifier. The human evaluation of each fMRI is indicated by the colour of the dots. The LI of each case on the axis was
computed using the bootstrap-LI (Wilke and Schmithorst, 2006). As positive LI scores are indicative of left-side dominance, the x-axis is inverted and goes from +1 to -1, so
that the left side of the plot shows the left-lateralised cases. The lower panel of each plot shows the probabilities of belonging to each class along the range of LI values.

the common LI is a useful method of data reduction despite
its flaws (see Jansen et al. 2006; Seghier 2008). While
both approaches perform equally well at the group level,
the two-dimensional approach has the advantage that it
can always be evaluated, as we never have to divide by
zero. This might be a more desirable approach in the clini-
cal context compared to using the heuristic that whenever
the LI yields an error, we assume that laterality cannot be
determined. While inconclusive cases scatter along the
whole continuum of the common LI (from -1 to +1), they oc-
cupy a predictable range of values in the two-dimensional
space. There, inconclusive cases scatter around zero on
the L-R scale, given that they contain little information about
laterality; and because they show little language-related
activity on either side, they scatter around zero on the L+R
scale (see the grey dots in Fig. 1 and Fig. 8). Of note, our
two-dimensional approach is merely a deconstruction of
the common LI formula into its numerator and denominator.
Therefore, it does not require abandoning the LI for a new
approach or combining multiple methods but merely taking
advantage of the information already contained in the LI.
That it provides a predictable range into which inconclusive
cases will fall also sets this approach apart from the estab-
lished adaptive and bootstrap methods for LI computation
(Wilke and Schmithorst, 2006; Wilke and Lidzba, 2007).
While fixed threshold methods have the problem that low
activity data produce LIs close to the extremes (+1 and
-1), our results show that for adaptive methods, low activity
data produce LIs close to zero. This can make it especially
challenging to correctly identify bilateral cases. However,
these results must be interpreted with caution, as it is also
possible that all of the inconclusive cases with bootstrap-LI
values around zero were truly bilateral patients. In this
case, this LI method would be unfairly penalised for out-

performing the human evaluations, which assigned these
data sets to the inconclusive class. By using the Wada test
results as the gold standard of language lateralisation, we
were able to show that no method performed above chance
for the group of inconclusive cases. This strengthens the
notion that modelling an inconclusive class for which no
reliable prediction can be made is a useful strategy to re-
duce misclassifications. While it is costly to discard data,
recognising that a case cannot be evaluated with sufficient
certainty might still pay off, for example by allowing a more
targeted repetition of measurements. This would also take
advantage of the non-invasiveness of fMRI, which sets it
apart from the Wada test.

The validation of our approach using information from
the Wada test is also important because we trained our
predictions using only human evaluations of the fMRI data.
Using human evaluations is problematic because they are
based on the fMRI data themselves and not a truly indepen-
dent criterion. Also, they cannot replace the Wada test as
the gold standard for validation. However, we know that the
agreement of human evaluation of fMRI and Wada test re-
sults is very high (Woermann et al., 2003). Therefore, using
human evaluations as the criterion allowed us to assemble
very large samples (compared to the Wada test, which is
much less frequently performed), making data-driven meth-
ods more feasible. Hence, the approach of the present
study would not have been possible if only one or a handful
of atypical cases were available, as is frequently the case
in the literature (see the review by Dym et al. 2011). De-
spite never using Wada test data during training, we were
still able to predict the Wada results with accuracies sig-
nificantly above chance. This lends support to the chosen
approach and confirms the high concordance of fMRI and
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Figure 11. Accuracies for prediction of the test data. Mean accuracy (dot), the
84% confidence interval (thick line) and the 95% confidence interval (light line) are
depicted; chance performance (always guessing left) is indicated by the dashed line.
2D: our approach with separate measures of laterality (L-R) and strength (L+R),
highlighted in red; fixed-count: counting voxel at fixed threshold of t=3; adaptive: LI
computation with thresholding at the mean intensity of the image; bootstrap: main
output of the bootstrap-LI (Wilke and Schmithorst, 2006).

Wada test results (Binder, 2011; Szaflarski et al., 2017).
Given that the sample of Wada test patients contained a
large proportion of atypical patients (37%) and that Wada
tests are usually administered in difficult cases, accuracies
around 80% are noteworthy.
When comparing the accuracies between our approach
and the different variations implemented in the LI-Toolbox
(Wilke and Lidzba, 2007), we saw that the LI is very robust
across its different implementations. Although we had a
large sample of validation data, we were not able to find
systematic differences between fixed-threshold and adap-
tive or bootstrap methods. Meanwhile, it is possible that
combining a fixed-threshold LI with an adaptive LI might be
superior to using one or the other by itself. To recognise
inconclusive cases, a fixed threshold seems ideal. Only
when the threshold is kept fixed across patients, differences
in the denominator of the LI formula (L+R) can be used
to compare activity strength. If an adaptive method keeps
the denominator’s value constant (e.g., L+R must always
equal 50% of the ROI size; Wilke and Lidzba 2007), this
differential information will be lost. Afterwards, if a data
set is deemed fit for further analysis, an adaptive threshold
might be optimal because it maximises the variance in the
numerator of the LI formula (L-R) by keeping the denomi-
nator constant.
While assigning a measure of uncertainty to each individ-
ual prediction is useful to reduce mistakes, future studies
should explore whether data from an inconclusive fMRI
can somehow be salvaged to correctly predict the patient’s
Wada test result. While the current study’s incorporation
of inconclusive class allowed testing predictions in a real-
istic context, classifying a case as inconclusive cannot be

Figure 12. Accuracies for the prediction of Wada test results. Mean accu-
racy (dot), the 84% confidence interval (thick line) and the 95% confidence interval
(light line) are depicted; chance performance (always guessing left) is indicated by
the dashed line. 2D: our approach with separate measures of laterality (L-R) and
strength (L+R), highlighted in red; fixed-count: counting voxel at fixed threshold of
t=3; adaptive: LI computation with thresholding at the mean intensity of the image;
bootstrap: main output of the bootstrap-LI (Wilke and Schmithorst, 2006). ‘+’ sign
indicates whenever the 2D approach was used to exclude inconclusive cases and
another LI-measure when then used to classify the remaining cases (highlighted in
red).

the ultimate goal of diagnostics. Alternative data analysis
techniques such as pattern analysis methods (Zago et al.,
2017) might be used to take full advantage of the data and
successfully predict the true type of lateralisation of each
patient.
Furthermore, none of the approaches presented here show-
ed a satisfying sensitivity regarding the detection of bilateral
cases (see Fig. 6). This might reflect that many instances
of bilaterality cannot be well expressed with a simple LI.
For example, crossed lateralisations with left-sided activity
in Broca’s area and right-sided activity in Wernicke’s area
(Kurthen et al., 1992) might by definition be unsuitable to be
represented by a simple score based on one ROI. Multiple
ROIs might have to be considered simultaneously (Ben-
jamin et al., 2017) to improve the characterisation of each
patient’s unique type of language lateralisation. Also, some
studies have indicated that additional classes of language
lateralisation might be needed to better understand the
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different subtypes of atypicality (Berl et al., 2014).
While the usefulness of fMRI for language lateralisation
in epilepsy has substantially improved since the inception
of the method (Szaflarski et al., 2017), it still needs more
validation work to make it feasible for reliably predicting lan-
guage lateralisation (i) in single cases and (ii) in a clinical
setting. Although much research has focused on how to
compute the LI, it is less well understood how an LI value
should be best translated into a categorical decision. Apart
from the LI threshold, brain regions for data extraction and
cutoffs for grouping the LI values into clinical categories
must be chosen. Also, it must be considered that some
data sets simply do not contain enough diagnostic informa-
tion to allow for a confident decision. In our study, we tried
to justify every step of such a decision-making process,
using data-driven methods throughout. The validation of
our approach shows that the LI is very robust across its
different implementations. It can predict human evaluations
of language lateralisation as well as Wada test results with
substantial above-chance accuracies. Our results indicate
that by taking advantage of all information contained within
the LI, its clinical utility could be further improved.
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