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1 SDMs: species distribution models 

  GARP: Genetic Algorithm for Ruleset Prediction 

  US: the United States 

  ENMs: ecological niche models 

  CART: classification and regression tree  

  DG: DesktopGARP  

  UI: Unimportance Index 

  AUC: area under the curve 

  BRTs: boosted regression trees 
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Abstract 17 

Variable selection for, and determination of variable importance within, species distribution 18 

models (SDMs) remain an important area of research with continuing challenges. Most SDM 19 

algorithms provide normally exhaustive searches through variable space, however, selecting 20 

variables to include in models is a first challenge. The estimation of the explanatory power of 21 

variables and the selection of the most appropriate variable set within models can be a second 22 

challenge. Although some SDMs incorporate the variable selection rubric inside the algorithms, 23 

there is no integrated rubric to evaluate the variable importance in the Genetic Algorithm for 24 

Ruleset Production (GARP). Here, we designed a novel variable selection methodology based on 25 

the rulesets generated from a GARP experiment. The importance of the variables in a GARP 26 

experiment can be estimated based on the consideration of the prevalence of each environmental 27 

variable in the dominant presence rules of the best subset of models and its coverage. We tested 28 

the performance of this variable selection method based on simulated species with both weak and 29 

strong responses to simulated environmental covariates. The variable selection method generally 30 

performed well during the simulations with over 2/3 of the trials correctly identifying most 31 

covariates. We then predict the distribution of Bacillus anthracis (the bacterium that causes 32 

anthrax) in the continental United States (US) and apply our variable selection procedure as a 33 

real-world example. We found that the distribution of B. anthracis was primarily determined by 34 

organic content, soil pH, calcic vertisols, vegetation, sand fraction, elevation, and seasonality in 35 

temperature and moisture.  36 

Keywords: GARP; variable selection; physiological mechanisms; median range; prevalence; 37 

Bacillus anthracis. 38 

  39 
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1. Introduction 40 

 Species distribution models (SDMs; i.e. ecological niche models [ENMs]) have been 41 

widely applied in ecology, biogeography, conservation biology, evolution, and epidemiology 42 

over the past several decades (Larson et al., 2010; Ostfeld et al., 2005; Pearson and Dawson, 43 

2003; Peterson and Vieglais, 2001). Modeling a species’ geographic distribution relies on some 44 

form of pattern-recognition based on non-random association between the geographic 45 

occurrences of a species and environmental conditions that support its survival under the 46 

ecological niche theory (Araujo and Guisan, 2006; Hutchinson, 1957). The ecological niche of a 47 

species can be defined as the environmental conditions that allow the population to be 48 

maintained without immigration (Grinnell, 1917; Pulliam, 1988) and can be described by an n-49 

dimensional hyper-volume of environmental covariates that determine the ecological space of 50 

the species (Hutchinson, 1957). Hence, the accuracy of predicted distributions is primarily driven 51 

by the adequacy of environmental covariates used in the models (Araujo and Guisan, 2006; 52 

Austin, 2007). Species’ distributions and their environmental requirements can be veiled or 53 

misleading due to the selection of inappropriate predictors (Araujo and Guisan, 2006). 54 

Incorporating the suitable covariates in ecological niche modeling experiments remains an 55 

important area of research with continuing challenges.  56 

 Most SDM algorithms use exhaustive searches through variable space (in multiple 57 

combinations) in order to identify the variables that define a species’ distribution. As the most 58 

biologically-based decision in SDMs, the selection of environmental covariates should primarily 59 

depend on the knowledge of the adaption of species’ physiology to the ecological or biological 60 

conditions (ecophysiological or biophysiological processes) that govern the relationships 61 

between a species and the environment (Austin, 2007). However, this information is difficult to 62 
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obtain in many cases, especially for some poorly understood species. With a large number of 63 

potential predictors, including biotic and abiotic, direct and indirect factors, which influence 64 

species’ responses to environmental gradients and available resources (Austin and Van Niel, 65 

2011), some crucial questions arise, like “how many variables are enough” and “which variables 66 

need to be included” (Araujo and Guisan, 2006; Huston, 2002). The evaluation of variable 67 

contributions within SDMs is an alternative to quantify the relationship between the species 68 

survival and environment to understand the ecological requirements of a species. The estimation 69 

of variable contribution in the SDMs provides an objective metric to infer the strength of species 70 

response to the environmental conditions, which can help to hypothesize about the 71 

ecophysiological processes determining the geographical distributions and understand some 72 

basic biology of the species (Araujo and Guisan, 2006). Finally, the variables contributing most 73 

are selected to interpret the species’ ecological niche and predict the most likely distribution 74 

(species range). 75 

 The estimation of each variable’s explanatory power and the selection of the optimal 76 

variable set within models, however, can be challenging for some species distribution modelling 77 

approaches, such as the Genetic Algorithm for Ruleset Production (GARP). GARP is a common 78 

technique for predicting species distributions based on presence-only data via an algorithm 79 

employing a superset of logistic regression, range and negated range rules, and atomic (bioclim) 80 

rules (Stockwell, 1999). GARP experiments can employ the Jackknife procedure (Levine et al., 81 

2007; Peterson and Cohoon, 1999; Thomasson and Blouin-Demers, 2015), but there is no easy 82 

way and rubric for the estimation of variable contribution. Levine et al. (2009) presented a 83 

method for performing a statistically based comparison between the comprehensive map (i.e. N 84 

variables) and jackknifed maps (i.e. N-1variables) generated from GARP to determine the 85 
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optimal ecological parameters for predicting human monkeypox disease. The larger differences 86 

found between the output from an experiment with all models and the map produced from a 87 

jackknifed experiment, the greater the contribution the reduced variable made in those 88 

experiments (Levine et al., 2009). However, this estimation relies on the prediction performance 89 

of GARP and assumes that the comprehensive map, as the base map, represents the geographic 90 

distribution predicted by the “true” fundamental niche. Also, the computational intensity for 91 

massive iterations of the jackknife procedure makes variable selection difficult when there is a 92 

large set of potential environmental covariates. Alternatively, Sweeney et al. (2007) employed an 93 

external classification and regression tree (CART) to select the optimal environmental layers to 94 

be used in GARP experiments to model the distribution of Anopheles punctulatus in Australia. 95 

However, GARP and CART use different algorithms to determine relationships between species’ 96 

occurrences and environmental covariates. GARP includes logistic regression and range 97 

envelopes, while CART constructs decision trees by making binary splits of the covariates. 98 

These differences in algorithms may result in different estimations of variable explanatory power 99 

and therefore the variable set selected by CART may not be optimal for GARP.  100 

Exploring the variable space that defines the ecological niche of a species can help us in 101 

understanding the underlying ecophysiological processes of the species’ distribution. Here, we 102 

present a novel variable selection methodology for GARP based on the exploration of the GARP 103 

rulesets to consider the explanatory power of variables within a modeling experiment and the 104 

biological information within the experiment using those variables. We base our variable 105 

selection process mainly in two metrics: 1) the prevalence of each environmental variable in the 106 

dominant presence rules of the best model subset from a GARP experiment, and 2) the variables’ 107 

median range in those rules. In this study, we explain in detail the new variable selection 108 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2019. ; https://doi.org/10.1101/531079doi: bioRxiv preprint 

https://doi.org/10.1101/531079
http://creativecommons.org/licenses/by/4.0/


6 

 

procedures and test its performance using simulations and provide a real-world case study for 109 

exploring ecological requirements and predicting the distributions of the Bacillus anthracis in the 110 

continental US using a bioclimatic variable set recently introduced to the modeling community.  111 

2. Materials and Methods  112 

2.1. GARP 113 

GARP is a presence-only iterative modeling algorithm that searches for non-random 114 

relationships between point occurrence data and environmental covariates. For this study, we use 115 

DesktopGARP (DG) version 1.1.3 to perform GARP experiments. The procedure for running a 116 

GARP experiment is demonstrated in Fig. 1. Initially, we split the occurrence data into external 117 

training and testing sets. The external training set is inputted in DG for model building, while the 118 

testing set is withheld for external model accuracy tests to evaluate the performance of GARP 119 

experiment. Each properly executed GARP experiment will include multiple models and each 120 

will have a ruleset with 50 rules predicting presence or absence (note: there are GARP 121 

implementations in openModeller allowing the user to control the number of rules). There are 122 

four types of rules (range, negated range, atomic, or logit) described as the if/then logic 123 

statements. Range rules specify the envelope with upper and lower bounds for the presence of 124 

the species (e.g. IF temperature = [10.2 – 13.5°C] AND NDVI = [0.15 – 0.23] THEN species = 125 

PRESENCE). Negated range rules define the conditions outside of variable ranges (e.g. IF NOT 126 

temperature = [10.2 – 13.5°C] AND NDVI = [0.15 – 0.23] THEN species = ABSENCE). Logit 127 

rules employ logistic regression to determine the relationship between the species occurrence and 128 

covariates (e.g. IF temperature*0.0037 + NDVI*0.57 THEN species = PRESENCE). The 129 

presence or absence of the species in the logit rule type is determined based on the probability of 130 

the occurrence of the species predicted by the logistic regression with the threshold of 0.5. 131 
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Atomic rules use specific values of the covariates to determine the presence of the species (e.g. 132 

IF temperature = 12.5°C AND NDVI = 0.19 THEN species = PRESENCE). Those rules are 133 

developed and tested internally using random draws of presence points from the known 134 

occurrences and random draws of the background space representing absences (i.e. pseudo-135 

absences). An internal chi-square test built on the predicted and observed values is used to 136 

evaluate the quality of each rule at predicting presence or absence with the user’s pre-defined 137 

proportion of input data (internal testing set). GARP can accept, modify or delete rules using 138 

deletions, insertions, cross-overs, among other types of mutations to improve predictive accuracy 139 

in a genetic fashion.  140 
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 141 

Fig. 1. Flowchart depicting the procedure to run a GARP experiment and estimate variable 142 

contribution. There are three steps for predicting species distribution and selecting variables 143 

selected via Unimportance Index (UI). First, run a complete GARP experiment with the full 144 

variable set. Second, use the output of the first GARP experiment to rank and select variables 145 

based on UI. Third, input the important variables in GARP to run the second GARP experiment 146 

to predict the species distributions. 147 

 148 
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Once a ruleset is developed, it is projected onto the geography of the study area to 149 

develop a presence/absence map describing the species’ potential geographic distribution, e.g. 150 

Blackburn (2006), Joyner (2010), and Stockwell (1999). Given the iterative nature of GARP, the 151 

model does not arrive at a single solution. DG splits input occurrence data into training and 152 

testing sets inside the software for model evaluation and incorporates a “best subset” procedure, 153 

which would select the best subset of models based on two criteria: omission (false negative) and 154 

commission (false positive; percent of pixels predicted present) rates. Such calculations are 155 

performed on each individual model and the “best subset” procedure selects a user defined 156 

number of models based on specific omission and commission values. Here, experiments were 157 

setup to run up to 200 models, we selected 20 models with no more than 10% “extrinsic” 158 

omission rate, which is calculated from the internal testing set. A median commission percentage 159 

is then calculated for the 20 low-omission models. Investigators can define the percentage 160 

(defaulted to 50%; 10 models) of the low-omission models that have individual commission 161 

closest to the median to be selected as the best subset (McNyset and Blackburn, 2006). Finally, 162 

the best subset with 10 best presence-absence predictions can be summed and mapped on the 163 

landscape with model agreements indicating the likelihood of the species presences. GARP has 164 

been shown to perform well across the spectrum of species’ prevalence on the landscape from 165 

rare to common making it useful for management oriented studies focused on relating 166 

geographic potential to management or conservation needs (Peterson et al., 2007). A more 167 

extensive description of GARP’s modeling framework and test of its performance can be found 168 

elsewhere (Anderson et al., 2003; Martinez-Meyer et al., 2006; Peterson and Cohoon, 1999; 169 

Stockwell, 1999), and in this study, we limit our objectives to describe the variable selection 170 

procedure. 171 
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2.2. Conceptual Framework for variable selection procedures 172 

 We designed a new variable selection methodology to estimate variable contributions to 173 

species distributions in GARP. We used accuracy metrics (omission and commission rates and 174 

area under the curve (AUC)) to select the best subset of models (rulesets) in the GARP 175 

experiment. We measured the variable contributions based on two criteria: 1) the prevalence of 176 

the variable in the dominant presence rules and 2) the scaled median range for those variables 177 

across the rules within the best subset of the GARP experiment.  178 

 The prevalence of a variable in the dominant presence rules of the best subset is defined 179 

as the frequency with which the variable predicts the presence of the species in the dominant 180 

presence rules of the best subset (See Equ. 1). With the best subset process activated, DG selects 181 

a set of best models as described above. The dominant presence rules in the best subset are 182 

defined as a subset of rules that cumulatively predict the over 90% of the species’ presence on 183 

the landscape in the top-selected 10-model subset (Mullins et al., 2011). Those rules represent 184 

the primary suitable environmental conditions that define the core of the ecological niche of the 185 

species (based on the set of variables available) but does not take into account rare situations in 186 

which species are occasionally or temporarily present. Here we only analyzed presence rules, 187 

since absence rules tend to have wide median ranges. We defined prevalence as: 188 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒(𝑏𝑒𝑠𝑡 𝑠𝑢𝑏𝑠𝑒𝑡) =189 

 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠  𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑟𝑢𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑟𝑢𝑙𝑒𝑠
                                     Equ.1 190 

The high prevalence rate of a variable indicates that the variable is frequently used to predict the 191 

presence of the species in the best subset. Thus, a variable with a higher prevalence rate suggests 192 

the variable is relatively more important in the GARP experiment. 193 
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 The median range of a variable is defined as the difference between the median values 194 

from a set of maximum and minimum values of this variable in the dominant presence rules from 195 

the best subset (Joyner, 2010). For different types of rules, the maximum and minimum values 196 

are extracted in different ways. In range and negated range rules, the maximum and minimum 197 

values are extracted directly from the upper and lower boundaries recorded in the rulesets. For 198 

the logit rules, the maximum and minimum values are extracted from the landscape where those 199 

logit rules are used to predict the presence of the species via zonal statistics. For atomic rules, the 200 

specific values of the covariates that predict the presence of the species are directly extracted 201 

from the rules. We then compare the extracted value of the atomic rules with the maximum and 202 

minimum values from other types of rules to evaluate whether it fell inside the coverage. To 203 

quantitatively compare the median ranges of different variables, we scale the median range of 204 

each variable from 0 to 1 (Barro et al., 2016). A variable with a wide median range indicates that 205 

the presence of species is not sensitive to this predictor, while a variable with a narrow median 206 

range suggests that the occurrence of the species is constrained to specific conditions regarding 207 

the covariate (Barro et al., 2016; Mullins et al., 2011). 208 

 We measured the variable contribution to GARP based on an Unimportance Index (UI) to 209 

consider both criteria, the prevalence rate and scaled median range. The UI of each covariate is 210 

calculated as the multiplication of the scaled median range and the probability that the variable is 211 

not used to predict the presence of the species in the dominant presence rules of the best subset 212 

(Equ. 2). This multiplication would help to combine and balance both criteria. Variables with 213 

less contribution to a GARP experiment are defined as the ones with wider median range and 214 

lower prevalence. Therefore, the larger the UI value is, the less contribution the associated 215 
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variable brings to the model. To clearly compare and evaluate variable contribution we finally 216 

rescaled the UI to 0-1 following Equ. 3: 217 

𝑈𝐼 = (1 − 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) ∗ 𝑚𝑒𝑑𝑖𝑎𝑛 𝑟𝑎𝑛𝑔𝑒                                 Equ. 2 218 

 𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑑 𝑈𝐼𝑘 =
𝑈𝐼𝑘−𝑈𝐼𝑚𝑖𝑛 

𝑈𝐼𝑚𝑎𝑥−𝑈𝐼𝑚𝑖𝑛
                                            Equ. 3 219 

where UIk is the unimportance index for covariate k; UImax and UImin are the maximum and 220 

minimum value of the UIs for the covariates in the variable set, respectively. This procedure of 221 

the estimation of variable contributions are shown in Fig. 1 and programmed in “GARPTools” 222 

R-package (available at https://github.com/cghaase/GARPTools). 223 

2.3. Testing the performance of the new variable selection procedure using simulations 224 

2.3.1. Simulating the species and sampling it 225 

 To test the performance of the aforementioned variable selection method we first 226 

generated ten normally distributed environmental covariates with spatial autocorrelation on a 227 

10.5 * 10.5 degree landscape at a 0.01 degree resolution (Fig. A. 1). Five of those covariates 228 

were simulated using an exponential variogram model with a range of 10, sill of 1, and nugget of 229 

0, the others used a spherical variogram model with a range of 6, sill of 1, and nugget of 0. Next, 230 

we simulated 200 species using three variables from the entire set drawn at random without 231 

replacement. The probability of occurrence was computed as: 232 

𝑃(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒) = 𝑒−((𝛽1∗𝑥1+𝛽2∗𝑥2+𝛽3∗𝑥3)2)                       Equ. 4 233 

where β1, β2, and β3 are the coefficient that determines the influence of each covariate on the 234 

species distribution and x1, x2, and x3 are the environmental covariates. The three selected 235 

variables used in species distribution simulation were recorded for further validation of the 236 

performance of the variable selection procedures. Once we obtained the probability surface on 237 

the landscape, we used it as the success probability of a Bernoulli random trial to obtain the true 238 
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distribution (Elith and Leathwick, 2009). The three coefficients for each species were sampled 239 

from a normal distribution under two scenarios. The first represents a scenario in which the 240 

environmental covariates weakly define the species distribution. In this case, we sampled the 241 

coefficients from a normal distribution with mean of one and standard deviation of 0.5. For the 242 

second scenario we assumed that the coefficients had a stronger effect on the distribution of the 243 

species such that the coefficients were normally distributed with mean of five and a standard 244 

deviation of 0.5. We simulated 100 species using the weak effect coefficients and 100 using the 245 

strong effect. Finally, we randomly extracted 50 presence locations from the centroid of the grid 246 

cells of the realized distribution for each species as the presence-only data to input in GARP. 247 

2.3.2. Testing the variable selection performance  248 

To test the performance of the UI, we used the full set of ten environmental variables and 249 

the 50 presence points sampled from the species distribution to generate a GARP experiment for 250 

each species. Here, since the true distributions of the simulated species is known, we can directly 251 

compare the predictions with true distributions without withholding part of data for external 252 

model validation. We set the training/testing data split to 75%/25% inside DG. To maximize 253 

GARP performance, model runs were set to a maximum of 1,000 iterations or until convergence 254 

of 0.01. The best subset procedure selected ten best models under a 10% extrinsic omission 255 

threshold and a 50% commission threshold (Fielding and Bell, 1997). Those 10-model best 256 

subsets were added together using GARPTools R-package. 257 

For each of the 200 species we calculated the UI for all the ten variables used in model 258 

development and recorded the three variables with the lowest UI (i.e. the three variables with 259 

highest contribution to the predicted distributions). We evaluated the performance of the model 260 

and the UI by counting the number of variables r (𝑟 = 0,1,2,3) correctly identified by the model 261 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2019. ; https://doi.org/10.1101/531079doi: bioRxiv preprint 

https://doi.org/10.1101/531079
http://creativecommons.org/licenses/by/4.0/


14 

 

for each of the species. Next we counted the number of species s (s = 0, 1, 2,…, S) with r = 0, 1, 262 

2, and 3. Finally, we compared the distribution of s to the distribution generated by drawing three 263 

variables at random out of the ten used to generate each SDM. The probability of r = 0, 1, 2, 3 is 264 

given by 265 

𝑃(𝑅 = 𝑟) {

0.29
0.53

0.175
0.008

𝑖𝑓 𝑅 = 0
𝑖𝑓 𝑅 = 1
𝑖𝑓 𝑅 = 2
𝑖𝑓 𝑅 = 3

                                             Equ. 5 266 

 We then used a one tailed Pearson’s chi-squared statistic to compare the expected and 267 

observed number of cases with zero, one, two, and three variables being correctly identified for 268 

all the 200 simulated species and for each weak and strong effect scenario separately (see 269 

Appendix B for proof of how probabilities were derived). 270 

2.4. Case study: modeling Bacillus anthracis in the continental US 271 

Applications of SDMs to pathogens or disease systems remain an important tool for 272 

estimating disease distributions or mapping risk areas. Understanding variable contribution can 273 

assist on evaluating biological information within models and how those compare to real-world 274 

knowledge of pathogen or host/vector biology. To explicitly demonstrate the use of the new 275 

variable selection procedure, we provide a real-world case study for exploring the ecological 276 

requirements and distributions of the B. anthracis in the continental US. 277 

Anthrax, a zoonotic disease, primarily affects wildlife and livestock and secondarily 278 

afflicts humans nearly worldwide (Alexander et al.,2012). Bacillus anthracis, the causative agent 279 

of anthrax, is a spore-forming bacterium, which is endemic to specific soil environments and can 280 

persist for extended periods of time (years to decades) (Van Ness, 1971). Several ecological 281 

niche modeling studies have defined the ecological niche as a narrow range of moderate NDVI 282 

(indicative of grasslands) with limited annual precipitation and high soil pH (Barro et al., 2016; 283 
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Blackburn et al., 2007; Joyner, 2010; Mullins et al., 2011). Anthrax is an established disease in 284 

the US (Stein, 1945) and still remains endemic in some parts of the country, such as the recent 285 

outbreaks in Montana in 2008 and 2010 (Blackburn et al., 2014a; Morris et al., 2016) and the 286 

enzootic zone of West Texas (Blackburn et al., 2014b).  287 

2.4.1. Data 288 

We adopted the historical anthrax outbreak data (305 cases) from Blackburn et al. (2007). 289 

The outbreaks in eastern Oklahoma were excluded from this study, since the environmental 290 

conditions in that region are not suitable for the survival of B. anthracis spores, and those 291 

occurrence of the outbreaks and temporary suitable environment were suggested to result from 292 

anthropogenic activities (Blackburn et al., 2007; Van Ness, 1959). We used 26 climatic and 293 

biophysical covariates as the environmental coverages for modelling distribution of B. anthracis. 294 

The details of data and sources are shown in Table 1. All environmental layers were resampled 295 

to 2.5 arcminute resolution. Given the resolution of the environmental layers, the 305 anthrax 296 

outbreak cases represented 175 unique pixel cells which were selected using the spatially unique 297 

routine in GARPTools. 298 

Table 1. Environmental variables used for B. anthracis GARP experiment. 299 

Environmental Layer (unit) Names Resolution Source 

Elevation (meter) Alt 1 km WorldClima 

Bioclimatic data (C or kg of water/ 

kg of air) 

Bio 1-19 2.5 arcminute MERRAclimb 

Mean NDVI (no unit) wd0114a0 1 km TALAc 

NDVI annual amplitude (no unit) wd0114a1 1 km TALA 

Top soil pH (no unit) pH 1 km SoilGridsd 
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Sand fraction in top soil (% weight) sand fraction 1 km SoilGrids 

Calcium Vertisols (% weight) calcium vertisol 1 km SoilGrids 

Top soil organic content (g per kg) organic content 1 km SoilGrids 

Note: a) the WorldClim elevation data were accessed from worldclim.org/ (Hijmans et al., 300 

2005); b) the MERRAclim dataset from the 2000s decade with the mean humidity version was 301 

downloaded from https://datadryad.org/ (Vega et al., 2016; 2017); c) NDVI measurements were 302 

accessed from the Trypanosomiasis and Land Use in Africa (TALA) research group (Oxford, 303 

United Kingdom; Hay et al., 2006); d) Four soil layers were obtained from SoilGrids website 304 

(https://soilgrids.org/). All the data were accessed on Sep 21, 2018. 305 

2.4.2. Variable selection based on UI to predict Bacillus anthracis 306 

To explore the environmental coverages for B. anthracis, we followed a similar 307 

procedure as for the simulated species. We first input all 26 environmental covariates in GARP. 308 

Since the true distribution of the species is unknown, and to validate the predicted distributions 309 

from GARP, we split the 175 spatially unique anthrax occurrence data into external 310 

training/testing set with 75%/25% ratio prior to model construction (Fig. 1). We built the GARP 311 

model following the parameterization in Blackburn et al. (2007). In a first GARP experiment, we 312 

calculated the UI for each of the 26 variables and assumed them to be important if the UI value 313 

was smaller than 0.5. Finally, we re-ran the GARP experiment using only the variables identified 314 

to be important.  315 

Predictive accuracy for the best subsets from the GARP experiment with the UI-based 316 

reduced variable set was evaluated using a combination of AUC, omission, and commission rates 317 

based on the external testing dataset (Lim and Klein, 2006; Peterson et al., 2007). The AUC, 318 

although not an ideal metric for accuracy estimation (Lobo et al., 2008), is useful to identify 319 
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models that perform well (Hanley and McNeil, 1982; Mullins et al., 2013; Sloyer et al., 2018). 320 

The 10-model best subset from the UI-based experiment was summated to map the potential 321 

geographic distribution of B. anthracis for the continental US.  322 

3. Results 323 

3.1. Simulated species and variable selection performance in simulation scenarios 324 

 Examples for the probability maps of species distributions, binary occurrence maps 325 

simulated with weak and strong correlations, and GARP predictions based on those simulated 326 

species are illustrated in Fig. 2. We found that UI and GARP performed well during the 327 

simulations. For the 200 simulated species we found that the observed number of species with r 328 

= 0, 1, 2, 3 does not follow the distribution of random draws (2 = 724.3, n = 200, df = 3, p < 329 

0.0001) and in particular the observed number of species with r =2 and r = 3 is significantly 330 

higher than expected by chance (Table 2). We found a similar result when analyzing separately 331 

the species in which environmental covariates were assumed to have a weak and strong effect on 332 

the geographic distribution (Table 2; weak: 2 = 367.2, n = 100, df = 3, p < 0.0001; strong: 2 = 333 

360.1, n = 100, df = 3, p < 0.0001). Finally, we found no differences in the observed number of 334 

species with r = 0, 1, 2, 3, when comparing the species simulated using strong and weak 335 

coefficients (2 = 2.64, df = 3, p = 0.45).  336 
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 337 

Fig. 2. Simulated species distributions, occurrence (presence-absence) maps, and GARP 338 

prediction map for the best subset under the two scenarios where the correlation between species 339 

occurrence and environment are weak and strong; the black points are the presence locations 340 

extracted from occurrence map for modelling species distributions in GARP. 341 

Table 2. Summary of the observed and expected number of species for which the variable 342 

selection method correctly identified zero, one, two or three out of three variables used to 343 

simulate the species distribution. The counts are tallied for 200 simulated species (All) and 344 

separated by the 100 species for which we selected Weak and Strong influence of the 345 

environmental variables on determining the species distribution. 346 
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Scenarios 

0 1 2 3 

Observed Expected Observed Expected Observed Expected Observed Expected 

Weak  4 29 24 53 57 17 15 1 

Strong  9 29 26 53 49 17 16 1 

All 13 58 50 105 106 35 31 2 

 347 

3.2. Ecological requirements and distributions of B. anthracis 348 

 We selected 12 variables with UI less than 0.5, including the climatic (temperature and 349 

moisture) seasonality, elevation, mean NDVI, seasonality of NDVI, organic contents, calcic 350 

vertisols, pH, and sand fractions (Table 3). AUC value of the GARP experiment with the reduced 351 

variable set was 0.86 (Table 4).  The total and average omission rates of this best subset were 352 

0.02% and 5.11%, respectively, and the total and average commission rates were 21.55% and 353 

10.14%, respectively (Table 4).  354 

Table 3. Estimation of variable contribution for the B. anthracis in GARP experiment. 355 

Names Prevalence Medium Range 

Rescaled 

Unimportance Index 

Organic Contents 0.81 0.24 0 

Bio 2 0.84 0.33 0.02 

Altitude 0.81 0.33 0.05 

Soil pH 0.81 0.34 0.05 

NDVI Annual Amplitude 0.88 0.51 0.05 

Mean NDVI 0.69 0.37 0.19 

Calcic Vertisols 0.56 0.27 0.21 
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Sand Fraction 0.72 0.49 0.26 

Bio 5 0.63 0.47 0.36 

Bio 1 0.69 0.63 0.42 

Bio 8 0.66 0.59 0.44 

Bio 15 0.72 0.75 0.46 

Bio 3 0.66 0.67 0.51 

Bio 7 0.59 0.57 0.51 

Bio 12 0.66 0.71 0.56 

Bio 10 0.56 0.6 0.6 

Bio 19 0.63 0.79 0.7 

Bio 14 0.66 0.87 0.71 

Bio 13 0.59 0.74 0.71 

Bio 6 0.53 0.68 0.75 

Bio 4 0.53 0.68 0.76 

Bio 9 0.59 0.79 0.77 

Bio 11 0.59 0.79 0.77 

Bio 18 0.5 0.7 0.85 

Bio 17 0.56 0.83 0.88 

Bio 16 0.44 0.72 1 

 356 

Table 4. Accuracy metrics for the B. anthracis GARP species distribution model.  357 

Metric Model Specifications 

Num. of points in external training set 132 
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Num. of points in external testing set 43 

Total omission 0.02% 

Average omission 5.11% 

Total commission 21.55% 

Average commission 10.14% 

AUC 0.86 

 358 

The GARP experiment with the reduced variable set predicted presence of B. anthracis 359 

primarily along a north-south corridor starting from the Dakotas, eastern Montana, and western 360 

Minnesota southward through western Wyoming, western Nebraska, eastern Colorado, western 361 

Kansas, eastern Oklahoma, and into the New Mexico and western Texas (Fig. 3). The north-362 

south corridor also expands westward into western Washington and Oregon through southern 363 

Idaho. The distribution was predicted in some patches of Nevada, Utah, Arizona, and 364 

southwestern California. There were also some small areas along the shorelines of the Great 365 

Lakes in eastern Wisconsin, eastern Michigan, and northwestern Ohio and northeastern Indiana. 366 

Fig. 4 illustrates the scaled median ranges and coverages of variables in the dominant presence 367 

rules of the best subset in GARP model with the reduced variable set. The variable with the 368 

narrowest range was organic content, while Bio 15 had the widest range. Calcic vertisols (0 – 369 

7.23%), altitude (134.8 – 1321.95 m), mean NDVI (-0.1 – 0.46) and soil pH (6.52 – 8.19) also 370 

had relatively small median ranges. 371 
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 372 

Fig. 3. Prediction of B. anthracis in the continental US from the best subset in the GARP 373 

experiment using the selected variable set. 374 
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 375 

Fig. 4. Scaled median range of the covariates from the best subset in the GARP experiment using 376 

the selected variable set; The numbers at both sides of the bar represent the real value of the 377 

upper and lower bound of coverage. 378 

4. Discussion 379 

In this study, we present a new variable selection rubric for GARP based on prevalence 380 

rates and median ranges of the variables in the dominant presence rules in best subsets. Overall, 381 

the variable selection methodology performed well by identifying the important ecological 382 
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variables defining the distribution of the simulated species. We found a high probability of 383 

identifying all or most of the variables that are important to the distributions of those species, 384 

irrespective of the relative influence of the variables on determining the distribution. In over 65% 385 

of the cases, our UI correctly identified at least two of the three variables defining the species 386 

environmental envelope. In the real-world case study, we identified that 12 of 26 were of high 387 

importance in determining the distribution of the B. anthracis in the US. The important variables 388 

included temperature and moisture seasonality, some soil conditions, and vegetation index. 389 

Our new methodology for estimating variable contribution in GARP was developed 390 

considering the explanatory power within a modeling experiment measured by the frequencies 391 

the variables are used and the biological information within the experiment using those variables. 392 

The explanatory power of the variables here were first measured by the number of times that the 393 

variables were selected to predict the presence of the species in the best subsets. This idea 394 

follows from the estimation of variable contributions in some machine learning algorithms, such 395 

as Boosted Regression Trees (BRTs) and random forests, which calculate the variable 396 

contributions based on the number of times the variable is used to split the trees (Friedman and 397 

Meulman, 2003). Additionally, the biological information within the GARP experiment was 398 

quantified by the median ranges of the variables. Variables with a narrow range of values that 399 

will predict the presence of the species suggest species distributions are sensitive to those 400 

conditions (Mullins et al., 2011). Those variables might have a higher explanatory power as they 401 

may restrict the species distribution in both ecological and geographical space. If a species has a 402 

wide tolerance to a specific variable, then this variable may necessarily have low explanatory 403 

power at least in the geographic area considered. Variables that are identified with less 404 

contributions to the model could also be important conditions for the species survival but allow a 405 
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species to be widespread or are not the common requirement across the population of 406 

occurrences. UI considering both the frequency the variable used to predict species presence and 407 

biological information would help identify common conditions confining a species’ distribution, 408 

which could be used to infer the underlying biological mechanisms of species survival.   409 

We tested the performance of the proposed variable contribution estimation method in 410 

simulated species with both weak and strong correlations between species occurrence and 411 

environmental covariates and found overall good performance. Our generation of the simulated 412 

species, although is simpler than reality, follows an ecologically realistic scenario in which 413 

species distributions are a function of multiple factors and respond to the environment under a 414 

bell curve determined by these covariates and is not limited to one type of species (Elith and 415 

Leathwick, 2009). The test of the performance of UI in different simulation scenarios evaluates 416 

its general ability of correctly identifying the primary covariates that contribute to species 417 

distributions. We found that majority of the cases in both simulation scenarios selected most (2/3 418 

or all three) variables correctly, which indicates that our variable selection method performs well 419 

regardless of the strength of the environment in determining the species distribution. Overall, the 420 

good performance of UI indicates that this method allows the identification of the environmental 421 

variables that are important in defining a species distribution, and thus can allow us to make 422 

inferences about the physiological tolerances of the species and the dispersal abilities across a 423 

landscape. 424 

The incorporation of the optimal variables in the model is important for making 425 

inferences about the ecology and the mechanisms determining species distributions. Including 426 

the optimal set of variables in the SDMs could increase the model accuracy and provide a better 427 

understanding of the ecological requirements for species survival. Also, filtering the most useful 428 
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variables among a series of candidate variables might help to reduce noise in the predictions. In 429 

the real-world case study, we selected organic contents, calcic vertisols, sand fraction, soil pH, 430 

vegetation trend and amplitude, elevation, and trend and seasonality of temperature and 431 

moisture, to describe the ecological niche of B. anthracis. This selection is in line with the 432 

optimal environmental variables of the survival of B. anthracis, including the trend of climate, 433 

elevation, vegetation indexes, soil moisture, and pH, summarized by Hugh-Jones and Blackburn 434 

(2009). The high AUC (0.86) of GARP outputs for B. anthracis indicated a good performance of 435 

the model with the selected optimal variable set. Additionally, the ecological requirements of B. 436 

anthracis survival identified in this study support the results reported by alternative research 437 

(Blackburn et al., 2007; Hugh-Jones and Blackburn, 2009; Hugh-Jones and De Vos, 2002; Van 438 

Ness, 1971). Anthrax is known as a hot season disease (Blackburn and Goodin, 2013) and our 439 

results suggest that the spores of B. anthracis were found in the places with annual mean 440 

temperature ranging from 7.11 – 23.79 C, mean diurnal ranges varying 20.41 – 28.68 C, and 441 

the maximum temperature in the warmest quarter from 31.83 – 44.25 C. The UI selected all 442 

soils variables and vegetation index and suggested that B. anthracis was predicted to be found in 443 

areas with high soil pH (6.52-8.19), low calcic vertisols (0 – 7.23%), sand fraction of 20.18 – 444 

63.27%, organic contents ranging between 4 – 125 g/kg soil, mean vegetation index from -0.1 – 445 

0.46, vegetation annual amplitude ranging from 0.01 – 0.38. In line with our results, high 446 

concentrations of spores have been found in black steppe soils with alkaline pH (e.g. over 6.0 447 

recorded in Van Ness (1971); 5.5 – 7 in Kracalik et al. (2017) in Ghana), moderate in organic 448 

matter and calcium content (Hugh-Jones and Blackburn, 2009). The optimal vegetation 449 

greenness for anthrax occurrence is suggested as a narrow range of moderate NDVI 450 
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(approximately 0.2 to 0.5; indicative of grasslands), e.g. 0.1 – 0.3 in Kracalik et al. (2017), 0.17 – 451 

0.56 in Blackburn (2006).  452 

The distribution of B. anthracis predicted here with the reduced variable set was similar 462 

to the predictions in Blackburn et al. (2007), except that the southern part of the corridor in this 463 

study was slightly more widespread than the previous results. Also, more areas around the Great 464 

Lakes region were predicted to be highly preferred by B. anthracis in our model. Those 465 

differences in the predictions might result from the different variable set and data sources used in 466 

the SDMs. Blackburn et al. (2007) used annual trend of climatic data (i.e. mean annual 467 

temperature and precipitation from the Bioclim dataset; (Hijmans et al., 2005)), elevation, mean 468 

NDVI, and soil moisture, and pH to develop the model, while this study included the seasonality 469 

in temperature and moisture from MERRAclim dataset (Vega et al., 2017), elevation, mean 470 

NDVI, seasonality of NDVI, organic contents, pH, calcic vertisols, and sand fractions based on 471 

our estimation of variable contributions. Additionally, different spatial scales can also influence 472 

the predictions. Given the modifiable areal unit problem in quantitative ecological studies 473 

(Openshaw and Taylor 1979), the values of pixels could vary with the changes of the pixel sizes. 474 

While Blackburn et al. (2007) predicted the distribution with ~8 * 8 km2 spatial resolution, we 475 

used a ~4.5 * 4.5 km2 pixel size. Despite these differences, the accuracy metrics were high and 476 

the prediction plausible. 477 

5. Conclusions 478 

 The method described herein presents a procedure of evaluating variable contributions 479 

based on median range and the frequency the variable used to predict the presence of the species. 480 

This variable contribution estimation procedure was employed using GARP system, but the idea 481 

of the consideration of both the explanatory power and environmental coverage when selecting 482 
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variable is highlighted and is applicable to other SDMs. The new variable selection method was 483 

tested via simulations which we found to be accurate in the identification of the important 484 

environmental variables in determining the distribution of simulated species. We employed this 485 

method to understand the ecological requirements and geographic distributions of B. anthracis. 486 

The optimal ecological coverages selected by the variable selection method include the 487 

seasonality of temperature and moisture, elevation, mean and seasonality of NDVI, organic 488 

contents, calcic vertisols, pH, and sand fractions. The predicted distributions were primarily 489 

restricted to central and western US. The variable selection idea presented here provides an 490 

objective way to identify the variables that are most important for predicting species distributions 491 

with GARP, which is analogous to the variable selection methods integrated in other SDM 492 

algorithms (e.g. Maxent or BRTs) and fills the gap in the practical application in the estimation 493 

of variable contributions and variable selections in GARP.  494 
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Appendices 617 

Appendix A. Figure for the simulated environmental layers 618 

Fig. A. 1. Simulated environmental layers with an extent of 10.5 * 10.5 degree and 0.01 *0.01  619 

degree resolution; the origins of both x and y coordinates start from 1. 620 
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Appendix B. Derivation of the probabilities r = 0, 1, 2, 3 based on a random draw. 622 

For r = 0, the probability is given by the joint probability of obtaining an incorrect variable in 623 

each of the three draws. In the first draw, there are 7 out of 10 variables that were not used to 624 

generate the species distribution thus, the probability of choosing an incorrect variable in the first 625 

draw is 7/10. Then, in the second draw, there are only 9 variables left to choose from and only 6 626 

of them are incorrect such that the probability of obtaining an incorrect variable in the second 627 

draw is 6/9. Using the same rationale, the probability of choosing an incorrect variable in the 628 

third draw is 5/8. Thus, the probability of picking 3 incorrect variables out of 10 possible ones 629 

without replacement is just the multiplication of 7/10, 6/9 and 5/8. Thus 𝑃(r = 0) = (7/10) ∗630 

(6/9) ∗ (5/8) ≈ 0.3. Now, for r = 3, using the same rationale as for r = 1, for the first draw 631 

there are three correct variables out of ten, in the second draw five that we chose a correct 632 

variable in the first draw there are only two out of nine left and in the third draw, given that we 633 

chose correctly the variables in the first and second draws there is only one correct variable out 634 

of eight to choose from. Thus 𝑃(r = 3) = (3/10) ∗ (2/9) ∗ (1/8) ≈ 0.008. For the cases in r 635 

=1 and r =2 we need to take into account the order in which we can draw one or two correct 636 

variables. For example, for r = 1, we can choose the correct variable in the first, second or third 637 

draw. This means that we have three ways of choosing one variable out of ten. It is, that in the 638 

first draw we choose the correct variable and in the other two are incorrect or that we choose an 639 

incorrect variable in the first draw, the correct one in the second and an incorrect one in the third 640 

again or that we choose two incorrect variables in the first two draws and a correct one in the 641 

third draw. Let C be the draw of a correct variable and I be the draw of an incorrect variable. 642 

Thus, the chances of getting exactly one correct variable out of ten in three draws is represented 643 

by, CII, ICI, IIC. This is, 𝑃(r = 1) = (3/10) ∗ (6/9) ∗ (5/8) + (7/10) ∗ (3/9) ∗ (6/8) +644 
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(7/10) ∗ (6/9) ∗ (3/8) = 0.525. Similarly, for r =2, we have that the ways of picking two 645 

correct variables out of ten are, CCI, CIC, ICC. 𝑃(r = 2) = (3/10) ∗ (2/9) ∗ (7/8) + (3/10) ∗646 

(7/9) ∗ (2/8) + (7/10) ∗ (3/9) ∗ (2/8) = 0.175. Since the random variable R can only take 647 

values of 0, 1, 2, 3, the sum of the probabilities must add up to one. 𝑃(𝑅 = 𝑟) = 𝑃(𝑟 = 0) +648 

𝑃(𝑟 = 1) + 𝑃(𝑟 = 2) + 𝑃(𝑟 = 3) = 0.291 + 0.525 + 0.175 + 0.008 ≈ 1. Because of the 649 

precision with which we are defining the probabilities, the latter does not add up to one but 650 

taking into account all decimal places it does.  651 

 652 
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