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Abstract

Background

High grade serous ovarian carcinoma shows marked intra-tumoral heterogeneity which is
associated with decreased survival and resistance to platinum-based chemotherapy.
Pre-treatment quantification of spatial tumor heterogeneity by multiple tissue sampling is
not clinically feasible. Using standard-of-care CT imaging to non-invasively quantify
heterogeneity could have high clinical utility and would be highly cost-effective. Texture
analysis measures local variations in computed tomography (CT) image intensity. Haralick
texture methods are typically used to capture the heterogeneity of entire lesions; however,
this neglects the possible presence of texture habitats within the lesion, and the differences
between metastatic sites. The primary aim of this study was to develop texture analysis of
intra-site and inter-site spatial heterogeneity from standard-of-care CT images and to
correlate these measures with clinical and genomic features in patients with HGSOC.

Methods and findings

We analyzed the data from a retrospective cohort of 84 patients with HGSOC consisting of
46 patients from Memorial Sloan Kettering Cancer Center (MSKCC) and 38 non-MSKCC
cases selected from The Cancer Imaging Archive (TCIA). Inclusion criteria consisted of FIGO
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stage II–IV HGSOC, attempted primary cytoreductive surgery, intravenous contrast-enhanced
CT of abdomen and pelvis performed prior to surgery and availability of molecular tumor
data analysed as per the Cancer Genome Atlas (TCGA) Research Network ovarian cancer
project. Manual segmentation and image analysis was performed on 463 metastatic tumor
sites from 84 patients. In the MSKCC cohort the median number of tumor sites was 7
(interquartile range 5–9) and 4 (interquartile range 3–4) in the TCIA patients. Sub-regions
were produced within each tumor site by grouping voxels with similar Haralick texture using
the Kernel K-means method. We derived statistical measures of intra- and inter-site tumor
heterogeneity (IISTH) including cluster sites entropy (cSE), cluster sites standard deviation
(cluDev) and cluster sites dissimilarity (cluDiss) from sub-regions identified within and
between individual tumor sites. Unsupervised clustering was used to group patient IISTH
measures into low, medium, high, and ultra-high heterogeneity clusters from each cohort.

The IISTH measure cluDiss was an independent predictor of progression-free survival
(PFS) in multivariable analysis in both datasets (MSKCC hazard ratio [HR] 1.04, 95% CI
1.01–1.06, P = 0.002; TCIA HR 1.05, 95% CI 1.00–1.10, P = 0.049). Low and medium
IISTH clusters were associated with longer PFS in multivariable analysis (MSKCC HR 2.94,
90% CI 1.29–6.70, P = 0.009, TCIA HR 5.94, 95% CI 1.05–33.6, P = 0.044). IISTH
measures were robust to differences in the CT imaging systems. Average Haralick textures
contrast (TCIA HR 1.08, 95% CI 1.01–1.10, P = 0.019) and homogeneity (TCIA HR 1.09,
95% CI 1.02–1.16, P = 0.008) were associated with PFS in mutivariate analysis only in the
TCIA dataset. All other average Haralick textures and total tumor volume were not
associated with PFS in either dataset.

Conclusions

Texture measures of intra- and inter-site tumor heterogeneity from standard of care CT
images are correlated with shorter PFS in HGSOC patients. These quantitative methods are
independent of the CT imaging system and can thus be applied in clinical practice. The
methodology proposed here enables the non-invasive quantification of intra-tumoral
heterogeneity and disease stratification for future experimental medicine studies and clinical
trials, particularly in cases where total tumour volume and averaged textures have low
predictive power.

Author summary

Why was this study done?

• Tumor heterogeneity is a feature of many solid malignancies including ovarian cancer.

• Recent genomic research suggests that intra-site tumor heterogeneity (heterogeneity
within a single tumor site) and inter-site tumor heterogeneity (heterogeneity between
different metastatic sites in the same patient) correlate with clinical outcome in
HGSOC.

What did the researchers do and find?

• We developed quantitative and non-invasive image-analysis based measures for
predicting outcome in HGSOC patients by combining image-based information from
within and between multiple tumor sites.

• Using datasets from two sources, we demonstrate that these image-based tumor
heterogeneity measures predict progression free survival in patients with HGSOC.
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What do these findings mean?

• Non-invasive measures of CT image heterogeneity may predict outcomes in HGSOC
patients.

• Wider application of these CT image heterogeneity measures could prove useful for
stratifying patients to different therapies given that total tumour volume and averaged
textures have low predictive power.

Introduction 1

High grade serous ovarian carcinoma (HGSOC) is the deadliest gynecologic malignancy 2

with overall survival remaining unchanged over the last 20 years [1]. Although HGSOC 3

shows marked sensitivity to platinum-based chemotherapy [2], the majority of cases recur 4

and become progressively resistant to subsequent treatment regimes [3]. Acquisition of 5

resistance may be related to specific mutational processes that drive genomic 6

heterogeneity [4,5] and clonal evolution [6,7]. HGSOC exhibits marked intra-site and 7

inter-site genetic heterogeneity across metastatic sites in the peritoneal cavity [5–7] with 8

altered immunological infiltrates and tumor microenvironments [8]. Detection of spatial or 9

temporal heterogeneity by multiple sampling in a single patient is expensive, invasive, and 10

often clinically impractical. Consequently, analysis of heterogeneity has only been 11

performed on a limited number of patients with HGSOC [5–7]. 12

Computed tomography (CT) and serum CA-125 measurement are routinely used for 13

initial staging and treatment monitoring of patients with HGSOC, but standard assessments 14

do not provide information on tumor heterogeneity. Texture analysis of CT data is a 15

radiomics method [9–11] that can provide detailed quantitative characterization of local 16

variations in intensity levels throughout an image. Texture measures are computed from 17

regions of interest (ROI) drawn to delineate tumors on cross-sectional images. The local 18

texture can be measured using Haralick methods that quantify the second order intensity 19

variation within an ROI and other high-order features based on grey-level matrices [12]. 20

Radiomics methods have been applied to evaluate intra-tumor heterogeneity based on a 21

single site of disease per patient in primary tumors [9,13–16] and metastatic 22

disease [17–19]. However, a summary CT texture value for a single tumor site does not 23

capture the potential variability between different regions within the tumor and between 24

multiple tumor sites in the same patient. CT-based textures that combine intra- and 25

inter-site spatial heterogeneity have not been developed and are needed to investigate how 26

the spatial heterogeneity between tumor sites is related to variable response and the 27

development of resistance [20]. 28

The ability to predict patients with poor outcomes using non-invasive imaging-based 29

methods that quantify heterogeneity within (intra-site) and between separate tumor sites 30

(inter-site) would have high clinical utility. Therefore the aims of this retrospective study 31

were: (1) to develop computational texture analyses methods from standard of care CT 32

images that incorporate both intra-site and inter-site spatial heterogeneity and (2) to 33

correlate the texture measures with adverse prognostic genomic features, tumor immune 34

microenvironment (TME) and outcome in patients with HGSOC evaluated as per the Cancer 35

Genome Atlas (TCGA) Research Network ovarian cancer pilot project. 36
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Methods 37

Ethics and consent 38

This study was compliant with the Health Insurance Portability and Accountability Act and 39

received approval by the Institutional Review Board at Memorial Sloan Kettering Cancer 40

Center with a waiver for requiring informed consent. The TCIA is a managed open-source 41

archive of radiology images of cancer contributed by 28 different institutions that provides 42

datasets obtained after prospective informed consent and de-identification of all protected 43

patient health information [21]. 44

Study design and patients 45

This manuscript was written in accordance to the REMARK [22] and STROBE 46

guidelines [23] (see STROBE checklist S1 Checklist and S1 Text for summary of statistical 47

analysis). The study population consisted of two cohorts of patients with HGSOC: a single 48

institution dataset from MSKCC (n= 46) and a multi-institution dataset (n= 38) from the 49

ovarian-TCIA [24] which included patients treated at five different institutions (Fig 1). The 50

eligibility criteria included: (i) FIGO stage II–IV HGSOC, (ii) attempted primary 51

cytoreductive surgery, (iii) standard of care intravenous contrast-enhanced CT of the 52

abdomen and pelvis performed prior to surgery, (iv) at least two tumor sites identified on CT 53

in order to evaluate inter-site tumor heterogeneity, and (v) molecular analysis performed as 54

per the The Cancer Genome Atlas (TCGA) Research Network ovarian cancer pilot project. 55

Patients who received neoadjuvant chemotherapy prior to surgery were excluded from the 56

study. Forty-six patients from MSKCC and 38 patients from TCIA datasets fulfilled the 57

inclusion criteria. S1 Fig shows the REMARK diagram for selection of patients. 58

All patients from the current study were included in two prior studies that investigated 59

the associations between qualitative CT imaging features, Classification of Ovarian Cancer 60

(CLOVAR) transcriptomic profiles and survival in a single and multiple institution datasets, 61

respectively [25,26]. Previously [27], we also evaluated the feasibility of CT-based texture 62

measures of inter-site tumor heterogeneity in 38 patients from the MSKCC dataset. The 63

current study now quantifies both intra-site and inter-site tumor heterogeneity and evaluates 64

these new texture measures on an additional independent dataset. Clinical details including 65

disease stage, residual disease after debulking surgery and platinum sensitivity were 66

abstracted from the patient clinical records by radiologists and oncology imaging fellows 67

from MSKCC and the institutions contributing to the TCIA dataset. Platinum resistance was 68

defined as a platinum-free interval of less than 6 months after initial therapy [28]. 69

We performed an exploratory analysis to identify whether the novel image-based 70

heterogeneity measures were associated with adverse genomic factors including putative 71

copy-number alterations to CCNE1, PTEN, RB1, NF1, somatic point mutations to BRCA1, and 72

BRCA2, the Hallmark gene set enriched pathways, and the tumor microenvironment 73

consisting of stromal and immune scores. The copy number alterations and point mutations 74

were computed using the GISTIC method [29] and obtained from the cbioportal [30]. The 75

Hallmark gene set enrichments were extracted through the analysis of the bulk tumor RNA 76

sequence data was performed using single sample gene-set enrichment analysis [31], while 77

the ESTIMATE method [32] was used to quantify the tumor microenvironment (TME) cell 78

types consisting of the stromal and immune signatures from the RNA sequence data. 79

Segmentation of CT images and extraction of texture features 80

Two oncologic imaging research fellows with 4 and 6 years experience respectively 81

evaluated all CTs and manually segmented primary and suspected metastatic tumor sites in 82

the abdomen and pelvis. Manual segmentation was performed using 3DSlicer [33] by 83
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tracing the tumor contour on each CT slice to produce a volume of interest (VOI) for each 84

lesion. The CT images were rescaled from 0–255 prior to computation of the texture 85

measures. Texture analysis was performed using in-house software implemented in C++ 86

using the Insight ToolKit (ITK) [34]. Voxel-wise Haralick textures [12] were computed 87

within each manually delineated VOI using a neighborhood size of 5× 5× 1 and thirty two 88

histogram bins for the grey level co-occurrence matrix. 89

Average heterogeneity of tumor burden 90

Average heterogeneity of all tumor sites was derived as the mean of voxel-wise Haralick 91

texture values from all sites within each patient. Haralick energy, entropy, homogeneity and 92

contrast were computed for the primary lesion and every metastatic site. Tumor volume was 93

estimated as the total number of voxels within each VOI multiplied by voxel size. 94

Intra and inter-site tumor heterogeneity 95

The heterogeneity of the disease was quantified according to the following procedures (see 96

also S1 Methods): 97

(i) Division of lesions into distinct sub-regions. First, voxel-wise textures were derived 98

by sliding a fixed size patch (5×5) across the whole image (texture measures within a patch 99

were assigned to the central voxel within that patch). Then, sub-regions of homogeneous 100

texture were extracted within each tumor by grouping voxels with similar textural values 101

(Haralick textures) using kernel K-means clustering [35] (Fig 2A).The number of clusters 102

was set to a maximum of five and the best number for each patient was determined using 103

Akaike information criterion. Each sub-region was described by the collection of mean 104

values of the four individual Haralick texture measures. These sub-regions are the primary 105

input to the heterogeneity metrics. 106

(ii) Quantification of the similarity between all pairs of sub-regions. Textural 107

dissimilarity between all pairs of sub-regions was computed as the Euclidean distance of the 108

sub-region textures. As a result, sub-regions with highly distinct textures would result in 109

very large dissimilarities. All pairs of sub-region dissimilarities were summarized as a 110

dissimilarity map, and discretized into 10 bins(Fig 2A). 111

(iii) Definition of patient-level heterogeneity metrics. Two types of heterogeneity 112

metrics were defined based on the discretized dissimilarity values. 113

1. Frequency-based metric. The frequencies of the pairwise sub-region dissimilarities 114

were normalized in the range of 0-1 for each patient and discretized into ten bins and 115

used to compute the cluster sites entropy (cSE), that measures the entropy in clusters 116

of uniform textures or sub-regions computed within the tumor sites defined and using 117

the Shannon entropy formulation. cSE is a measure of two components, namely the 118

number of unique dissimilarities (or diversity) and their equality in the distribution 119

(or evenness) across all tumor sites. 120

2. 2D histogram-based metrics. A new class of features was designed in order to capture 121

the diversity of distinct groups of texturally similar sub-regions. To this end, the 122

dissimilarity map was used to create a new 2D histogram called the ‘group size 123

dissimilarity matrix’ (GDM), that captured how many pairs of sub-regions have similar 124

levels of dissimilarity. From this matrix, two scalar metrics were extracted, called 125

cluDev and cluDiss. The cluDev measure is the standard deviation of the GDM. The 126

cluDiss measure quantifies the richness of distinct groups of subregions (grouped by 127
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their even dissimilarities) and the spread of the group dissimilarities. This measure 128

adds to the cSE metric by magnifying the asymmetry in the distribution of 129

dissimilarities. Whereas the cSE measure focuses on diversity defined as a function of 130

number of unique dissimilarities and their frequencies, the cluDiss measure focuses on 131

the relatedness between groups of subregions when modeling the diversity of 132

dissimilarities. For example, tumor sites containing sub-regions with highly similar 133

textures will produce low cluDiss value and low cSE or low heterogeneity (Fig 2B). 134

Conversely, the presence of highly distinct sub-regions across the tumor sites will 135

produce a high cluDiss value and higher cSE (Fig 2C) corresponding to high intra- and 136

inter-tumor heterogeneity. The main difference between the two measures is that cSE 137

has a restricted range and only quantifies dissimilarities while the cluDiss focuses on 138

amplifying the extent of dissimilarities. 139

All of the three measures are correlated to the number of metastatic sites S5 Table and 140

are strongly correlated with one another S1 Fig. Note that all sub-regions, regardless of 141

their site of origin, are treated on the same footing. The metrics defined above are therefore 142

referred to as intra- and inter-site tumor heterogeneity (IISTH) features, as they capture 143

both levels simultaneously. The source code for generating the IISTH features is available 144

for download from (Github link). 145

(iv) Unification of metrics into single IISTH score. All three measures of inter-site 146

tumor heterogeneity show strong correlation with each other (S1 Fig). Therefore, the three 147

measures were combined to produce a combined intra/inter-site tumor heterogeneity score 148

(IISTH). The combined score or IISTH score was computed through factor analysis 149

(available through the psych package in R) of the measures and using the factor loadings as 150

the combined score for correlating with the survival and outcomes. 151

The mutual complementarity of the 3 IISTH measures was explored in two different 152

ways. Firstly, the three measures were used to cluster patients into four (as determined 153

automatically by algorithm) different categories of increasing heterogeneity. This method 154

has the advantage of taking into account subtle differences between the three features at the 155

time of classifying the patients. Secondly, the three features were combined into a single 156

score, denoted the “composite IISTH score”. This method has the advantage of providing a 157

single heterogeneity scale along which patients can be mapped. 158

Unsupervised clustering of patients by heterogeneity measures 159

Self-tuning spectral clustering [36] was used to group patients by their heterogeneity into 160

distinct clusters separately using the proposed IISTH and the average tumor heterogeneity 161

measures. Self-tuning spectral clustering automatically determines the appropriate number 162

of clusters required to partition the data by minimizing the cost of data splits. The relative 163

proportion of the various outcome measures in each cluster was then computed. 164

Hallmark gene sets estimation 165

Pathway enrichment analysis was performed to extract the Hallmark gene sets for each 166

sample from the MSigDB database version 6.1 [37]. Single-sample gene set enrichment 167

analysis [31], a modification of standard gene set enrichment analysis (GSEA) [38], was 168

performed on RNA measurements for each sample using the GSVA package version 169

1.28.0 [39] in R version 3.5.0 using the ssgsea method and tau= 0.25. Next, gene sets for 170

each cell type were generated using the union of genes derived from the different methods. 171

Thus, the cell types were represented by the union of genes of the different methods. 172

Normalized enrichment scores were generated for the computed Hallmark gene sets [40]. 173
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ESTIMATE method [32] was used to quantify the immune and stromal signatures from 174

RNA-seq data. 175

Statistical analysis 176

Pre-specified analyses were determined after data collection but prior to performing 177

statistical analysis. Additional exploratory analysis, namely, determining the association of 178

texture measures to genetic alterations was performed after the extraction of texture-based 179

clusters. Patient characteristics and texture measures were summarized using standard 180

descriptive statistics using median and interquartile range (IQR). Cox regression was used to 181

assess associations between OS and PFS and texture measures after adjusting for age, 182

disease stage, resection status, and tumor volume. Cox analysis for tumor volume was 183

performed after adjusting for age and disease stage. Kaplan-Meier curves were used to 184

estimate OS and PFS. Associations between categorical variables, including 185

platinum-resistance status and genetic alternations in CCNE1 in the texture-based clusters 186

were examined using Fisher’s exact test. Comparison between different CT scanner data, 187

including Haralick texture and IISTH measures, was studied using the Wilcoxon rank sum 188

test. Data with missing variables were excluded from the analysis. Spearman rank 189

correlation was performed to assess the correlation between the continuous texture 190

measures and tumor volume, number of tumor sites and molecular factors. Associations 191

were investigated separately for each institution. Values of P < 0.05 were considered to be 192

significant. Owing to limited hypothesis testing and the exploratory nature of the study, we 193

did not adjust for multiple testing. Thus, the reported results are preliminary and require 194

further validation in future investigations. 195

Results 196

Patient characteristics 197

A total of 9625 CT images were collected from 84 patients with HGSOC. The median 198

number of tumor sites analysed was 7 (IQR 5–9) for the MSKCC cohort and 4 (IQR 3–4) for 199

the TCIA cohort. In total, 463 volumes of interest (VOI) were analysed to obtain intra- and 200

inter-site tumor heterogeneity (IISTH) texture measures for 84 patients using computational 201

methods summarized in S1 Methods.Fig 1 summarizes the experimental design. S2 Fig 202

shows the REMARK diagram for selection of patients. 203

Patient characteristics for the two datasets are summarized in Table 1. The median 204

follow-up was 41 months (IQR 24–55 mo) in the MSKCC cohort and 21 months (IQR 205

7–39 mo) in the TCIA cohort, with all but 2 patients in MSKCC and 19 in TCIA progressing 206

during the follow-up period. Comparison of the MSKCC and TCIA datasets showed 207

significant differences between the two datasets for progression-free survival (PFS), 208

CT-derived total tumor volume and for texture measures (Table 1). Owing to these 209

differences, it was not possible to use the two datasets in a training–testing–validation 210

analysis. We therefore analyzed the two datasets separately and assessed whether the same 211

trends were observed for the association of texture measures and outcomes. 212

Intra- and inter-site tumor heterogeneity CT texture-based measures 213

predict outcome 214

Unsupervised clustering using the IISTH measures resulted in four clusters with low, 215

medium, high and ultra-high IISTH heterogeneity (Fig 3). Unsupervised clustering of 216

average texture heterogeneity resulted in three clusters with low, medium, and high texture 217

entropy (S3 Fig). 218
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Fig 1. Schema of experimental workflow. For each patient, average texture heterogeneity
and inter-site tumor heterogeneity texture measures were computed. Texture measures
from the two cohorts of patients were used to group patients using unsupervised clustering
which were correlated with outcomes.

In the univariable analysis, the IISTH measures cSE, cluDiss, composite IISTH scores, 219

and the IISTH clusters were all significant predictors of PFS (Table 2) in both MSKCC and 220

TCIA datasets. When adjusted for age, disease stage, tumor volume and surgical resection 221

status, only cluDiss remained significant in both datasets (MSKCC hazard ratio [HR] 1.10, 222

95% CI 1.02–1.20, P = 0.015, TCIA HR 1.40, 95% CI 1.15–1.80, P = 0.001) (Figure 4). 223

Multivariable analysis of the composite heterogeneity measure (or IISTH score) showed that 224

the same measure was a significant predictor of outcome (MSKCC HR 1.51, 95% CI 225

1.01–2.26, P = 0.43, TCIA HR 10.00, 95% CI 2.62–38.12, P = 0.0007) (SI Fig, S4 Fig). 226

Multivariable analysis also showed that the IISTH clusters were significant predictors of 227

outcome (MSKCC HR 2.58, 95% CI 1.23–5.40, P = 0.012, TCIA HR 10.74, 95% CI 228

2.67–43.2, P = 0.001) Fig 5). 229

Although sub-optimal resection and age were independent predictors of PFS in the 230

multivariable analysis in the MSKCC dataset, neither measure was associated with PFS in 231

the TCIA dataset. Similarly, tumor volume did not predict PFS. 232

The IISTH measure cluDiss, IISTH cluster, and Haralick homogeneity texture were 233

significant predictors of OS (S2 Table) in the univariable analysis for the MSKCC dataset. 234

When adjusted for age, disease stage, tumor volume, number of metastatic sites, and 235

surgical resection status, using the Cox proportional hazards model, IISTH cluster remained 236

significant predictor of OS in the MSKCC dataset. 237

The IISTH measures were not correlated with total tumor volume but showed strong 238

positive correlation with the number of tumor sites (S5 Table). Average Haralick tumor 239

heterogeneity measures showed variable (some positive and others negative) correlation 240

with tumor volume (S5 Table). 241

The high and ultra-high IISTH heterogeneity clusters in the MSKCC dataset had a larger 242

number of patients with primary platinum resistance (7 versus 2) compared to low and 243

medium heterogeneity clusters (S3 Table). However there was no significant difference in 244

the prevalence of platinum resistance (MSKCC P = 0.064, TCIA P = 1.0) between the two 245

cluster groups. Similar to the IISTH clusters, clusters of average tumor heterogeneity (S4 246

Table) did not show an association with platinum resistance (MSKCC P = 0.73, TCIA 247
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Table 1. Retrospective cohort characteristics.
Patient characteristic MSKCC TCIA
Number of patients 46 38
Age (median)(IQR) 59 (50–67) 62 (53–72)
Stage at diagnosis (proportion of patients)
II 0 (0%) 4 (11%)
III 31 (67%) 29 (76%)
IV 15 (33%) 5 (13%)
Surgical debulking outcome (number of patients)
Complete 15 (33%) 8 (21%)
Optimal ≤1 cm 23 (50%) 16 (42%)
Suboptimal >1 cm 8 (17%) 12 (32%)
Unknown 0 (0%) 2 (5%)
Recurrence status∗ (number of patients)
Recurring 44 (96%) 19 (50%)
Not recurring 2 (4%) 19 (50%)
Disease status∗ (number of patients)
Alive 17 (37%) 16 (42%)
Dead 29 (63%) 22 (58%)
Follow up∗ mos (median)(IQR) 41 (24–55) 21 (7–39)
Survival (median)(IQR)
PFS† mos 16 (10–27) 17 (8–25)
OS† mos 59 (45–77) 31 (16–50)
Platinum status (number of patients)
Sensitive 35 (76%) 17 (45%)
Resistant 9 (20%) 7 (18%)
Unknown 2 (4%) 14 (37%)
tumor volume∗ (cm3)(median)(IQR) 122 (65–232) 328 (153–601)
tumor sites∗ (median)(IQR) 7 (5–9) 4 (3–4)
∗ indicates datasets were significantly different (P < 0.05).
† indicates datasets were significant different (P < 0.05) computed using Log-rank tests.
The reported number of events occurred within the time frame of the study.

P = 0.57). 248

IISTH cluDiss measure of pelvic metastatic disease is negatively 249

correlated with Hallmark gene sets 250

Given that only the cluDiss measure was associated with PFS in the multivariate analysis, we 251

evaluated whether cluDiss correlated with Hallmark gene set enrichment scores. We 252

computed the IISTH cluDiss measure for the pelvic (ovarian mass and cul-de-sac) 253

metastases to assess its association to the genomic pathways estimated using ssGSEA [40]. 254

We focused on the pelvic metastatic disease for the purpose of this analysis as the tissue 255

samples for molecular analysis were obtained from the pelvic disease. The cluDiss measure 256

was normalized for the data to have zero mean and unit standard deviation using z-score 257

standardization and to facilitate easier visualization of the correlations. The cluDiss measure 258

had a negative correlation with WNT enrichment (ρ = −0.35; P = 0.028) (Fig 6). The 259

WNT/Beta-Catenin signaling enrichment was highest in the IISTH cluster with the least 260

heterogeneity and decreased in IISTH clusters with increasing texture heterogeneity. Prior 261

work by our group has shown that enrichment of WNT pathway is negatively correlated 262
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Fig 2. IISTH measures in 2 representative patients. (A) Method for extracting inter-site
tumor heterogeneity measures. Sub-regions with homogeneous textures are extracted for
each tumor location. Sub-regions with different textures are indicated by different colored
regions in the CT image. The dissimilarity between sub-regions are computed using
Euclidean distances of the sub-region textures. Cluster sites entropy (cSE) is computed from
the distribution of dissimilarities. The cluDiss and cluDev measures are computed from a
dissimilarity map that expresses the pairwise sub-region dissimilarities. (B) Patient with
smaller IISTH measures and associated with better outcomes (PFS of 19 mo) and (b).
Patient with larger IISTH measures and associated with worse outcomes (PFS of 7.8 mo).

with immune-infiltration [41]. 263
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Fig 3. Unsupervised clustering of MSKCC and TCIA cohorts using IISTH measures.

Table 2. Univariable (unadjusted) and multivariable (adjusted) analysis of pre-treatment values as predictors for progression
free survival (PFS) for MSKCC and TCIA dataset. Multivariable Cox hazard regression was adjusted for age, stage, resection
status, and volume.

Variable MSKCC TCIA
Univariable Multivariable Univariable Multivariable

HR CI P-Value HR CI P-Value HR CI P-Value HR CI P-Value
cSE 1.60 1.10–2.40 0.027 2.36 1.11–5.00 0.026 3.00 1.30–6.80 0.007 2.74 0.47–15.8 0.26
cluDiss 1.10 1.02–1.20 0.001 1.04 1.01–1.06 0.002 1.20 1.10–1.40 0.001 1.05 1.00–1.10 0.049
cluDev 1.00 0.98–1.10 0.140 1.05 0.95–1.20 0.338 1.60 1.09–2.30 0.016 0.86 0.36–2.00 0.731
IISTH score 1.63 1.13–2.34 0.009 3.20 1.45–7.08 0.004 2.16 1.26–3.72 0.005 2.25 0.62–8.23 0.218
IISTH cluster (3,4/1,2)† 2.77 1.39–5.50 0.004 2.94 1.29–6.70 0.009 6.85 2.27–20.7 < 0.001 5.94 1.05–33.6 0.044
Energy 1.00 0.99–1.01 0.912 0.99 0.98–1.00 0.066 0.99 0.98–1.00 0.228 0.99 0.97–1.00 0.224
Entropy 0.99 0.97–1.01 0.208 1.01 1.00–1.03 0.056 1.01 0.99–1.03 0.196 1.03 0.99–1.10 0.09
Contrast 0.99 0.98–1.00 0.204 0.99 0.98–1.00 0.159 1.03 0.97–1.08 0.341 1.08 1.01–1.10 0.019
Homogeneity 0.99 0.98–1.01 0.815 1.01 0.99–1.03 0.552 1.02 0.99–1.04 0.247 1.09 1.02–1.16 0.008
Haralick cluster (3/1)† 1.20 0.57–2.55 0.634 1.88 0.79–4.50 0.155 2.40 0.67–8.62 0.179 1.62 0.31–8.50 0.57
Haralick cluster (2/1)† 1.17 0.55–2.51 0.678 1.57 0.70–3.50 0.271 1.60 0.31–8.20 0.576 0.96 0.16–5.80 0.967
Resection (sub-optimal) 3.70 1.44–9.50 0.007 2.97 0.82–10.70 0.097 0.95 0.25–3.60 0.946 1.45 0.28–7.40 0.657
Resection (optimal) 1.71 0.85–3.40 0.130 1.33 0.49–3.60 0.575 0.98 0.33–2.90 0.973 1.13 0.279–4.60 0.860
Stage (IV/III,II) 1.10 0.59–2.10 0.730 1.15 0.53–2.50 0.715 1.40 0.41–4.90 0.58 1.12 0.29–4.40 0.872
Age (years) 1.10 1.02–1.10 0.003 1.05 1.01–1.10 0.010 1.00 0.97–1.00 0.796 1.06 0.99–1.10 0.056
Volume (cm3) 1.00 1.00–1.00 0.530 1.00 0.99–1.00 0.968 1.00 1.00–1.00 0.320 1.00 0.99–1.00 0.742
Sites 1.10 1.00–1.30 0.028 1.02 0.86–1.20 0.830 1.60 1.10–2.40 0.012 2.44 1.36–4.40 0.003

† 3, 4 are high and ultra-high heterogeneity clusters and 1, 2 are low and medium heterogeneity clusters.
For continuous measures, HR > 1, an increase in the value is associated with higher risk or number of events and decreased PFS. For binary variables, the
HR listed is the first option and HR=1 is the second option. HR < 1 indicates lowering of risk with the same option.
CI - confidence interval HR - hazard ratio.
Cox analysis for cluDiss as a continuous measure was computed after computing square root of cluDiss to achieve reasonable data scaling.

Prevalence of genetic copy number alterations in the texture 264

heterogeneity clusters 265

We explored whether the IISTH clusters were associated with prognostic copy number 266

alterations in known oncogenes and tumor suppressor genes associated with HGSOC. S5 Fig 267

shows association of IISTH-derived clusters using patients from both datasets with 268

alterations in CCNE1, PTEN, RB1, NF1 and somatic mutations in BRCA1 and BRCA2. The 269

relative prevalence computed as the ratio of the number of patients with and without CCNE1 270

amplifications was the highest in the ultra-high cluster and the lowest in the low 271

heterogeneity cluster but there was no significant difference in the prevalence of CCNE1 272
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Fig 4. Survival by cluDiss measures in MSKCC and TCIA cohorts Kaplan-Meier analysis
using groups split on median cluDiss value (MSKCC = 6529; TCIA = 2896).

Fig 5. Survival by IISTH clusters (low, medium IISTH versus high, ultra-high IISTH)
obtained through self-tuning spectral clustering for MSKCC and TCIA datasets.

amplifications between the two cluster groups (MSKCC P = 0.31, TCIA P = 0.72). None of 273

the patients with mutation to BRCA1 occurred in the low heterogeneity cluster while four 274

out of the seven with amplification or mutations to BRCA2 occurred in the low heterogeneity 275

cluster. 276

IISTH measures were robust to differences in CT scanner manufacturer 277

All the MSKCC scans were obtained using General Electric (GE) CT scanners. The CT scans 278

from the TCIA cohort were obtained from multiple institutions using different CT scanner 279

manufacturers. We therefore investigated whether the IISTH measures were dependent on 280

the scanner manufacturer. Wilcoxon rank sum test showed no significant difference in the 281

distribution of IISTH texture measures between non-GE (n= 14; Siemens 12, Toshiba 1, 282

Philips 1) and GE (n= 24) scanners (Table 3). By contrast, three out of the four Haralick 283

textures showed significant differences between the scanners. For example, the Haralick 284

energy measures were significantly lower (P = 0.001) in GE compared to non-GE scanners. 285

Conversely, entropy was significantly higher in GE scanners compared to non-GE scanners 286

(P = 0.0006). These results suggest that the IISTH measures are not influenced by CT 287

scanner manufacturers and are potentially more applicable to multi-institutional studies 288

than standard Haralick textures. 289
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Fig 6. Distribution of the WNT/Beta-Catenin signaling expression across IISTH
clusters of increasing heterogeneity.

Table 3. Differences in texture measures between scanner manufacturers from TCIA
dataset.

GE non-GE
Measure Median IQR Median IQR P-Value
cSE 3.2 2.7–3.9 3.2 3.0–3.7 0.56
cluDev 1.2 0.78–2.7 1.7 1.02–3.0 0.26
cluDiss 3049 1240–4841 2896 1452–4434 1.00
Energy 137 124–166 183 173–198 0.001
Entropy 72 56–85 39 36–52 < 0.001
Homogeneity 11.9 9.9–22 7.8 4.8–13 0.034
Contrast 2.15 1.48–3.65 1.90 1.00–3.17 0.43

Discussion 290

Intratumoral heterogeneity may be a critical determinant of outcome in HGSOC. We 291

developed standard of care CT-based texture measures that model both intra- and inter-site 292

tumor heterogeneity using IISTH measures. These capture the variation in dissimilarities 293
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within and between tumor sites and quantify the textural differences between tumour 294

sub-regions. Our study is part of the NCI initiative to combine molecular analysis with 295

case-matched CT images from the TCIA ovarian cancer projects [24] and therefore is 296

representative of patients from multiple institutions. We focused on a small set of texture 297

measures (cSE, cluDev, and cluDiss) to eliminate any false discoveries owing to seemingly 298

promising correlations arising from a small dataset. 299

The IISTH measures predict progression-free survival in two different datasets. Patients 300

with lower values of cSE and cluDiss had significantly longer PFS independently of other 301

variables. Importantly, tumor volume did not predict PFS. Therefore the IISTH measures 302

have potential clinical utility as they can be computed before treatment from non-invasive 303

standard-of-care pre-operative CT images. Other known predictors of outcome, including 304

surgical resection status [42,43] and platinum resistance [44] can only be measured 305

following treatment. The IISTH measures did not predict platinum resistance, but the 306

MSKCC and TCIA datasets were dissimilar for known prognostic variables and platinum 307

resistance information was missing for 37% of patients in the TCIA dataset. Average 308

Haralick texture measures did not predict outcomes in either dataset. 309

We asked whether the cluDiss measure, which was an independent predictor of PFS was 310

correlated with molecular features including enriched HALLMARK gene pathways and the 311

tumour microenvironment. We found that the cluDiss measure showed a weak negative 312

correlation to WNT/Beta-Catenin signaling enrichment and stromal cell types. Also, the 313

enrichment of WNT/Beta-Catening signaling decreased with increasing cluster texture 314

heterogeneity. These results, though preliminary due to dataset limitations, suggest that 315

decreased textural heterogeneity between tumour sites may be associated with stronger 316

WNT/Beta-Catenin signaling enrichment which in turn is associated with immune 317

exclusion [41]. 318

We performed exploratory analyses between IISTH measures and known putative 319

prognostic genetic alterations. The ultra-high IISTH clusters from MSKCC had higher 320

relative prevalence of patients with amplifications of CCNE1 compared to low IISTH clusters, 321

but did not reach statistical significance owing to the small sample size. Larger study 322

populations are required to further explore radiogenomic hypotheses. 323

The IISTH measures were independent of scanner manufacturer. This is probably 324

because IISTH measures variations in the texture dissimilarities between sub-regions rather 325

than voxel-based texture values. They are therefore “meta” features that model the relative 326

textural differences between the tumor sites and are robust to differences in texture values 327

that may be different between scanner manufacturers. Reproducible estimates such as IISTH 328

are essential for translating radiomics analysis for multi-centre trials. 329

Our study has several limitations. There were substantial differences between the 330

MSKCC and TCIA datasets which prevent use of a training-validation set to establish clear 331

cut points for clinical use. This underscores the difficulties of obtaining paired imaging and 332

genomic data from multiple institutions to establish representative populations for study. 333

Similar challenges for establishing cut points for predicting outcomes after 334

checkpoint-blockage treatment have been observed where better outcomes are observed in 335

individual datasets based on mutational load but no consistent cut-off has been 336

identified [45–48]. 337

We tried to overcome the limitation of heterogeneous datasets by employing 338

unsupervised clustering (as opposed to supervised classification) to group the data and 339

study association with outcomes. Specifically, we tested whether both datasets revealed the 340

same trend in the association of the textural tumor heterogeneity with outcomes. The 341

reported results are presented without adjusting for multiple comparisons as this is a 342

feasibility study. Finally, examination of the correlations between IISTH measures and 343

specific gene copy number alterations would ideally require a much larger cohort. However, 344

our study represents the largest dataset for which both CT images and genomic information 345
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are publically available. Building larger data sets will provide a unique opportunity to probe 346

correlations between radiomics and genomics and provide insights into the potential role of 347

radiogenomics in predicting outcome in HGSOC. 348

Conclusion 349

We developed quantitative, non-invasive texture-based measures to quantify intra- and 350

inter-site tumor heterogeneity (IISTH) within patients with HGSOC and showed that these 351

measures can be used to predict outcome across multiple institutions. Non-invasive imaging 352

biomarkers such as IISTH can be computed from standard-of-care CT imaging requiring no 353

additional tests for patients. These measures if validated on larger cohorts have the 354

potential to identify high-risk patients early in their clinical course, thereby providing the 355

opportunity to triage such patients to clinical trials that improve precision medicine for 356

women with HGSOC. 357
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S1_Methods

Computing inter-site tumor heterogeneity (IISTH) measures

The steps in computing the IISTH measures are summarized in Fig 1 together with the
method used in each step. Details of the individual steps are discussed in the following
subsections.

Fig 1. Steps in generating IISTH measures.

Extracting sub-regions of homogeneous texture

The first step in the IISTH measure computation is the extraction of voxel-wise textures by
sliding fixed sized patches across the whole image. The texture measures computed using
Haralick textures is assigned to the voxel in the centre of that patch. Next, sub-regions of
homogeneous texture were computed by clustering of the voxel-wise textures using kernel
K-means method. The appropriate number of clusters and the kernel parameters (mean µ,
standard deviation Σ) were computed from the largest tumor site using expectation
maximization (EM) algorithm. Akaike information criterion (AIC) was used to select the
best number of clusters. The number of analysed clusters ranged from two to five. The
learned kernel parameters were then used to produce sub-regions in the remaining tumor
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sites. As a result of this step, all the tumor sites were divided into distinct sub-regions. The
subregions were described using the mean of the individual texture measures.

Dissimilarity matrix methods

The dissimilarity between two sub-regions is computed using the Euclidean distance of the
sub-region textures. Pair-wise sub-region dissimilarities are represented using a dissimilarity
matrix D where the cells Di, j correspond to dissimilarity between sub-regions i and j. The
elements of the dissimilarity matrix are organized by numerical labels of the sub-regions
extracted within each anatomical structure such that the total number of elements within
the dissimilarity matrix equals the total number of all sub-regions. Heterogeneous
dissimilarity will result when sub-regions have highly distinct textures. Conversely,
homogeneous textural differences between sub-regions will give rise to a homogeneously
appearing dissimilarity map.

Pairwise sub-region dissimilarities at the patient level are discretized into ten bins of
increasing normalized dissimilarity (ranging from 0 to 1). The IISTH metric cSE is
computed from the frequencies of pairwise sub-region dissimilarities as:

cSE= −
1
N

N
∑

n=1

p(dn) log2(p(dn)), (1)

where N are the number of bins, p(d) corresponds to the normalized dissimilarity d. The
dissimilarities are normalized using the z-score prior to computation of cSE.

Group Dissimilarity Matrix

The ISTH measures are computed from the dissimilarity map by converting it into a group
dissimilarity matrix (GDM). GDM is a two dimensional histogram computed from the
dissimilarity matrix D that captures the prevalence of dissimilarities shared by different
number of sub-regions. The elements of the GDM are the number of discrete dissimilarities
and the number of sub-region pairs sharing those dissimilarities. GDM is constructed similar
to zone-level size matrices [49] and captures the spread of dissimilarities. Texturally
identical sub-regions will give rise to a single peak at the largest group size and lowest
dissimilarity value of the GDM. On the other hand, presence of highly distinct textures in the
sub-regions of various anatomic structures will give rise to uniform distribution of the
dissimilarities at lower group sizes. The GDM matrix was always ordered in the same way
by the individual metastatic sites starting from the primary site with the subsequent sites
included in anti-clockwise order.

The measures cluDev and cluDiss are computed from the GDM. Cluster standard
deviation (cluDev) is computed as the standard deviation of the GDM. Cluster dissimilarity
(cluDiss) is computed as:

cluDiss=
1

K ×M

K
∑

i

M
∑

j

(i + j − D̂− Â)α × G(i, j). (2)

where K , M are the number of discrete dissimilarity and group size levels, D̂ is the mean
dissimilarity, Â is the mean group size, and G is the GDM, with α = 4. Varying the value of α
alters the emphasis on the mean dissimilarities. The indices i and j emphasize larger
dissimilarities and larger group sizes thereby, resulting in large values of cluDiss in the
presence of many texturally distinct sub-regions from all other sub-regions as shown in
Fig 2B. On the other hand, presence of large groups with distinct dissimilarity will result in
small cluDiss values as shown in Fig 2A.
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Fig 2. Examples of low and high inter-site texture heterogeneity. Presence of
homogeneous distribution of dissimilarities across sub-regions results in few distinct peaks
in the corresponding GDM matrix (A). Presence of many sub-regions with distinct texture
results in uniformly distributed dissimilarities in the GDM and high heterogeneity (B).

S1_Table

Differences in average texture (Haralick) and IISTH measures between MSKCC and
TCIA datasets.

Measure MSKCC TCIA
Type Feature Median IQR Median IQR P-Value
Haralick Energy 186 163–222 156 133–186 0.0005
Haralick Contrast 9.4 2.8–30.2 2.0 1.3–3.5 < 0.0001
Haralick Homogeneity 20 8.8–29 11 7.4–16 0.056
Haralick Entropy 47 30–63 63 39–78 0.027
IISTH cSE 4.0 3.4–4.4 3.2 2.8–3.9 0.0003
IISTH cluDev 4.2 2.0–7.0 1.5 0.8–2.8 < 0.0001
IISTH cluDiss 6529 3582–9700 2896 1128–4835 < 0.0001

S2_Table

Univariable (unadjusted) and multivariable (adjusted) analysis of pre-treatment values as predictors for overall survival (OS) for TCIA dataset.
Multivariable Cox hazard regression was adjusted for age, stage, resection status, and volume.
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Variable MSKCC TCIA
Univariable Multivariable Univariable Multivariable

HR CI P-Value HR CI P-Value HR CI P-Value HR CI P-Value
cSE 1.50 0.89–2.50 0.130 1.10 0.46–2.70 0.81 1.10 0.60–1.90 0.810 2.80 0.66–12.3 0.161
cluDiss 1.07 1.02–1.10 0.013 1.00 1.00–1.00 0.117 0.93 0.81–1.10 0.277 1.00 1.00–1.00 0.474
cluDev 1.03 0.96–1.10 0.40 0.97 0.86–1.10 0.691 0.87 0.62–1.20 0.41 0.91 0.45–1.90 0.806
IISTH score 1.50 0.63–3.50 0.365 1.50 0.63–3.50 0.365 0.99 0.67–1.48 0.98 2.00 0.65–5.80 0.23
IISTH cluster (3,4/1,2) 3.47 1.55–7.80 0.002 4.00 1.32–12.4 0.014 0.84 0.36–2.00 0.693 2.10 0.52–8.60 0.298
Energy 1.00 0.99–1.00 0.490 1.00 0.99–1.00 0.669 1.00 0.99–1.00 0.780 0.99 0.98–1.0 0.121
Entropy 0.99 0.98–1.00 0.210 1.0 0.99–1.00 0.738 1.00 0.98–1.00 0.910 1.00 0.99–1.00 0.155
Contrast 0.98 0.96–1.00 0.090 0.99 0.96–1.00 0.16 1.03 1.00–1.10 0.024 1.00 0.99–1.10 0.11
Homogeneity 0.97 0.95–1.00 0.019 0.98 0.96–1.00 0.235 1.00 0.97–1.00 0.878 1.00 0.95–1.00 0.855
Haralick cluster (3/4) 0.78 0.30–2.00 0.610 1.20 0.41–3.60 0.726 0.95 0.34–2.60 0.920 3.00 0.77–11.60 0.112
Haralick cluster (2/1) 0.79 0.31–2.00 0.62 0.85 0.30–2.40 0.76 2.20 0.60–7.70 0.237 2.40 0.63–9.30 0.20
Resection (sub-optimal) 6.00 1.99–18.0 0.001 3.90 1.15–13.3 0.029 7.2 1.40–37.0 0.018 5.70 1.09–29.6 0.039
Resection (optimal) 1.80 0.66–4.70 0.261 1.40 0.52–3.80 0.502 4.60 1.03–20.8 0.046 5.10 1.10–23.8 0.038
Stage (IV/III,II) 1.20 0.52–2.60 0.731 1.41 0.53–3.80 0.488 3.0 0.93–9.6 0.066 2.33 0.78–6.9 0.128
Age (years) 1.10 1.01–1.10 0.021 1.00 1.00–1.10 0.055 1.00 0.99–1.10 0.156 1.00 0.98–1.10 0.265
Volume (cm3) 1.00 1.00–1.00 0.04 1.00 0.99–1.00 0.195 0.297 0.99–1.00 0.250 1.00 1.00–1.00 0.290
Sites 1.18 1.03–1.3 0.017 1.10 0.90–1.30 0.421 0.92 0.69–1.20 0.607 0.92 0.61–1.40 0.706

Haralick clusters are coded 1–4 for low, medium, high and ultra-high heterogeneity.
For continuous measures, HR > 1, an increase in the value is associated with higher risk or number of events and decreased OS. For binary variables,

the HR listed is the first option and HR=1 is the second option. HR < 1 indicates lowering of risk with the same option.
CI - confidence interval HR - hazard ratio.
Cox analysis for cluDiss as a continuous measure was computed after computing square root of cluDiss to achieve reasonable data scaling.

S3_Table

Distribution of clinical characteristics in IISTH clustered groups for MSKCC and TCIA datasets.
Patient MSKCC TCIA
Characteristic Low Medium High Ultra-high Low Medium High Ultra-high
Number of cases, n (%) 9 (20) 15 (33) 14 (30) 8 (17) 13 (34) 10 (26) 13 (34) 2 (5)
PFS median mos (IQR) 33 (10–37) 19 (13–28) 13 (11–21) 14 (9–20) 22 (6–32) 15 (7–29) 13 (12–20) 11 (7–15)
OS median mos (IQR) 76 (59–109) 69 (54–76) 47 (33–63) 50 (25–77) 32 (6–60) 18 (7–29) 36 (27–40) 80 (60–100)
Platinum resistant, n (%) 1 (11) 1 (7) 5 (36) 2 (25) 1 (8) 2 (20) 3 (23) 1 (50)
Platinum sensitive, n (%) 8 (23) 13 (37) 9 (26) 5 (14) 4 (24) 3 (18) 9 (53) 1 (6)
Complete resection, n (%) 7 (78) 5 (33.3) 2 (14.3) 1 (12.5) 2 (15) 2 (20) 3 (23) 1 (50)
Optimal resection, n (%) 1 (11) 8 (53.3) 9 (64.3) 5 (62.5) 7 (54) 2 (20) 7 (54) 0 (0)
Suboptimal resection, n (%) 1 (11) 2 (13.3) 3 (21.4) 2 (25) 3 (23) 5 (50) 3 (23) 1 (50)

Survival and follow-up times are reported in months.

S4_Table

Distribution of clinical characteristics in Haralick textures-based clustered groups for
MSKCC and TCIA datasets.
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Patient MSKCC TCIA
Characteristic Low Medium High Low Medium High
Number of cases, n (%) 15 (33) 15 (33) 16 (35) 7 (18) 11 (29) 20 (53)
PFS median mos (IQR) 16 (12–26) 19 (12–29) 13 (10–31) 22 (17–52) 10 (5–19) 16 (10–24)
OS median mos (IQR) 57 (42–68) 69 (43–83) 56 (47–85) 40 (35–63) 18 (5–28) 32 (17–45)
Platinum resistant n (%) 4 (27) 2 (13) 3 (19) 1 (14) 3 (27) 3 (15)
Longer PFS n (%) 0 (0) 1 (7) 1 (6) 4 (57) 8 (73) 7 (35)
Complete resection n (%) 2 (13) 6 (40) 7 (44) 0 (0) 1 (9) 7 (35)
Optimal resection n (%) 9 (60) 6 (40) 8 (50) 5 (71) 5 (45.5) 6 (30)
Suboptimal resection n (%) 4 (27) 3 (20) 1 (6) 2 (29) 5 (45.5) 5 (25)

S5_Table

Spearman rank correlation coefficient between CT texture-based measures and
tumor burden.

Measure Tumor volume (cm3) Sites (N)
Type Feature ρ P-value ρ P-value
IISTH cSE 0.016 0.883 0.846 < 0.001
IISTH cluDiss 0.037 0.735 0.866 < 0.001
IISTH cluDev 0.012 0.914 0.889 < 0.001
Haralick Energy −0.039 0.727 0.432 < 0.001
Haralick Entropy −0.157 0.153 −0.436 < 0.001
Haralick Contrast −0.417 < 0.001 0.194 0.077
Haralick Homogeneity −0.412 < 0.001 −0.114 0.304
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