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SUMMARY 
 
Naturally occurring human genetic variants predicted to cause loss of function of protein-coding 
genes provide an in vivo model of human gene inactivation that complements cell and model 
organism knockout studies. Here we investigate the application of human loss-of-function 
variants to assess genes as candidate drug targets, with three key findings. First, even essential 
genes, where loss-of-function variants are not tolerated, can be highly successful as targets of 
inhibitory drugs. Second, in most genes, loss-of-function variants are sufficiently rare that 
genotype-based ascertainment of homozygous or compound heterozygous “knockout” humans 
will await sample sizes ~1,000 times those available at present. Third, automated variant 
annotation and filtering are powerful, but manual curation remains critical for removing artifacts 
and making biological inferences, and is a prerequisite for recall-by-genotype efforts. Our results 
provide a roadmap for human “knockout” studies and should guide interpretation of loss-of-
function variants in drug development. 
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MAIN TEXT 
 
Human genetics is an increasingly critical source of evidence guiding the selection of new 
targets for drug discovery1. Most drug candidates that enter clinical trials eventually fail for lack 
of efficacy2, and while in vitro, cell culture, and animal model systems can provide preclinical 
evidence that the compound engages its target, too often the target itself is not causally related 
to human disease1. Candidates targeting genes with human genetic evidence for disease 
causality are more likely to become approved drugs3,4, and identification of humans with loss-of-
function (LoF) variants, particularly two-hit (homozygous or compound heterozygous) genotypes, 
has, for several genes, correctly predicted the safety and phenotypic effect of pharmacologically 
inhibiting the drug’s target5. While these examples demonstrate the value of human genetics in 
drug development, important questions remain regarding strategies for identifying individuals 
with LoF variants in a gene of interest, interpretation of the frequency — or lack — of such 
individuals, and whether it is wise to pharmacologically target a gene in which LoF variants are 
associated with a deleterious phenotype. 
 
Public databases of human genetic variation have provided catalogs of predicted loss-of-
function (pLoF) variants — nonsense, essential splice site, and frameshift variants expected to 
result in a non-functional allele — in humans. Such databases present a new opportunity to 
study the effects of pLoF variation in genes of interest and to identify individuals with pLoF 
genotypes in order to understand gene function or disease biology, or to assess potential for 
therapeutic targeting. While many variants initially annotated as pLoF do not, in fact, cause a 
loss of function6, rigorous automated filtering can remove common error modes7. True LoF 
variants are generally rare, and show important differences between outbred, bottlenecked8, 
and consanguineous9 populations6,10. Counting the number of distinct pLoF variants in each 
gene in a population sample allows quantification of gene essentiality in humans through a 
metric known as constraint10–13. Specifically, the rate at which de novo pLoF mutations arise in 
each gene is predicted based on DNA mutation rates10,12, and the ratio of the count of pLoF 
variants observed in a database to the number expected based on mutation rates — obs/exp or 
simply constraint score — measures how strongly purifying natural selection has removed such 
variants from the population. Annotation of pLoF variants remains imperfect, and continued 
improvements are being made14, but the fact that constraint usefully measures gene essentiality 
is demonstrated by agreement with cell culture and mouse knockout experiments7, by overlap 
with human disease genes7,10 and genes depleted for structural variation15, and by the power of 
constraint to enrich for deleterious variants in neurodevelopmental disorders7,16. 
 
Building on these insights, here we leverage pLoF variation in the Genome Aggregation 
Database (gnomAD)7 v2 dataset of 141,456 individuals to answer open questions in the 
interpretation of human pLoF variation in disease biology and drug development. 
 
Constraint in human drug targets 
 
We compared constraint in the targets of approved drugs extracted from DrugBank17 (N=383) 
versus all protein-coding genes (N=17,604). Drug targets were, on average, just slightly more 
constrained than all genes (mean 44% vs. 52%, P=0.00028), but the two gene sets had a 
qualitatively similar distribution of scores, ranging from intensely constrained (0% obs/exp) to 
not at all constrained (≥100% obs/exp; Fig. 1a). Constraint scores showed clear divergence 
between categories of genes (Extended Data Table 1) expected to be more or less tolerant of 
inactivation (Fig. 1b), as previously reported7,10, validating the usefulness of constraint as a 
measure of gene essentiality. Nonetheless, when drug targets were stratified by drug modality, 
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indication, or effect, no statistically significant differences between subsets of drug targets were 
observed. 
 
The slightly but significantly lower obs/exp value among drug targets may superficially appear to 
provide evidence that constrained genes make superior drug targets. Stratification of drug 
targets by protein family, human disease association, and tissue expression, however, argues 
against this interpretation. Drug targets are strongly enriched for a few canonically “druggable” 
protein families, for genes known to be involved in human disease, and for genes with tissue-
restricted expression; each of these properties is in turn correlated with either significantly 
stronger or weaker constraint (Extended Data Fig. 1). Although controlling for these correlations 
does not abolish the trend of stronger constraint among drug targets, the correlation of so many 
observed variables with a gene’s status as drug target argues that many unobserved variables 
likely also confound interpretation of the lower mean obs/exp value among drug targets. 
 
The overall constraint distribution of drug targets (Fig. 1a) also argues against the view that a 
gene in which LoF is associated with a deleterious phenotype cannot be successfully targeted. 
Indeed, 19% of drug targets (N=73), including 52 targets of inhibitors, antagonists or other 
“negative” drugs, have obs/exp values lower than the average (12.8%) for genes known to 
cause severe diseases of haploinsufficiency18 (ClinGen Level 3). To determine whether this 
finding could be explained by particular class or subset of drugs, we examined constraint in 
several well-known example drug targets (Table 1). Some heavily constrained genes are targets 
of cytotoxic chemotherapy agents such as topoisomerase inhibitors or cytoskeleton disruptors, a 
set of drugs intuitively expected to target essential genes. However, genes with near-complete 
selection against pLoF variants also include HMGCR and PTGS2, the targets of highly 
successful, chronically used inhibitors — statins and aspirin. 
 
These human in vivo data further the evidence from other species and models that essential 
genes can be good drug targets. Homozygous knockout of Hmgcr and Ptgs2 are lethal in 
mice19–21. Drug targets exhibit higher inter-species conservation than other genes22. Targets of 
negative drugs include 14 genes with lethal heterozygous knockout mouse phenotypes 
reported23 and 6 reported as essential in human cell culture24. 
 
Prospects for finding “knockout” individuals 
 
While constraint alone is not adequate to nominate or exclude drug targets, the study of 
individuals with single hit (heterozygous) or two-hit (“knockout”) LoF genotypes in a gene of 
interest can be highly informative about the biological effect of engaging that target5. To assess 
prospects for ascertaining “knockout” individuals, we computed the cumulative allele frequency 
(CAF) of pLoF variants in each gene (Online Methods), and then used this to estimate the 
expected frequency of two-hit individuals under different population structures (Fig. 2) absent 
natural selection.  
 
Whereas gnomAD is now large enough to include at least one pLoF heterozygote for the 
majority (15,317/19,194; 79.8%) of genes, ascertainment of total “knockout” individuals in 
outbred populations will require 1,000-fold larger sample sizes for most genes: the median gene 
has an expected two-hit frequency of just 6 per billion (Fig. 2a). Even if every human on Earth 
were sequenced, there are 4,728 genes (25%) for which identification of even one two-hit 
individual would not be expected in outbred populations. Intuitively, because today’s gnomAD 
sample size is larger than the square root of the world population, variants so far seen in zero or 
only a few heterozygous individuals are not likely to ever be seen in a homozygous state in 
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outbred populations, except where variants prove common in populations not yet well-sampled 
by gnomAD. 
 
Because population bottlenecks can result in very rare variants present in a founder rising to an 
unusually high frequency, we also considered the utility of bottlenecked populations for 
knockout discovery, using Finnish individuals in gnomAD as an example8. Although this 
population structure can enable well-powered association studies for the small fraction of genes 
in which pLoF variants drifted to high frequency due to the bottleneck, overall, identification of 
two-hit pLoF individuals for a pre-specified gene of interest appears equally or more difficult in 
Finns than in outbred populations (Fig. 2b and Extended Data Fig. 2), because rare variants not 
present in a founder have been effectively removed from the population.  
 
Finally, we considered consanguineous individuals, where parental relatedness greatly 
increases the frequency of homozygous pLoF genotypes. The N=2,912 individuals in the East 
London Genes & Health (ELGH) cohort25 who report having parents who are second cousins or 
closer have on average 5.8% of their genomes autozygous. Here, the expected frequency of 
two-hit individuals is many times higher than in outbred populations, at 5 per million for the 
median gene (Fig. 2c). 
 
These projections allow us to draft a roadmap for discovery of human knockouts (Fig. 2d-e). Of 
19,194 genes, 3,367 (18%) already have a human disease association annotated in OMIM, 
although we note that the discovery of LoF individuals in population databases will still be 
valuable for assessing penetrance and for identifying LoF syndromes associated with known 
GoF genes. There are 3,421 genes (18%) without known human disease association that have 
two-hit pLoF genotypes reported in gnomAD7, ELGH26, PROMIS27, DeCODE28, or UK BioBank29, 
suggesting this genotype may be tolerated. An additional 2,190 genes (11%) can be inferred 
likely intolerant of heterozygous inactivation (pLI > 0.9) in gnomAD, and would be expected to 
be enriched for genes with severe heterozygous and lethal homozygous LoF phenotypes. 
Another 2,781 genes (14%) have no pLoF variants yet observed in gnomAD, but our sample 
size is not yet large enough to robustly infer LoF intolerance. For these genes, observation of 
outbred two-hit individuals is not expected, and we cannot yet assess the feasibility of 
identifying consanguineous two-hit individuals because we lack an estimate of pLoF allele 
frequency. 
 
This leaves 7,435 genes (39%) for which one or more pLoFs are observed in gnomAD, but 
strong LoF intolerance cannot be inferred, nor have two-hit genotypes been observed, nor is a 
human disease phenotype known. We projected the sample sizes required to identify “knockout” 
individuals for these genes (Fig. 2e). In outbred populations, current sample size would need to 
be increased by approximately 1,000-fold before ascertainment of a single two-hit LoF individual 
would be expected for the typical gene. In contrast, a ~10- to 100-fold increase from current 
consanguineous sample size, meaning hundreds of thousands of individuals in absolute terms, 
would identify at least one two-hit LoF individual for the typical gene. 
 
These calculations are based on variants annotated as predicted LoF in gnomAD. Structural 
and non-coding variation resulting in a loss of function may be missed in exomes, and missense 
variants resulting in a loss of function cannot be rigorously annotated, leading to 
underestimation of cumulative LoF allele frequency. Overall, however, our calculations likely 
represent an upper bound on the total frequency of two-hit individuals in the population. The 
variants included in this analysis are filtered but have not been manually curated or functionally 
validated, so some will ultimately prove not to be true LoF. These false positives tend to be 
more common and will have disproportionately contributed to the cumulative LoF allele 
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frequency. More importantly, for some genes, complete knockout will not be tolerated. When 
only one or a few two-hit individuals are expected in a dataset, the absence of any such 
individuals can be due to either early lethality, a severe clinical phenotype incompatible with 
inclusion in gnomAD, or simply chance. Thus, the ability to infer lethality of this genotype 
based on statistical evidence will lag behind the identification of two-hit individuals where they 
do exist (Fig. 2e). For some genes, inference of lethality will always remain impossible in 
outbred populations, though it may be feasible in consanguineous individuals. 
 
Curation of pLoF variants 
 
Where pLoF variants can be identified, they are a valuable resource for assessing the impact of 
lifelong reduction in gene dosage. To highlight the challenges and opportunities of identifying 
such variants, we manually curated gnomAD data and the scientific literature for six genes 
associated with gain-of-function (GoF) neurodegenerative diseases, for which inhibitors or 
suppressors are under development30–35: HTT (Huntington disease), MAPT (tauopathies), 
PRNP (prion disease), SOD1 (amyotrophic lateral sclerosis), and LRRK2 and SNCA (Parkinson 
disease). The results (Table 2 and Fig. 3) illustrate four points about pLoF variant curation. 
 
First, other things being equal, genes with longer coding sequences offer more opportunity for 
LoF variants to arise, and so tend to have a higher cumulative frequency of LoF variants, unless 
they are heavily constrained. Ascertainment of LoF individuals is thus harder for shorter and/or 
more constrained genes, even though these may be good targets (Table 1).  
 
Second, many variants annotated as pLoF are false positives6, and these are enriched for 
higher allele frequencies, so that both filtering and curation have an outsized impact on the 
cumulative allele frequency of LoF. Studies of human pLoF variants lacking stringent curation 
can therefore easily dilute results with false pLoF carriers.  
 
Third, after careful curation, cumulative LoF allele frequency is sometimes sufficiently high to 
place certain bounds on what heterozygote phenotype might exist. For example, GoF mutations 
causing genetic prion disease have a ~1 in 50,000 genetic prevalence36 and have been known 
for three decades, with thousands of cases identified, making it unlikely that a comparably 
severe and penetrant haploinsufficiency syndrome associated with PRNP would have gone 
unnoticed to the present day despite being more than twice as common (~1 in 18,000). Similar 
arguments can be made for HTT, LRRK2, and SOD1. Of course, this does not rule out the 
possibility that heterozygous loss-of-function in these genes could be associated with less 
severe or less penetrant phenotypes. 
 
Finally, careful inspection of the distributions of pLoF variants can reveal important error modes 
or disease biology. HTT, MAPT, and PRNP each have different non-random positional 
distributions of pLoF variants (Fig. 3). High-frequency HTT pLoF variants cluster in the 
polyglutamine/polyproline repeat region of exon 1 and appear to be alignment artifacts (Fig. 3a). 
True HTT LoF variants are rare and the gene is highly constrained, which might suggest some 
fitness effect in a heterozygous state in addition to the known severe homozygous 
phenotype37,38, although the frequency of LoF carriers still argues against a penetrant syndromic 
illness, consistent with the lack of phenotype reported in heterozygotes identified to date38,39. 
High-frequency MAPT pLoF variants cluster in exons not expressed in the brain in GTEx 
data14,40, and all remaining pLoFs appear to be alignment or annotation errors (Fig 3b). No true 
LoFs are observed in MAPT, although our sample size is insufficient to prove that MAPT LoF is 
not tolerated — among constitutive brain-expressed exons, we expect 12.6 LoFs and observe 0, 
giving a 95% confidence interval upper bound of 23.7% for obs/exp. PRNP truncating variants in 
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gnomAD cluster in the N terminus; the sole C-terminal truncating variant in gnomAD is a 
dementia case (Extended Data Table 2), consistent with variants at codon ≥145 causing a 
pathogenic gain-of-function through change in localization (Fig. 3c). Within codon 1-144, PRNP 
is unconstrained, and no neurological phenotype has been identified in individuals with 
truncating variants to date, consistent with the hypothesis that N-terminal truncating variants are 
true LoF and are tolerated in a heterozygous state41. 
 
 
Discussion 
 
The study of gene inactivation through human genetic databases can illuminate human biology 
and guide drug target selection, complementing mouse knockout studies42, but analysis of any 
one gene requires genome-wide context to set expectations and guide inferences. Here we 
have used gnomAD data to provide context to aid in the interpretation of human LoF variants. 
 
Targets of approved drugs span a spectrum from highly constrained to completely 
unconstrained. Why do some genes apparently tolerate pharmacological inhibition but not 
genetic inactivation? LoF variants, at least in constitutive exons, should affect all tissues for life, 
whereas drugs differ in tissue distribution and timing and duration of use. Many drugs known or 
suspected to cause fetal harm are tolerated in adults43, and might target developmentally 
important genes. Constraint is believed to primarily reflect selection against heterozygotes13, 
whose effective gene dosage may differ from that achieved by a drug. Constraint measures 
natural selection over centuries or millennia; our ancestors’ environment presented different 
selective pressures than what we face today. Finally, the actions of small molecule drugs do not 
always map one-to-one onto genes44–47. Regardless, these human in vivo data show that even a 
highly deleterious knockout phenotype is compatible with a gene being a viable drug target. 
 
For most genes, the lack of total “knockout” individuals identified to date does not yet provide 
statistical evidence that this genotype is not tolerated, and, for many genes, such evidence may 
never be attainable in outbred populations. Bottlenecked populations, individually, are unlikely to 
yield two-hit individuals for a pre-specified gene of interest, though the sequencing of many 
different, diverse bottlenecked populations will certainly expand the set of genes accessible by 
this approach. Identification of two-hit individuals will be most greatly aided by increased 
investment in the ascertainment and characterization of consanguineous cohorts, where the 
sample size required for any given gene is often orders of magnitude lower than in outbred 
populations. Our analysis is limited by sample size, insufficient diversity of sampled populations, 
and simplifying assumptions about population structure and distribution of LoF variants, so our 
calculations should be taken as rough, order-of-magnitude estimates. Nonetheless, this 
strategic roadmap for the identification of human “knockouts” should inform future research 
investments and rationalize the interpretation of existing data. 
 
Recall-by-genotype efforts to characterize humans with genotypes of interest are only valuable 
if the variants in question are true LoF. Automated filtering7 and transcript expression-aware 
annotation14 are powerful tools, but we demonstrate the continued value of manual curation for 
excluding further false positives, assessing and interpreting the cumulative allele frequency of 
true LoF variants, and identifying error modes or biological phenomena that give rise to non-
random distributions of pLoF variants across a gene. Such curation is essential prior to any 
recontact efforts, and indeed, establishing methods for high-throughput functional validation48 of 
LoF variants should be a high priority. Our curation of pLoF variants in neurodegenerative 
disease genes is limited by a lack of functional validation and detailed phenotyping; in a 
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companion paper we demonstrate a deeper investigation of the effects of LoF variants in 
LRRK249. 
 
As the value of human genetics for drug discovery has been demonstrated repeatedly, we 
expect that drug development projects will increasingly be accompanied by efforts to study the 
phenotypes of human carriers of LoF variants. Because the cost of drug discovery is driven 
overwhelmingly by failure50, successful interpretation of LoF data to select the right targets and 
the right clinical pathways will yield an outsize benefit for research productivity and, ultimately, 
human health. 
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DISPLAY ITEMS  
 

 
Figure 1 | pLoF constraint in drug targets. a) Histogram of pLoF obs/exp for all genes (black) 
versus drug targets (blue). b) Forest plot of means (dots) and 95% confidence intervals 
indicating our certainty about the mean (line segments), for pLoF obs/exp ratio in the indicated 
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gene sets. See Online Methods for data sources. For drug effect, ‘positive’ indicates agonist, 
activator, inducer, etc., while negative indicates antagonist, inhibitor, suppressor, etc. 
 
 
 
 

drug class example gene obs/exp pLoF 
topoisomerase I inhibitors irinotecan TOP1 0% (0/50.5) 

M1-selective antimuscarinics pirenzepine CHRM1 0% (0/14.1) 
cytoskeleton disruptors paclitaxel TUBB 6% (1/16.4) 

non-steroidal anti-inflammatory drugs (NSAIDs) aspirin PTGS2 10% (3/29.7) 
statins atorvastatin HMGCR 13% (6/46.3) 

phosphodiesterase 5 inhibitors sildenafil PDE5A 33% (16/47.8) 
antifolates methotrexate DHFR 38% (4/10.5) 

proton pump inhibitors omeprazole ATP4A 52% (25/47.9) 
antiplatelets clopidogrel P2RY12 66% (5/7.6) 

H1 antihistamines cetirizine HRH1 76% (11/14.5) 
angiotensin converting enzyme (ACE) inhibitors benazepril ACE 87% (62/71.3) 

PCSK9 antibodies alirocumab PCSK9 98% (26/26.5) 
Table 1 | Spectrum of tolerance to genetic inactivation among human drug targets. 
Example targets are arranged from most intolerant of inactivation (top) to most tolerant (bottom).  
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Figure 2 | Prospects for discovery of human “knockouts”. Each panel a-c shows a 
histogram where the y axis is number of genes and the x axis shows the theoretically expected 
population frequency of single hit heterozygotes (orange), versus two-hit homozygotes and 
compound heterozygotes (purple). Zero indicates the number of genes where no pLoF variants 
have been observed. a) Outbred populations, under random mating — heterozygotes have 
frequency 2p(1-p) and two-hit individuals have frequency p2. The value of p is taken from all 
gnomAD exomes. b) Finnish individuals, an example of a bottlenecked population. Single and 
two-hit frequencies are again 2p(1-p) and p2 but p is based on Finnish exomes only. c) 
Consanguineous individuals with a = 5.8% of their genome autozygous (both chromosomes 
inherited from the same recent ancestor); heterozygote frequency is 2p(1-p) and two-hit 
frequency is (1-a)p2 + ap. See Online Methods for details. d) Current status of pLoF or disease 
association discovery for all protein-coding genes. e) For genes with pLoF observed in gnomAD 
(top category from d), projected sample sizes required for discovery of two-hit individuals (solid 
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lines) and for statistical inference that a two-hit genotype is lethal if no such individuals are 
observed (dashed lines), for consanguineous and outbred individuals. 
 
 
 

   cumulative pLoF 
allele frequency 

  

gene length 
(bp) 

pLoF 
obs/exp 

before 
filtering 

& 
curation 

after 
filtering 

& 
curation 

pLoF 
heterozygote 

frequency 

GoF disease 
genetic 

prevalence 

HTT 9,426 8.2% 6.2% 0.013% 1 in 3,800 1 in 2,400-4,400 
LRRK2 7,581 41% 0.23% 0.09% 1 in 500 1 in 3,300 
MAPT 2,328 0%* 14% 0% — 1 in 5,000 – 31,000 
PRNP 759 99%** 0.0035% 0.0021% 1 in 18,000 1 in 50,000 
SNCA 420 0% 0.0012% 0% — 1 in 360,000 
SOD1 462 18% 0.0060% 0.0038% 1 in 26,000 1 in 27,000-83,000 
Table 2 | Curation of pLoF variation in six neurodegenerative disease genes. Shown are 
the coding sequence length (base pairs, bp), constraint value (pLoF obs/exp) after filtering and 
curation, cumulative allele frequency before and after filtering and manual curation, estimated 
frequency of true pLoF heterozygotes in the population, and genetic prevalence (population 
frequency including pre-symptomatic individuals) of the gain-of-function (GoF) disease 
associated with the gene. Genetic prevalence calculations are described in Extended Data 
Table 2, and variant curation details are provided in Supplementary Table 1, except for LRRK2 
which is described in detail in Whiffin et al49. *Constitutive brain-expressed exons only. **PRNP 
codons 1-144, see Fig. 3c for rationale. 
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Figure 3 | Insights from non-random positional distributions of pLoF variants. a) HTT, b) 
MAPT, with exon numbering and annotation from Andreadis51 and brain expression data from 
GTEx40,  and c) PRNP, a single protein-coding exon with domains removed by post-
translational modification in gray, showing previously reported variants41 as well as those newly 
identified in gnomAD and in the literature52,53. See text for interpretation, Extended Data Table 3 
for details of PRNP variants, and Supplementary Table 1 for detailed variant curation results. 
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Online Methods 
 
Data sources 
 
pLoF analyses used the gnomAD dataset of 141,456 individuals7. For data consistency, all 
genome-wide constraint and CAF analyses used only the 125,748 gnomAD exomes. Curated 
analyses of individual genes used all 141,456 individuals including 15,708 whole genomes. 
Gene lists used in this study were extracted from public data sources between September 2018 
and June 2019. Data sources and criteria for gene list extraction are shown in Extended Data 
Table 3.  
 
Calculation of pLoF constraint 
 
The calculation of constraint values for genes has been described in general elsewhere10,12 and 
for this dataset specifically by Karczewski et al7. Constraint calculations used LOFTEE-filtered 
(“high confidence”) single-nucleotide variants (which for pLoF means nonsense and essential 
splice site mutations) found in gnomAD exomes with minor allele frequency < 0.1%. Only 
unique canonical transcripts for protein-coding genes were considered, yielding 17,604 genes 
with available constraint values. For curated genes (Table 2), the number of observed variants 
passing curation was divided by the expected number of variants to yield a curated constraint 
value. For PRNP, the expected number of variants was adjusted by multiplying by the ratio of 
the sum of mutation frequencies for all possible pLoF variants in codons 1-144 to the sum of 
mutation frequencies for all possible pLoF variants in the entire transcript, yielding 6 observed 
out of 6.06 expected. For MAPT, the expected number of variants was taken from Ensembl 
transcript ENST00000334239, which includes only the exons identified as constitutively brain-
expressed in Fig. 3b. 
 
Calculation of pLoF heterozygote and homozygote/compound heterozygote frequencies 
 
LOFTEE-filtered high-confidence pLoF variants with minor allele frequency <5% in 125,748 
gnomAD exomes were used to compute the proportion of individuals without a loss-of-function 
variant (q); the CAF was computed as p = 1-sqrt(q). This approach conservatively assumes that, 
if an individual has two different pLoF variants, they are in cis to each other and count as only 
one pLoF allele. 
 
For outbred populations (Fig. 2a), we used the value of p from all 125,748 gnomAD exomes, as 
this allows the largest possible sample size. This includes some individuals from bottlenecked 
populations, for which the distribution of p does differ from outbred populations, but these 
individuals are a small proportion of gnomAD exomes (12.6%). This also includes some 
consanguineous individuals, but these are an even smaller proportion of gnomAD exomes 
(2.3%), and any difference in the value of p between consanguineous and outbred populations 
is expected to be very small. Heterozygote frequency was calculated as 2p(1-p) and 
homozygote and compound heterozygote frequency was calculated as p2. Lines indicate the 
size of gnomAD (141,456 individuals) and the world populaton (6.69 billion). 
 
For bottlenecked populations (Fig. 2b), we used the value of p from the 10,824 Finnish exomes 
only. Lines indicate the number of Finns in gnomAD (12,526) and the population of Finland (5.5 
million). 
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For consanguineous individuals (Fig. 2c), we again used the value of p from all gnomAD 
exomes, because p is not expected to differ greatly in consanguineous versus outbred 
populations. We used the mean proportion of the genome in runs of autozygosity (a) from 
individuals self-reporting second cousin or closer parents in East London Genes & Health, a = 
0.05766 (rounded to 5.8%). Heterozygote frequency was calculated as 2p(1-p) and homozygote 
and compound heterozygote frequency was calculated as (1-a)p2 + ap. Lines indicate the 
number of consanguineous South Asian individuals in gnomAD (N=2,912, by coincidence the 
same number as report second cousin or closer parents in ELGH) based on F > 0.05 (a 
conservative estimate, since second cousin parents are expected to yield F = 0.015625), and 
the estimated number of individuals in the world with second cousin or closer parents (10.4% of 
the world population)9. 
 
Several caveats apply to our CAF analysis. Our approach naively treats genes with no pLoFs 
observed as having p=0, even though pLoFs might be discovered at a larger sample size. It 
also naively treats genes with one pLoF allele observed as having p=1/(2*125748), even though 
on average singleton variants have a true allele frequency lower than their nominal allele 
frequency10. We naively group all populations together, even though the distribution of 
populations sampled in gnomAD does not reflect the world population7; we believe this is 
reasonable because CAF for many genes is driven by singletons and other ultra-rare variants 
for which frequency is not expected to differ appreciably by continental population10. It is 
important to note that the histograms shown in Fig. 2 reflect the expected frequency of 
heterozygotes and homozygotes/compound heterozygotes, based on gnomAD allele frequency, 
rather than the actual observed frequency of individuals with these genotypes in gnomAD. 
Finally, the sample size for all gnomAD exomes (Fig. 2a and 2c) is larger than for only Finnish 
exomes (Fig. 2b). For a version of Fig. 2 with the global gnomAD population downsampled to 
the same sample size as the gnomAD Finnish population, see Extended Data Fig. 2. 
 
Knockout roadmap 
 
For the knockout “roadmap” (Fig. 2d-e) we classified genes according to the current status of 
human disease association and LoF ascertainment. Genes were classified as having a 
Mendelian disease association if they were present in OMIM with the filters described in 
Extended Data Table 1. 
 
Remaining genes were classified as “2-hit LoF reported” based on presence in one or more of 
the following gene lists: homozygous LoF genotypes in gnomAD curated as described7; filtered 
homozygous LoF genotypes in runs of autozygosity with minor allele frequency <1% in 
canonical transcripts in the Bradford, Birmingham, and ELGH25 cohorts (total N=8,925); 
observed number of imputed homozygotes >1 or number of compound heterozygous carriers 
where minor allele frequency <2% (for both variants) in DeCODE28; homozygous LoF reported 
in PROMIS27; homozygous LoF with minor allele frequency <1% in UK Biobank29. 
 
The remainder of genes were sequentially classified as “likely haploinsufficient” if pLI > 0.9 in 
gnomAD, “pLoF not yet observed” if CAF = 0 in gnomAD, and, finally, “pLoF observed in 
gnomAD” if CAF > 0 in gnomAD. 
 
Genetic prevalence estimation 
 
Here, we define “genetic prevalence” for a given gene as the proportion of individuals in the 
general population at birth who harbor a pathogenic variant in that gene that will cause them to 
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later develop disease. Genetic prevalence has not been well-studied or estimated for most 
disease genes. 
 
In principle, it should be possible to estimate genetic prevalence simply by examining the allele 
frequency of reported pathogenic variants in gnomAD. In practice, three considerations usually 
preclude this approach. First, the present gnomAD sample size of 141,456 exomes and 
genomes is still too small to permit accurate estimates for very rare diseases. Second, the mean 
age of gnomAD individuals is ~55, above the age of onset for many rare genetic diseases, and 
individuals with known Mendelian disease are deliberately excluded, so pathogenic variants will 
be depleted in this sample relative to the whole birth population. Third and most importantly, a 
large fraction of reported pathogenic variants lack strong evidence for pathogenicity and are 
either benign or low penetrance10,41, so without careful curation of pathogenicity assertions, 
summing the frequency of reported pathogenic variants in gnomAD will in most cases vastly 
overestimate the true genetic prevalence of a disease. 
 
Instead, we searched the literature and very roughly estimated genetic prevalence based on 
available data. In most cases, we took disease incidence (new cases per year per population), 
multiplied by proportion of cases due to variants in a gene of interest, multiplied by average age 
at death in cases. In some cases, estimates of at-risk population or direct measures of genetic 
prevalence were available. Details of the calculations undertaken for each gene are provided in 
Extended Data Table 2. 
 
Data and source code availability 
 
Analyses utilized Python 2.7.10 and R 3.5.1. Data and code sufficient to produce the plots and 
analyses in this paper are available at https://github.com/ericminikel/drug_target_lof 
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Extended Data 
 
Extended Data Table 1 | Data sources for gene lists used in this study. For analysis all lists 
were subsetted to protein-coding genes with unambiguous mapping to current approved gene 
symbols; numbers in the table reflect this. Note that the gene counts here reflect totals from the 
full universe of 19,194 genes; some numbers quoted in the main text reflect only the subset of 
genes with non-missing constraint values. 
List N Description 
All 19,194 HGNC protein-coding genes54. 
Olfactory receptors 371 As reported by Mainland et al55. 
Homozygous LoF 
tolerant 

330 Genes with at least two different high-confidence pLoF 
variants each found in a homozygous state in at least one 
individual in gnomAD exomes. 

Autosomal recessive 527 OMIM disease genes deemed to follow autosomal recessive 
inheritance according to extensive manual curation by the 
Przeworski group56. 

Autosomal dominant 307 OMIM disease genes deemed to follow autosomal dominant 
inheritance according to extensive manual curation by the 
Przeworski group56. 

Essential in culture 683 Genes deemed essential in cultured cell lines based on 
CRISPR screens24. 

ClinGen 
haploinsufficient 

294 Genes with sufficient evidence for dosage pathogenicity 
(level 3) as determined by the ClinGen Dosage Sensitivity 
Map18 

Approved drug targets 386 Genes listed as the top-ranked mechanistic target of 
approved drugs in the DrugBank 5.0 XML release17 
(accessed Sep 12, 2018). Includes products approved by a 
variety of agencies including FDA, EMA, and Health Canada. 
Genes were extracted from the XML file using a custom 
python script with the criteria target.attrib[‘position’] == '1', 
known-action==’yes’, and group==’approved’. 

Positive targets 143 Action listed in DrugBank as: activator, agonist, chaperone, 
cofactor, gene replacement, inducer, partial agonist, positive 
allosteric modulator, positive modulator, potentiator, or 
stimulator 

Negative targets 243 Action listed in DrugBank as: antagonist, blocker, 
degradation, inhibitor, inverse agonist, negative modulator, 
neutralizer, or suppressor 

Other & unknown 
(effect) 

94 Action not listed in DrugBank, or any action other than those 
listed above for positive and negative targets. 

Small molecule 176 DrugBank type == ‘small’ 
Antibody 18 DrugBank type == ‘biotech’ and DrugBank categories include 

‘Antibodies’ 
Other (modality) 35 DrugBank type == ‘biotech’ and DrugBank categories do not 

include ‘Antibodies’ 
Oncology 45 ATC level 1 code L 
Cardiovascular 38 ATC level 1 code C 
Endocrine 24 ATC level 1 code G or H 
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Metabolic & alimentary 38 ATC level 1 code A 
Neurology 35 ATC level 1 code N 
Respiratory 12 ATC level 1 code R 
Skeletomuscular 14 ATC level 1 code M 
Other (indication) 29 ATC level 1 code B, D, J, P, S, or V 
Rhodopsin-like GPCRs 689 HGNC gene set 140: “G protein-coupled receptors, Class A 

rhodopsin-like”54. 
Ion channels 326 HGNC gene set 177: “Ion channels”54. 
Nuclear receptors 48 IUPHAR/BPS Guide to Pharmacology “Nuclear receptors” 

list57 . 
Enzymes 1,178 IUPHAR/BPS Guide to Pharmacology “Enzymes” list57. 
GWAS hits 6,336 Closest gene to GWAS hits with P < 5-e8 in the EBI GWAS 

catalog (MAPPED_GENE column)58. 
OMIM genes 3,367 Associated to a phenotype with a 6-digit MIM number 

assigned, no qualifying ‘?’, ‘{‘ or ‘[‘ in the phenotype 
description, and the words “response”, “susceptibility”, and 
“somatic” absent from the phenotype description, in the 
OMIM Synopsis of the Human Gene Map (morbidmap.txt) as 
of June 11, 2019. 

All (tissue expression) 7,931 Expressed at >1 TPM in all 53 tissues in GTEx v7 
Some (tissue 
expression) 

9,698 Expressed at >1 TPM in >0 and <53 tissues in GTEx v7 

None (tissue 
expression) 

1,076 Expressed at >1 TPM in 0 tissues in GTEx v7 

Mouse heterozygous 
lethal knockout 

401 Human orthologs mapping to at least one of the 404 genes 
with a lethal heterozygous phenotype reported in at least one 
knockout mouse line per MouseMine23. 

 
 
Extended Data Table 2 | Estimation of genetic prevalence for gain-of-function genetic 
neurodegenerative diseases. Data sources were identified through PubMed and Google 
Scholar searches. Genetic prevalence was defined as the proportion of the population at birth 
carrying a mutation and destined to later develop disease, and estimated as described for each 
gene. 
Gene Basis Estimate 
HTT A reported HD incidence of 0.38 cases per 100,000 per year based on 

meta-analysis59 multiplied by an average age at death of ~60 for the 
most common CAG lengths60. Finally, a genetic screen of a general 
population sample61 found ≥40 CAG repeat alleles, which are 
presumed to be fully penetrant, in 3 individuals out of 7,315, for a 
genetic prevalence of 1 in 2,438. 

1 in 4,386 

HTT Prevalence of 13.7 per 100,000 symptomatic plus 81.6 per 100,000 at 
25-50% risk in an exhaustive ascertainment study62. Assuming there 
are twice as many individuals at 25% risk as at 50% risk, then on 
average 33.3% of the 81.6, or 27.1 per 100,000 have the mutation. 
Thus, 13.7 + 27.1 = 40.8 per 100,000 individuals have an HTT CAG 
expansion. 

1 in 2,451 
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HTT A genetic screen of a general population sample61 found ≥40 CAG 
repeat alleles, which are presumed to be fully penetrant, in 3 individuals 
out of 7,315 

1 in 2,438 

LRRK2 Based on meta-analysis63, Parkinson’s disease (PD) has an estimated 
prevalence of 1,903 per 100,000 at age ≥80, meaning the general 
population’s lifetime risk of PD is ~1.9%. It is generally stated that about 
10% of PD cases are “familial” and the remainder sporadic; in a diverse 
worldwide case series, LRRK2 mutations were found in 179/14,253 
(1.3%) sporadic cases and 201/5,123 (3.9%) familial cases64, implying 
that LRRK2 mutations are present in ~1.6% of all PD cases. Thus, 
LRRK2 mutations account for a 1.6% * 1.9% = ~0.030% lifetime risk of 
PD in the general population†. 

1 in 3,300 

MAPT Estimation of the genetic prevalence of MAPT gain-of-function 
mutations is difficult because pathogenic MAPT mutations can present 
with a variety of clinical phenotypes, and common MAPT haplotypes 
are associated with risk for a variety of different neurodegenerative 
disorders. We were unable to identify any studies of genetic prevalence 
nor any large case series for any MAPT-associated phenotype. As a 
crude estimate, we considered that frontotemporal dementia has a 
reported incidence of 2.7-4.1 per 100,000 per year65 with typical age at 
death of perhaps 60, and MAPT mutations accounting for 5-20% of 
familial cases, and familial cases accounting for 40% of all cases66. 
Multiplying all these figures results in range of 0.0032% to 0.020% 

1 in 5,000 – 
31,000 

PRNP We have recently considered the lifetime risk of genetic prion disease in 
detail36. All forms of prion disease (sporadic, genetic, and acquired) 
appear to be the cause of death of ~1 in 5,000 people based on either 
death certificate analysis or division of disease incidence by the overall 
death rate. ~10% of cases are attributable to PRNP variants with 
evidence for Mendelian segregation (although additional cases harbor 
lower-penetrance variants). Thus, we expect a genetic prevalence of 1 
in 50,000. On the order of ~1 in 100,000 people in gnomAD and 
23andMe harbor high-penetrance PRNP variants36,41, although as 
noted above, we expect these datasets to be depleted compared to the 
population at birth, because prion disease is rapidly fatal and many 
individuals in these databases are above the typical age of onset. 

1 in 50,000 

SNCA As explained above for LRRK2, we assumed a 1.9% lifetime risk of 
Parkinson’s disease (PD) in the general population, with 10% of cases 
being familial. SNCA point mutations, duplications, and triplications all 
appear to be highly penetrant, and in a familial PD case series these 
accounted for 103/709 = 15% of individuals67. Thus, we estimate that 
SNCA mutations account for a 1.9% * 10% * 15% = 0.00028% risk of 
PD in the general population. 

1 in 
360,000 

SOD1 SOD1 mutations are believed to account for ~12% to 24% of familial 
ALS68,69 and 1% of sporadic ALS68,70. One a meta-analysis found that 
~4.6% of ALS is familial71, although a figure of 10% is also often used72. 
These figures imply that ~1.5 – 3.3% of all ALS is attributable to SOD1. 
The overall incidence of ALS is reported at ~1.6 – 2.2 per 100,000 per 
year73,74, so the incidence of SOD1 ALS might be estimated at ~0.024 – 
0.073 per 100,000 per year. Age at death of ~50 is around average for 
many SOD1 mutations69, implying a 1.2 – 3.7 per 100,000 population 

1 in 
27,000-
83,000 
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prevalence of pathogenic SOD1 mutations. 
†It is important to consider for a moment how this figure relates to the penetrance of LRRK2 
mutations, as LRRK2 variants appear to occupy a spectrum of penetrance75. some variants 
exhibit Mendelian segregation with disease76,77, implying high risk; the G2019S variant is 
estimated to have ~32% penetrance78; and other common variants are risk factors with odds 
ratios of only ~1.2 estimated through genome-wide association studies (GWAS)79. The GWAS-
implicated common variants were not included in the case series on which our estimate is 
based64, but G2019S does account for the majority of cases in that series. Because the 0.03% 
estimate here is based on counting symptomatic cases rather than asymptomatic individuals, it 
will appropriately underestimate the number of G2019S carriers. In essence, in this calculation 
each G2019S carrier in the population only counts as 1/3 of a person, because they have only a 
1/3 probability of developing a disease. It is therefore appropriate that our estimate of genetic 
prevalence (0.03%) is actually lower than double the allele frequency of G2019S in gnomAD 
(0.1%). 
 
Extended Data Table 3 | Details of PRNP truncating variants. Allele count for variants from 
the literature in Fig. 3c is the total number of definite or probable cases with sequencing 
performed in the studies cited in this table. The L234Pfs7X variant changes PrP’s C-terminal 
GPI signal from SMVLFSSPPVILLISFLIFLIVGX to SMVPSPLHLX. This novel sequence does 
not adhere to the known rules of GPI anchor attachment80: GPI signals must contain a 5-10 
polar residue spacer followed by 15-20 hydrophobic residues. Thus, this frameshifted PrP would 
be predicted to be secreted and thus may be pathogenic, explaining the Alzheimer disease 
diagnosis in this individual. However, it is also possible that the novel C-terminal sequence 
found here interferes with prion formation, and/or that this variant is incompletely penetrant, and 
that the diagnosis of Alzheimer’s disease in this individual is merely a coincidence. 

variant allele 
count 

neurological 
phenotype comments reference 

G20Gfs84X 1 healthy As previously reported. 41 

R37X 2 healthy, 
unknown One previously reported, one new. 41 

Q41X 1 unknown  this work 

H69 
frameshifts 2 N/A 

False variant calls in gnomAD, apparent 
alignment artifact due to octapeptide 

repeat region. 
this work 

Q75X 1 healthy As previously reported 41 
W81X 1 unknown  this work 
W99X 1 unknown  this work 

G131X 1 healthy 

The presence of this variant in the ExAC 
database was previously reported, but 

without phenotype information. We now 
report that this individual is a 77-year-old 

male, cognitively well with no family 
history of dementia. Ascertained as a 

case in a study of coronary artery 
disease, this individual has hypertension 
and well-controlled dyslipidemia and has 
undergone one bypass surgery. He has 

two adult children. 

41, this 
work 

Y145X 1 dementia  81 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/530881doi: bioRxiv preprint 

https://doi.org/10.1101/530881
http://creativecommons.org/licenses/by/4.0/


Minikel et al – Drug target loss-of-function — 2019-07-26  25 

Q160X 5 dementia  82–84 
Y162X 1 dementia  52 
Y163X 7 dementia  53,85 
Y169X 2 dementia  53 

D178Efs25X 1 dementia  86 
Q186X 1 dementia  41 

Y226X 1 dementia   
87 

Q227X 1 dementia  87 

L234Pfs7X 1 dementia 

Ascertained as a female case in the 
Finnish twins Alzheimer disease cohort. 

Died at age >90 of proximal cause 
pneumonia, ultimate cause diagnosed as 

Alzheimer disease based on clinical 
examination only. Had a dizygotic twin 

not included in gnomAD. 

this work 

 

 
Extended Data Figure 1 | Drug target gene set confounding. a) LoF obs/exp ratios differ 
significantly from the set of all genes for four canonically “druggable” protein families (top), 
human disease-associated genes (middle), and genes by broadness of tissue expression 
(bottom). Within each class, the genes that are drug targets have a lower mean obs/exp ratio 
(hollow gray circles) than the class overall. b) The “druggable” protein families, disease-
associated genes, and genes expressed in some tissues but not others are enriched several-
fold among the set of drug targets. c-e) Composition of drug targets when broken down by c) 
protein family, d) disease association, or e) broadness of tissue expression.  The enriched 
classes account for most drug targets. In a linear model, after controlling for protein family, 
disease association status, and number of tissues with expression >1 TPM, drug targets are still 
more constrained than other genes (-8.0% obs/exp, P=0.00012), but the probable existence of 
additional unobserved confounders cautions against over-interpretation of this observation (see 
main text).  
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Extended Data Figure 2 | Expected frequency of individuals with one or two null alleles 
for every protein-coding gene across different population models, with sample size held 
constant. This is identical to Fig. 2 except as follows. As noted in Online Methods, one caveat 
about Fig. 2 is that the sample size is larger for the plots using all gnomAD exomes (Fig. 2a and 
2c) than for Finnish exomes (Fig. 2b). This figure shows the same analysis, but with the global 
gnomAD population downsampled to 10,824 randomly chosen exomes so that the same size is 
identical to that of Finnish exomes. Computation of p = 1-sqrt(q) as described in Methods is 
computationally expensive for downsampled datasets because it requires individual-level 
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genotypes. Instead, this analysis uses “classic” CAF, which is simply the sum of allele 
frequencies of all high-confidence pLoF variants each at allele frequency <5%, capped at a total 
of 100%, for both global and Finnish exomes. The results show that even when sample size is 
held constant, the number of genes with zero pLoF variants observed is higher in a 
bottlenecked population than in a mostly outbred population. A constant y axis with no axis 
breaks is used in this figure to make this difference more clearly visible. 
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Supplementary Information 
Evaluating potential drug targets through human loss-of-function genetic variation 

 
Supplementary Table 1 | Details of curated variants in neurodegenerative disease genes. 
LRRK2 is not included here as curation is reported in detail in a separate publication54. We note 
that frameshift mutations in SOD1 at codons 126 or 127 have been reported to cause a 
pathogenic gain-of-function leading to ALS122,123. Both of these codons occur in the gene’s fifth 
and final exon; all of the variants curated as leading to loss-of-function here are in exons 1-4. 
gene variant allele 

count 
status LOFTEE 

flags 
manual 
curation 
result 

comments 

HTT 4-003076620-AGC-
A 

14 loftee lcr 
  

HTT 4-003076623-
AGCAG-A 

14 loftee lcr 
  

HTT 4-003076631-CAG-
C 

1 loftee lcr 
  

HTT 4-003076632-AGC-
A 

11 loftee lcr 
  

HTT 4-003076632-
AGCAGCAGCAGC
AGCAGCAGCAG-A 

1 loftee lcr 
  

HTT 4-003076635-
AGCAGCAGCAGC
AGCAGCAG-A 

10 loftee lcr 
  

HTT 4-003076635-
AGCAGCAGCAGC
AGCAGCAGCAGC
AGCAACAG-A 

1 loftee lcr 
  

HTT 4-003076638-
AGCAGCAGCAGC
AGCAGCAG-A 

1 loftee lcr 
  

HTT 4-003076638-AGC-
A 

54 loftee lcr 
  

HTT 4-003076640-CAG-
C 

116 loftee lcr 
  

HTT 4-003076641-AGC-
A 

32 loftee lcr 
  

HTT 4-003076641-
AGCAGCAGCAGC
AG-A 

55 loftee lcr 
  

HTT 4-003076644-AGC-
A 

31 loftee lcr 
  

HTT 4-003076644-
AGCAGCAGCAGC
AG-A 

1 loftee lcr 
  

HTT 4-003076644-
AGCAGCAGCAG-A 

31 loftee lcr 
  

HTT 4-003076644-
AGCAGCAGCAGC
AGCAGCAACAG-A 

110 loftee lcr 
  

HTT 4-003076646-CAG-
C 

2 loftee lcr 
  

HTT 4-003076647-AGC-
A 

161 loftee lcr 
  

HTT 4-003076647-
AGCAGCAGCAGC
AGCAACAG-A 

3 loftee lcr 
  

HTT 4-003076647-
AGCAGCAGCAG-A 

6 loftee lcr 
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HTT 4-003076649-CAG-
C 

8 loftee lcr 
  

HTT 4-003076650-AGC-
A 

2673 loftee lcr 
  

HTT 4-003076650-
AGCAG-A 

128 loftee lcr 
  

HTT 4-003076650-
AGCAGCAG-A 

26 loftee lcr 
  

HTT 4-003076650-
AGCAGCAGCAGC
AACAG-A 

2 loftee lcr 
  

HTT 4-003076653-AGC-
A 

80 loftee lcr 
  

HTT 4-003076653-AG-A 1594 loftee lcr 
  

HTT 4-003076653-
AGCAG-A 

1078 loftee lcr 
  

HTT 4-003076654-G-
GCCGC 

2 loftee lcr 
  

HTT 4-003076655-
CAGCAGCAACA-C 

2 loftee lcr 
  

HTT 4-003076655-CAG-
C 

20 loftee lcr 
  

HTT 4-003076656-AG-A 84 loftee lcr 
  

HTT 4-003076656-A-
ACC 

2 loftee lcr 
  

HTT 4-003076656-
AGCAGCAACAG-A 

4 loftee lcr 
  

HTT 4-003076658-CAG-
C 

287 loftee lcr 
  

HTT 4-003076658-
CAGCAACA-C 

2 loftee lcr 
  

HTT 4-003076658-CA-C 1 loftee lcr 
  

HTT 4-003076659-AG-A 1 loftee lcr 
  

HTT 4-003076659-
AGCAACAG-A 

14 loftee lcr 
  

HTT 4-003076659-A-
ACC 

2 loftee lcr 
  

HTT 4-003076661-
CAACA-C 

8 loftee lcr 
  

HTT 4-003076662-
AACAG-A 

251 curated 
 

not_LoF CAG repeat artifact 

HTT 4-003076663-A-
AGCAGCAGCAGC
AGCAGCAG 

2 loftee lcr 
  

HTT 4-003076663-A-
AGCAGCAGCAGC
AGCAGCAGCAGC
AG 

1 loftee lcr 
  

HTT 4-003076663-A-
AGCAGCAGCAG 

1 loftee lcr 
  

HTT 4-003076663-A-
AGCAGCAGCAGC
AGCAG 

2 loftee lcr 
  

HTT 4-003076665-A-
ACCGCC 

49 loftee lcr 
  

HTT 4-003076669-GC-G 2 loftee lcr 
  

HTT 4-003076670-C-
CAGCAGCAG 

1 loftee lcr 
  

HTT 4-003076670-C- 1 loftee lcr 
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CAGCAGCAGCAG 

HTT 4-003076672-ACC-
A 

79 loftee lcr 
  

HTT 4-003076680-CG-C 3 loftee lcr 
  

HTT 4-003076682-CCG-
C 

3 loftee lcr 
  

HTT 4-003076703-
CTTCCT-C 

1 curated 
 

not_LoF repeat region 

HTT 4-003076704-T-TCC 3 curated 
 

likely_not_L
oF 

repeat region, nearby SNP 

HTT 4-003076710-AG-A 1 curated 
  

repeat region 

HTT 4-003088708-
TTGTC-T 

1 true 
 

LoF true 4bp deletion 

HTT 4-003088729-CAT-C 1 true 
 

LoF true 2bp deletion 

HTT 4-003107083-G-A 1 true 
 

LoF essential splice acceptor lost. 
possible downstream rescue site is 
out-of-frame 

HTT 4-003117118-C-T 3 true 
 

LoF true stop codon 

HTT 4-003131650-G-A 1 true 
 

LoF true essential splice acceptor lost. 2 
downstream splice rescue sites but 
both out of frame 

HTT 4-003133110-CA-C 1 true 
 

LoF true 1bp deletion 

HTT 4-003133110-CAG-
C 

7 true 
 

LoF true 2bp deletion 

HTT 4-003136141-GTC-
G 

1 true 
 

LoF true 2bp deletion 

HTT 4-003136269-T-G 1 curated 
 

uncertain_L
oF 

raw reads not available. would be a 
true splice donor loss 

HTT 4-003138025-C-T 3 true 
 

likely_LoF likely stop codon, though there is an 
outside chance it creates a splice 
donor that preserves frame 

HTT 4-003156065-C-T 2 true 
 

LoF true stop codon 

HTT 4-003158859-G-GT 1 true 
 

LoF true 1bp insertion 

HTT 4-003174671-C-T 1 true 
 

LoF true stop codon 

HTT 4-003174707-C-T 1 true 
 

LoF true stop codon 

HTT 4-003176464-C-T 1 true 
 

LoF true stop codon 

HTT 4-003176787-C-T 1 true 
 

LoF true stop codon 

HTT 4-003176796-C-T 1 true 
 

LoF true stop codon 

HTT 4-003184144-C-T 1 true 
 

LoF true stop codon 

HTT 4-003189579-
CAAAT-C 

1 true 
 

LoF true 4bp deletion 

HTT 4-003205754-CAA-
C 

1 curated 
 

uncertain_L
oF 

raw reads not available 

HTT 4-003205876-G-A 1 curated 
 

likely_not_L
oF 

potential in-frame rescue site 3bp 
upstream 

HTT 4-003209047-A-AT 1 true 
 

LoF true 1bp insertion 

HTT 4-003211578-TC-T 1 curated 
 

likely_not_L
oF 

1bp deletion could be avoided by 
using potential splice acceptor at 
subsequent codon 

HTT 4-003211677-G-T 1 true 
 

likely_LoF MNP - D-1 and +1 site are both 
mutated to T. appears would still be 
true splice disruptor though 

HTT 4-003215736-C-T 1 true 
 

LoF true stop codon 
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HTT 4-003216836-G-A 1 curated 
 

likely_not_L
oF 

potential in-frame donor rescue 6bp 
downstream 

HTT 4-003221937-CG-C 1 true 
 

LoF true 1bp deletion 

HTT 4-003222036-G-A 1 true 
 

LoF true essential splice donor loss 

HTT 4-003224113-G-T 1 true 
 

LoF true essential splice acceptor lost 

HTT 4-003225261-CA-C 1 true 
 

LoF true 1bp deletion 

HTT 4-003237874-A-T 1 true 
 

LoF true essential splice acceptor lost 

HTT 4-003240172-A-G 1 curated 
 

uncertain_L
oF 

raw reads not available 

HTT 4-003240338-T-C 1 curated 
 

likely_not_L
oF 

GC splice donor might still function, 
also alternate in-frame GT donor 9 bp 
upstream 

HTT 4-003241749-C-CT 1 loftee lc_lof 
  

HTT 4-003241757-C-T 1 loftee lc_lof 
  

MAPT 17-044039722-G-T 1 curated 
 

not_LoF rescued by alternate start codon M11, 
with good Kozak context 

MAPT 17-044049312-G-T 1 curated 
 

not_LoF non-constitutive exon 

MAPT 17-044049312-G-A 2 curated 
 

not_LoF non-constitutive exon 

MAPT 17-044049445-G-A 1 curated 
 

not_LoF not a real exon 

MAPT 17-044051838-G-A 5 loftee lc_lof 
  

MAPT 17-044051839-T-C 1 loftee lc_lof 
  

MAPT 17-044055646-TA-T 1 loftee lof_flag 
  

MAPT 17-044055647-A-T 39690 loftee lc_lof,lof_flag 
 

MAPT 17-044055710-A-AC 2 loftee lof_flag 
  

MAPT 17-044055746-G-A 1 loftee lof_flag 
  

MAPT 17-044060543-G-C 5 curated 
 

not_LoF non-constitutive exon 

MAPT 17-044060582-C-T 25 loftee lof_flag 
  

MAPT 17-044060652-A-AG 1 loftee lof_flag 
  

MAPT 17-044060675-C-T 5 loftee lof_flag 
  

MAPT 17-044060703-CAG-
C 

2 loftee lof_flag 
  

MAPT 17-044060717-C-CA 1 loftee lof_flag 
  

MAPT 17-044060724-CT-C 6 loftee lof_flag 
  

MAPT 17-044060788-AG-A 3 loftee lof_flag 
  

MAPT 17-044060842-CG-
C 

2 loftee lof_flag 
  

MAPT 17-044060877-A-
AGGCCTCCCCAG
CCCAAGATGGGC 

1 loftee lof_flag 
  

MAPT 17-044060877-
AGGCCTCCCCAG
CCCAAGATGGGC-
A 

1 loftee lof_flag 
  

MAPT 17-044060917-C-
CGCCAGAG 

1 loftee lof_flag 
  

MAPT 17-044061006-T-
TCCCA 

1 loftee lof_flag 
  

MAPT 17-044061053-C-T 1 loftee lof_flag 
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MAPT 17-044061059-GC-
G 

4 loftee lof_flag 
  

MAPT 17-044061065-CT-C 1 loftee lof_flag 
  

MAPT 17-044061078-
TTCACGTGGAAA-T 

1 loftee lof_flag 
  

MAPT 17-044061153-
CAGGGGCCCCTG
GAGAGGGGCCAG-
C 

2 loftee lof_flag 
  

MAPT 17-044061154-
AGGGGCCCCTGG
AGAGGGGCCAGA
GGCCC-A 

3 loftee lof_flag 
  

MAPT 17-044061182-
CGG-C 

1 loftee lof_flag 
  

MAPT 17-044061223-TC-T 3 loftee lof_flag 
  

MAPT 17-044061247-TG-T 1 loftee lof_flag 
  

MAPT 17-044067273-G-
GA 

1 loftee lof_flag 
  

MAPT 17-044067384-C-G 3 loftee lof_flag 
  

MAPT 17-044067395-TC-T 1 loftee lof_flag 
  

MAPT 17-044067403-C-T 26 loftee lof_flag 
  

MAPT 17-044067438-C-CA 1 loftee lof_flag 
  

MAPT 17-044071327-
GCC-G 

1 curated 
 

not_LoF non-constitutive exon 

MAPT 17-044071329-C-
CGGGTA 

1 curated 
 

not_LoF non-constitutive exon 

MAPT 17-044073963-A-
ACC 

1 curated 
 

uncertain_L
oF 

raw reads not available 

MAPT 17-044096026-
AGGACAGAGTCCA
GTCGAAG-A 

2 curated 
 

not_LoF actually in-frame. starting at K682 it 
becomes AAATGGT preserving 
frame  

MAPT 17-044096047-
TTGGGTCCCTGGA
CAATATCACCCAC
GTCCCTGGCGGA
GGAAATAAAAAGG
TAAAGGG-T 

2 curated 
 

not_LoF actually in-frame. this is the same 
exact variant as the previous one 

PRNP 20-004679975-C-T 2 true 
  

R37X 

PRNP 20-004679987-C-T 1 true 
  

Q41X 

PRNP 20-004680069-CT-C 1 curated 
 

not_LoF false variant call, apparent alignment 
artifact at octapeptide repeat region 

PRNP 20-004680071-
CATGGTGGTGGCT
GGGGGCAGCCCC
ATGGTGGTGGCTG
GGGACAGCCT-C 

1 curated 
 

not_LoF false variant call, apparent alignment 
artifact at octapeptide repeat region 

PRNP 20-004680089-C-T 1 true 
  

Q75X 

PRNP 20-004680108-G-A 1 true 
  

W81X 

PRNP 20-004680162-G-A 1 true 
  

W99X 

PRNP 20-004680257-G-T 1 true 
  

G131X 

PRNP 20-004680566-CT-C 1 curated 
 

not_LoF L234Pfs7X; possible pathogenic gain-
of-function in dementia case. see 
Table S1 for details 
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6 

6 

SNCA 4-090743391-C-
TRUE 

3 loftee lc_lof 
  

SOD1 21-033032095-GC-
G 

1 true 
 

LoF true early frameshift, no rescue 

SOD1 21-033036098-
TAAAGG-T 

1 true 
 

likely_LoF true 5bp frameshift deletion, splice 
site may be rescued by downstream 
AG but resulting frame is shifted. 

SOD1 21-033036178-GA-
G 

4 true 
 

LoF 
 

SOD1 21-033038788-
AATCCTCT-A 

2 true 
 

LoF 
 

SOD1 21-033038833-T-C 1 true 
 

LoF 
 

SOD1 21-033039619-CG-
C 

2 true 
 

LoF 
 

SOD1 21-033039689-G-T 2 curated 
 

not_LoF alternative GT donor 3 bases 
upstream, in-frame 

SOD1 21-033039689-G-GT 2 curated 
 

not_LoF splice donor D +1 site G->GT 
insertion creates its own new splice 
donor 
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