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Summary 

Genetic variants that inactivate protein-coding genes are a powerful source of information about 

the phenotypic consequences of gene disruption: genes critical for an organism’s function will 

be depleted for such variants in natural populations, while non-essential genes will tolerate their 

accumulation. However, predicted loss-of-function (pLoF) variants are enriched for annotation 

errors, and tend to be found at extremely low frequencies, so their analysis requires careful 

variant annotation and very large sample sizes1. Here, we describe the aggregation of 125,748 

exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation 

Database (gnomAD). We identify 443,769 high-confidence pLoF variants in this cohort after 

filtering for sequencing and annotation artifacts. Using an improved human mutation rate model, 

we classify human protein-coding genes along a spectrum representing tolerance to 

inactivation, validate this classification using data from model organisms and engineered human 

cells, and show that it can be used to improve gene discovery power for both common and rare 

diseases. 
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The physiological function of most genes in the human genome remains unknown. In 

biology, as in many engineering and scientific fields, breaking the individual components of a 

complex system can provide valuable insight into the structure and behavior of that system. For 

discovery of gene function, a common approach is to introduce disruptive mutations into genes 

and assay their effects on cellular and physiological phenotypes in mutant organisms or cell 

lines2. Such studies have yielded valuable insight into eukaryotic physiology and have guided 

therapeutic design3. However, while model organism and human cell studies have been crucial 

in deciphering the function of many human genes, they remain imperfect proxies for human 

physiology. 

Obvious ethical and technical constraints prevent the large-scale engineering of LoF 

mutations in humans. However, recent exome and genome sequencing projects have revealed 

a surprisingly high burden of natural pLoF variation in the human population, including stop-

gained, essential splice, and frameshift variants1,4, which can serve as natural models for 

human gene inactivation. Such variants have already revealed much about human biology and 

disease mechanisms, through many decades of study of the genetic basis of severe Mendelian 

diseases5, most of which are driven by disruptive variants in either the heterozygous or 

homozygous state. These variants have also proved valuable in identifying potential therapeutic 

targets: confirmed LoF variants in PCSK9 have been causally linked to low LDL cholesterol 

levels6, leading ultimately to the development of multiple PCSK9 inhibitors now in clinical use for 

the reduction of cardiovascular disease risk. A systematic catalog of pLoF variants in humans 

and classification of genes along a spectrum of tolerance to inactivation would provide a 

valuable resource for medical genetics, identifying candidate disease-causing mutations, 

potential therapeutic targets, and windows into the normal function of many currently 

uncharacterized human genes. 

A number of challenges arise when assessing LoF variants at scale. LoF variants are on 

average deleterious, and are thus typically maintained at very low frequencies in the human 
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population. Systematic genome-wide discovery of these variants requires whole exome or 

whole genome sequencing of very large numbers of samples. Additionally, LoF variants are 

enriched for false positives compared to synonymous or other benign variants, including 

mapping, genotyping (including somatic variation), and particularly, annotation errors1, and 

careful filtering is required to remove such artifacts.  

Population surveys of coding variation enable the evaluation of the strength of natural 

selection at a gene or region level. As natural selection purges deleterious variants from human 

populations, methods to detect selection have modelled the reduction in variation (constraint) 7 

or shift in the allele frequency distribution8, compared to an expectation. For analyses of 

selection on coding variation, synonymous variation provides a convenient baseline, controlling 

for other potential population genetic forces that may influence the amount of variation as well 

as technical features of the local sequence. We have previously applied a model of constraint to 

define a set of 3,230 genes with a high probability of intolerance to heterozygous pLoF variation 

(pLI)4 and estimated the selection coefficient for variants these genes9. However, the ability to 

comprehensively characterize the degree of selection against pLoF variants is particularly 

limited, as for small genes, the expected number of mutations is still small, even for samples of 

up to 60,000 individuals4,10. Further, the previous dichotomization of pLI, although convenient for 

characterization of a set of genes, disguises variability in the degree of selective pressure 

against a given class of variation and overlooks more subtle levels of intolerance to pLoF 

variation. With larger sample sizes, a more accurate quantitative measure of selective pressure 

is a possibility. 

Here, we describe the detection of pLoF variants in a cohort of 125,748 individuals with 

whole exome sequence data and 15,708 individuals with whole genome sequence data, as part 

of the Genome Aggregation Database (gnomAD; https://gnomad.broadinstitute.org), the 

successor to the Exome Aggregation Consortium (ExAC). We develop a continuous measure of 

intolerance to pLoF variation, which places each gene on a spectrum of LoF intolerance. We 
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validate this metric by comparing its distribution to several orthogonal indicators of constraint, 

including the incidence of structural variation and the essentiality of genes as measured through 

mouse gene knockout experiments and cellular inactivation assays. Finally, we demonstrate 

that this metric improves interpretation of genetic variants influencing rare disease and provides 

insight into common disease biology. These analyses provide the most comprehensive catalog 

to date of the sensitivity of human genes to disruption. 

In a series of accompanying manuscripts, we also describe other complementary 

analyses of this data set. Using an overlapping set of 14,237 whole genomes, we report the 

discovery and characterization of a wide variety of structural variants (large deletions, 

duplications, insertions, or other rearrangements of DNA)11. We explore the value of pLoF 

variants for the discovery and validation of therapeutic drug targets12, and provide a case study 

of the use of these variants from gnomAD and other large reference data sets to validate the 

safety of inhibition of LRRK2, a candidate therapeutic target for Parkinson’s disease13. By 

combining the gnomAD data set with a large collection of RNA sequencing data from adult 

human tissues14, we demonstrate the value of tissue expression data in the interpretation of 

genetic variation across a range of human diseases15. Finally, we characterize and investigate 

the impact of two understudied classes of human variation: multi-nucleotide variants16 and 

variants creating or disrupting open reading frames in the 5’ untranslated region of human 

genes17. 

 

A high-quality catalogue of variation 

We aggregated whole exome sequencing data from 199,558 individuals and whole 

genome sequencing data from 20,314 individuals. These data were obtained primarily from 

case-control studies of adult-onset common diseases, including cardiovascular disease, type 2 

diabetes, and psychiatric disorders. Each dataset, totaling over 1.3 and 1.6 petabytes of raw 

sequencing data respectively, was uniformly processed, joint variant calling was performed on 
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each dataset using a standardized BWA-Picard-GATK pipeline, and all data processing and 

analysis was performed using Hail18. We performed stringent sample QC (Extended Data Fig. 

1), removing samples with lower sequencing quality by a variety of metrics, second-degree or 

closer related individuals across both data types, samples with inadequate consent for release 

of aggregate data, and individuals known to have a severe childhood onset disease as well as 

their first-degree relatives. The final gnomAD release contains genetic variation from 125,748 

exomes and 15,708 genomes from unique unrelated individuals with high-quality sequence 

data, spanning 6 global and 8 sub-continental ancestries (Fig. 1a,b), which we have made 

publicly available at https://gnomad.broadinstitute.org. We also provide subsets of the gnomAD 

datasets, which exclude individuals who are cases in case-control studies, or who are cases of 

a few particular disease types such as cancer and neurological disorders, or who are also 

aggregated in the Bravo TOPMed variant browser (https://bravo.sph.umich.edu).  

Figure 1 | Aggregation of 141,456 exome and genome sequences. a, Uniform Manifold 
Approximation and Projection (UMAP)19,20 plot depicting the ancestral diversity of all individuals 
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in gnomAD, using 10 principal components. Note that long-range distances in UMAP space are 
not a proxy for genetic distance. b, The number of individuals by population and subpopulation 
in the gnomAD database. Colors representing populations in a & b are consistent. c-d, The 
mutability-adjusted proportion of singletons4 (MAPS) is shown across functional categories for 
SNVs in exomes (c, x-axis shared with e and g) and genomes (d, x-axis shared with f and h). 
Higher values indicate an enrichment of lower frequency variants, suggesting increased 
deleteriousness. e-f, The proportion of possible variants observed for each functional class for 
each mutational type for exomes (e) and genomes (f). CpG transitions are more saturated, 
except where selection (e.g. pLoFs), or hypomethylation (5’UTR) decreases the number of 
observations. g-h, The total number of variants observed in each functional class for exomes 
(g) and genomes (h). Error bars in (c-f) represent 95% confidence intervals (note that in some 
cases these are fully contained within the plotted point). 
 

Among these individuals, we discovered 17.2 million and 261.9 million variants in the 

exome and genome datasets, respectively; these variants were filtered using a custom random 

forest process (Supplementary Information) to 14.9 million and 229.9 million high-quality 

variants. Comparing our variant calls in two samples for which we had independent gold-

standard variant calls, we found that our filtering achieves very high precision (>99% for single 

nucleotide variants (SNVs), >98.5% for indels in both exomes and genomes) and recall (>90% 

for SNVs and >82% for indels for both exomes and genomes) at the single sample level 

(Extended Data Fig. 2). In addition, we leveraged data from 4,568 and 212 trios included in our 

exome and genome callsets, respectively, to assess the quality of our rare variants. We found 

that our model retains over 97.8% of the transmitted singletons (singletons in the unrelated 

individuals that are transmitted to an offspring) on chromosome 20 (which was not used for 

model training) (Extended Data Fig. 3a-d). In addition, the number of putative de novo calls after 

filtering are in line with expectations21 (Extended Data Fig. 3e-h), and our model had a recall of 

97.3% for de novo SNVs and 98% for de novo indels based on 375 independently validated de 

novo variants in our whole-exome trios (295 SNVs and 80 indels, Extended Data Fig. 3i-j). 

Altogether, these results indicate that our filtering strategy produced a callset with high precision 

and recall for both common and rare variants.   

These variants reflect the expected patterns based on mutation and selection: we 

observe 84.9% of all possible consistently methylated CpG to TpG transitions that would create 
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synonymous variants in the human exome (Supplementary Table 14), indicating that at this 

sample size we are beginning to approach mutational saturation of this highly mutable and 

weakly negatively selected variant class. However, we only observe 52% of methylated CpG 

stop-gained variants, illustrating the action of natural selection removing a substantial fraction of 

gene-disrupting variants from the population (Fig. 1c-h). Across all mutational contexts, only 

11.5% and 3.7% of the possible synonymous and stop-gained variants, respectively, are 

observed in the exome dataset, indicating that current sample sizes remain far from capturing 

complete mutational saturation of the human exome (Extended Data Fig. 4). 

 

Identifying loss-of-function variants 

Some LoF variants will result in embryonic lethality in humans in a heterozygous state, 

while others are benign even at homozygosity, with a spectrum of effects in between. 

Throughout this manuscript, we define predicted loss-of-function (pLoF) variants to be those 

which introduce a premature stop (stop-gained), shift reported transcriptional frame (frameshift), 

or alter the two essential splice-site nucleotides immediately to the left and right of each exon 

(splice) found in protein-coding transcripts, and ascertain their presence in the cohort of 125,748 

individuals with exome sequence data. As these variants are enriched for annotation artifacts1, 

we developed the Loss-Of-Function Transcript Effect Estimator (LOFTEE) package, which 

applies stringent filtering criteria from first principles (such as removing terminal truncation 

variants, as well as rescued splice variants, that are predicted to escape nonsense-mediated 

decay) to pLoF variants annotated by the Variant Effect Predictor (Extended Data Fig. 5a). 

Despite not using frequency information, we find that this method disproportionately removes 

pLoF variants that are common in the population, which are known to be enriched for annotation 

errors1, while retaining rare, likely deleterious variation, as well as reported pathogenic variation 

(Fig. 2a). LOFTEE distinguishes high-confidence pLoF variants from annotation artifacts, and 

identifies a set of putative splice variants outside the essential splice site. LOFTEE’s filtering 
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strategy is conservative in the interest of increasing specificity, filtering some potentially 

functional variants that display a frequency spectrum consistent with that of missense variation 

(Fig. 2b). Applying LOFTEE v1.0, we discover 443,769 high-confidence pLoF variants, of which 

413,097 fall on the canonical transcripts of 16,694 genes. The number of pLoF variants per 

individual is consistent with previous reports1, and is highly dependent on the frequency filters 

chosen (Supplementary Table 17). 

Figure 2 | Generating a high-confidence set of predicted loss-of-function (pLoF) variants. 
a, The percent of variants filtered by LOFTEE grouped by ClinVar status and gnomAD 
frequency. Despite not using frequency information, LOFTEE removes a larger proportion of 
common variants, and a very low proportion of reported disease-causing variation. b, MAPS 
(see Fig. 1c-d) is shown by LOFTEE designation and filter. Variants filtered out by LOFTEE 
exhibit frequency spectra similar to those of missense variants, predicted splice variants outside 
the essential splice site are more rare, and high-confidence variants are very likely to be 
singletons. Only SNVs with at least 80% call rate are included here. Error bars represent 95% 
confidence intervals. c, d, The total number of pLoF variants (c), and proportion of genes with 
over 10 pLoF variants (d) observed and expected (in the absence of selection) as a function of 
sample size (downsampled from gnomAD). Selection reduces the number of variants observed, 
and variant discovery approximately follows a square-root relationship with number of samples. 
At current sample sizes, we would expect to identify more than 10 pLoF variants for 72.1% of 
genes in the absence of selection. 
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Aggregating across variants, we created a gene-level pLoF frequency metric to estimate 

the proportion of haplotypes harboring an inactive copy of each gene. We find that 1,555 genes 

have an aggregate pLoF frequency of at least 0.1% across all individuals in the dataset 

(Extended Data Fig. 5c), and 3,270 genes have an aggregate pLoF frequency of at least 0.1% 

in any one population. Further, we characterized the landscape of genic tolerance to 

homozygous inactivation, identifying 4,332 pLoF variants that are homozygous in at least one 

individual. Given the rarity of true homozygous LoF variants, we expected substantial 

enrichment of such variants for sequencing and annotation errors, and we subjected this set to 

additional filtering and deep manual curation before defining a set of 1,815 genes (2,636 high-

confidence variants) that are likely tolerant to biallelic inactivation (Supplementary Dataset 7). 

 

The LoF intolerance of human genes 

Just as a preponderance of pLoF variants is useful for identifying LoF-tolerant genes, we 

can conversely characterize a gene’s intolerance to inactivation by identifying significant 

depletions of predicted LoF variation4,7. Here, we present a refined mutational model, which 

incorporates methylation, base-level coverage correction, and LOFTEE (Supplementary 

Information, Extended Data Fig. 6), in order to predict expected levels of variation under 

neutrality. Under this updated model, the variation in the number of synonymous variants 

observed is accurately captured (r = 0.979). We then applied this method to detect depletion of 

pLoF variation by comparing the number of observed pLoF variants against our expectation in 

the gnomAD exome data from 125,748 individuals, more than doubling the sample size of 

ExAC, the previously largest exome collection4. For this dataset, we computed a median of 17.9 

expected pLoF variants per gene (Fig. 2c) and found that 72.1% of genes have over 10 pLoF 

variants (powered to be classified into the most constrained genes; see Supplementary 

Information) expected on the canonical transcript (Fig. 2d), an increase from 13.2 and 62.8%, 
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respectively, in ExAC.  

In ExAC, the smaller sample size required a transformation of the observed and 

expected values for the number of pLoF variants in each gene into the probability of loss-of-

function intolerance (pLI): this metric estimates the probability that a gene falls into the class of 

LoF-haploinsufficient genes (approximately ~10% observed/expected variation) and is ideally 

used as a dichotomous metric (producing 3,230 genes with pLI > 0.9). Here, our refined model 

and substantially increased sample size enabled us to directly assess the degree of intolerance 

to pLoF variation in each gene using the continuous metric of the observed/expected (o/e) ratio 

and to estimate a confidence interval around the ratio. We find that the median o/e is 48%, 

indicating that, as noted previously, most genes exhibit at least moderate selection against pLoF 

variation, and that the distribution of o/e is not dichotomous, but continuous (Extended Data Fig. 

7a). For downstream analyses, unless otherwise specified, we use the 90% upper bound of this 

confidence interval, which we term the loss-of-function observed/expected upper bound fraction 

(LOEUF; Extended Data Fig. 7b-c), and bin 19,197 genes into deciles of ~1,920 genes each. At 

current sample sizes, this metric enables the quantitative assessment of constraint with a built-

in confidence value, distinguishing small genes (e.g. those with observed = 0, expected = 2; 

LOEUF = 1.34) from large genes (e.g. observed = 0, expected = 100; LOEUF = 0.03), while 

retaining the continuous properties of the direct estimate of the ratio (see Supplementary 

Information). At one extreme of the distribution, we observe genes with a very strong depletion 

of pLoF variation (first LOEUF decile aggregate o/e = ~6%, Extended Data Fig. 7d) including 

genes previously characterized as high pLI (Extended Data Fig. 7e). On the other, we find 

unconstrained genes that are relatively tolerant of inactivation, including many that harbor 

homozygous pLoF variants (Extended Data Fig. 7f). 

We note that the use of the upper bound means that LOEUF is a conservative metric in 

one direction: genes with low LOEUF scores are confidently depleted for pLoF variation, 

whereas genes with high LOEUF scores are a mixture of genes without depletion, and genes 
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that are too small to obtain a precise estimate of the o/e ratio. In general, however, the scale of 

gnomAD means that gene length is rarely a substantive confounder for the analyses described 

here, and all downstream analyses are adjusted for coding sequence length or filtered to genes 

with at least 10 expected pLoFs (see Supplementary Information). 

 

Validation of LoF intolerance score 

The LOEUF metric allows us to place each gene along a continuous spectrum of 

tolerance to inactivation. We examined the correlation of this metric with a number of 

independent measures of genic sensitivity to disruption. First, we found that LOEUF is 

consistent with the expected behavior of well-established gene sets: known haploinsufficient 

genes are strongly depleted of pLoF variation, while olfactory receptors are relatively 

unconstrained, and genes with a known autosomal recessive mechanism, for which selection 

against heterozygous disruptive variants tends to be present but weak9, fall in the middle of the 

distribution (Fig. 3a). Additionally, LOEUF is positively correlated with the occurrence of 6,735 

rare autosomal deletion structural variants overlapping protein-coding exons identified in a 

subset of 6,749 individuals with whole genome sequencing data in this manuscript11 (Fig. 3b; r = 

0.13; p = 9.8 x 10-68). 
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Figure 3 | The functional spectrum of pLoF impact. a, The percentage of genes in a set of 
curated gene lists represented in each LOEUF decile. Haploinsufficient genes are enriched 
among the most constrained genes, while recessive genes are spread in the middle of the 
distribution, and olfactory receptors are largely unconstrained. b, The occurrence of 6,735 rare 
LoF deletion structural variants (SVs) is correlated with LOEUF (computed from SNVs; linear 
regression r = 0.13; p = 9.8 x 10-68). Error bars represent 95% confidence intervals from 
bootstrapping. c, d, Constrained genes are more likely to be lethal when heterozygously 
inactivated in mouse (c) and cause cellular lethality when disrupted in human cells, while 
unconstrained genes are more likely to be tolerant of disruption in cellular models (d). For all 
panels, more constrained genes are shown on the left. 
 

This constraint metric also correlates with results in model systems: in 389 genes with 

orthologs that are embryonically lethal upon heterozygous deletion in mouse22,23, we find a 

lower LOEUF score (mean = 0.488), compared to the remaining 18,808 genes (mean = 0.962; t-

test p = 10-78; Fig. 3c). Similarly, the 678 genes that are essential for human cell viability as 

characterized by CRISPR screens24 are also depleted for pLoF variation (mean LOEUF = 0.63) 

in the general population compared to background (18,519 genes with mean LOEUF = 0.964; t-

test p = 9 x 10-71), while the 777 non-essential genes are more likely to be unconstrained (mean 

LOEUF = 1.34, compared to remaining 18,420 genes with mean LOEUF = 0.936; t-test p = 3 x 
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10-92; Fig. 3d). 

 

Biological properties of constraint 

We investigated the properties of genes and transcripts as a function of their tolerance to 

pLoF variation (LOEUF). First, we found that LOEUF correlates with a gene’s degree of 

connection in protein interaction networks (r = -0.14; p = 1.7 x 10-51 after adjusting for gene 

length, Fig. 4a) and functional characterization (Extended Data Fig. 8a). Additionally, 

constrained genes are more likely to be ubiquitously expressed across 38 tissues in GTEx (Fig. 

4b; LOEUF r = -0.31; p < 1 x 10-100) and have higher expression on average (LOEUF ρ = -0.28; 

p < 1 x 10-100), consistent with previous results4. While most results in this study are reported at 

the gene level, we have also extended our framework to compute LOEUF for all protein-coding 

transcripts, allowing us to explore the extent of differential constraint of transcripts within a given 

gene. In cases where a gene contained transcripts with varying levels of constraint, we found 

that transcripts in the first LOEUF decile were more likely to be expressed across tissues than 

others in the same gene (n = 1,740 genes), even when adjusted for transcript length (Fig. 4c; 

constrained transcripts are on average 6.34 TPM higher; p = 2.2 x 10-14).  Additionally, we found 

that the most constrained transcript for each gene was typically the most highly expressed 

transcript in tissues with disease relevance25 (Extended Data Fig. 8c), supporting the need for 

transcript-based variant interpretation, as explored in more depth in an accompanying 

manuscript15. 
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Figure 4 | Biological properties of constrained genes and transcripts. a, The mean number 
of protein-protein interactions is plotted as a function of LOEUF decile: more constrained genes 
have more interaction partners (LOEUF linear regression r = -0.14; p = 1.7 x 10-51). Error bars 
correspond to 95% confidence intervals. b, The number of tissues where a gene is expressed 
(TPM > 0.3), binned by LOEUF decile, is shown as a violin plot with the mean number overlaid 
as points: more constrained genes are more likely to be expressed in multiple tissues (LOEUF 
linear regression r = -0.31; p < 1 x 10-100). c, For 1,740 genes where there exists at least one 
constrained and one unconstrained transcript, the proportion of expression derived from the 
constrained transcript is plotted as a histogram. 
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Finally, we investigated potential differences in LOEUF across human populations, 

restricting to the same sample size across all populations in order to remove bias due to 

differential power for variant discovery. As the smallest population in our exome dataset 

(African/African-American) has only 8,128 individuals, our ability to detect constraint against 

pLoF variants for individual genes is limited. However, for well-powered genes (expected pLoF 

>= 10, see Supplementary Information), we observed a lower mean o/e ratio and LOEUF across 

genes among African/African-American individuals, a population with a larger effective 

population size, compared to other populations (Extended Data Fig. 8d,e), consistent with the 

increased efficiency of selection in populations with larger effective population sizes26,27. 

 

Constraint informs disease etiologies 

 The LOEUF metric can be applied to improve molecular diagnosis and advance our 

understanding of disease mechanisms. Disease-associated genes, discovered by different 

technologies over the course of many years across all categories of inheritance and effects, 

span the entire spectrum of LoF tolerance (Extended Data Fig. 9a). However, in recent years, 

high-throughput sequencing technologies have enabled identification of highly deleterious 

variants that are de novo or only inherited in small families/trios, leading to the discovery of 

novel disease genes under extreme constraint against pLoF variation that could not have been 

identified by linkage approaches that rely on broadly inherited variation (Extended Data Fig. 9b). 

This result is consistent with a recent analysis which shows a post-WES/WGS era enrichment 

for gene-disease relationships attributable to de novo variants28. 

Rare variants, which are more likely to be deleterious, are expected to exhibit stronger 

effects on average in constrained genes (previously shown using pLI from ExAC29), with an 

effect size related to the severity and reproductive fitness of the phenotype. In an independent 

cohort of 5,305 patients with intellectual disability / developmental disorders and 2,179 controls, 

the rate of pLoF de novo variation in cases is 15-fold higher in genes belonging to the most 
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constrained LOEUF decile, compared to controls (Fig. 5a) with a slightly increased rate (2.9-

fold) in the second highest decile but not in others. A similar, but attenuated enrichment (4.4-fold

in the most constrained decile) is seen for de novo variants in 6,430 patients with autism 

spectrum disorder (Extended Data Fig. 9c). Further, in burden tests of rare variants (allele count 

across both cases and controls = 1) of patients with schizophrenia29, we find a significantly 

higher odds ratio in constrained genes (Extended Data Fig. 9d). 

 
Figure 5 | Disease applications of constraint. a, The rate ratio is defined by the rate of de 
novo variants (number per patient) in 5,305 intellectual disability / developmental delay (ID/DD) 
cases divided by the rate in 2,179 controls. pLoF variants in the most constrained decile of the 
genome are approximately 11-fold more likely to be found in cases compared to controls. Error 
bars represent 95% confidence intervals. b, Marginal enrichment in per-SNV heritability 
explained by common (MAF > 5%) variants within 100 kb of genes in each LOEUF decile, 
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estimated by LD Score regression. Enrichment is compared to the average SNV genome-wide. 
The results reported here are from random effects meta-analysis of 276 independent traits 
(subsetted from the 658 traits with UK Biobank or large-scale consortium GWAS results). Error 
bars represent 95% confidence intervals. c, Conditional enrichment in per-SNV common variant 
heritability tested using LD score regression in each of 658 common disease and trait GWAS 
results. P-values evaluate whether per-SNV heritability scales proportional to the LOEUF of the 
nearest gene, conditional on 75 existing functional, linkage disequilibrium, and MAF-related 
genomic annotations. Colors alternate by broad phenotype category. 
 

Finally, although pLoF variants are predominantly rare, other more common variation in 

constrained genes may also be deleterious, including the effects of other coding or regulatory 

variants. In a heritability partitioning analysis of association results for 658 traits in the UK 

Biobank and other large-scale GWAS efforts, we find an enrichment of common variant 

associations near genes that is linearly related to LOEUF decile across numerous traits (Fig. 

5b). Schizophrenia and educational attainment are the most enriched traits (Fig. 5c), consistent 

with previous observations in associations between rare pLoF variants and these phenotypes30-

32. This enrichment persists even when accounting for gene size, expression in GTEx brain 

samples, and previously tested annotations of functional regions and evolutionary conservation, 

and suggests that some heritable polygenic diseases and traits, particularly cognitive/psychiatric 

ones, have an underlying genetic architecture driven substantially by constrained genes 

(Extended Data Fig. 10). 

 

Discussion 

In this paper and accompanying publications, we present the largest catalogue of 

harmonized variant data from any species to date, incorporating exome or genome sequence 

data from over 140,000 humans. The gnomAD dataset of over 270 million variants is publicly 

available (https://gnomad.broadinstitute.org), and has already been widely used as a resource 

for allele frequency estimates in the context of rare disease diagnosis (for a recent review, see 

Eilbeck et al. 33), improving power for disease gene discovery 34-36, estimating genetic disease 

frequencies37,38, and exploring the biological impact of genetic variation39,40. In this manuscript, 
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we describe the application of this dataset to calculate a continuous metric describing a 

spectrum of tolerance to pLoF variation for each protein-coding gene in the human genome. We 

validate this method using known gene sets and model organism data, and explore the value of 

this metric for investigating human gene function and disease gene discovery. 

We have focused on high-confidence, high-impact pLoF variants, calibrating our analysis 

to be highly specific to compensate for the increased false-positive rate among deleterious 

variants. However, some additional error modes may still exist, and indeed, several recent 

experiments have proposed uncharacterized NMD-escape mechanisms41,42. Further, such a 

stringent approach will remove some true positives. For example, terminal truncations that are 

removed by LOFTEE may still exert a LoF mechanism through the removal of critical C-terminal 

domains, despite the gene’s escape from nonsense mediated decay. Additionally, current 

annotation tools are incapable of detecting all classes of LoF variation and typically miss, for 

instance, missense variants that inactivate specific gene functions, as well as high-impact 

variants regulatory regions. Future work will benefit from the increasing availability of high-

throughput experimental assays that can assess the functional impact of all possible coding 

variants in a target gene43, although scaling these experimental assays to all protein-coding 

genes represents an enormous challenge. Identifying constraint in individual regulatory 

elements outside coding regions will be even more challenging, and require much larger sample 

sizes of whole genomes as well as improved functional annotation44. We discuss one class of 

high-impact regulatory variants in a companion manuscript17, but many remain to be fully 

characterized. 

While the gnomAD dataset is of unprecedented scale, it has important limitations. At this 

sample size, we remain far from saturating all possible pLoF variants in the human exome; even 

at the most mutable sites in the genome (methylated CpG dinucleotides) we observe only half of 

all possible stop-gained variants. A substantial fraction of the remaining variants are likely to be 

heterozygous lethal, while others will exhibit an intermediate selection coefficient; much larger 
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sample sizes (in the millions to hundreds of millions of individuals) will be required for 

comprehensive characterization of selection against all individual LoF variants in the human 

genome. Such future studies would also benefit substantially from increased ancestral diversity 

beyond the European-centric sampling of many current studies, which would provide 

opportunities to observe very rare and population-specific variation, as well as increase power 

to explore population differences in gene constraint. In particular, current reference databases 

including gnomAD have a near-complete absence of representation from the Middle East, 

central and southeast Asia, Oceania, and the vast majority of the African continent45, that must 

be addressed if we are to fully understand the distribution and impact of human genetic 

variation. 

It is also important to understand the practical and evolutionary interpretation of pLoF 

constraint. In particular, it should be noted that these metrics primarily identify genes undergoing 

selection against heterozygous variation, rather than strong constraint against homozygous 

variation46. In addition, the power of the LOEUF metric is affected by gene length, with ~30% of 

the coding genes in the genome still insufficiently powered for detection of constraint even at the 

scale of gnomAD (Fig. 2d). Substantially larger sample sizes and careful analysis of individuals 

enriched for homozygous pLoFs (see below) will be useful for distinguishing these possibilities. 

Further, selection is largely blind to phenotypes emerging after reproductive age, and thus 

genes with phenotypes that manifest later in life, even if severe or fatal, may exhibit much 

weaker intolerance to inactivation. Despite these caveats, our results demonstrate that pLoF 

constraint segments protein-coding genes in a way that correlates usefully with their probability 

of disease impact and other biological properties, confirming the value of constraint in 

prioritizing candidate genes in studies of both rare and common disease. 

Examples such as PCSK9 demonstrate the value of human pLoF variants for identifying 

and validating targets for therapeutic intervention across a wide range of human diseases. As 

we discuss in more detail in an accompanying manuscript12, careful attention must be paid to a 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 8, 2020. ; https://doi.org/10.1101/531210doi: bioRxiv preprint 

https://doi.org/10.1101/531210
http://creativecommons.org/licenses/by/4.0/


variety of complicating factors when using pLoF constraint to assess candidates. More valuable 

information comes from directly exploring the phenotypic impact of LoF variants on carrier 

humans, both through “forward genetics” approaches such as Mendelian disease gene 

mapping, as well as “reverse genetics” approaches leveraging large collections of sequenced 

humans to find and clinically characterize individuals with disruptive mutations in specific genes. 

While clinical data are currently available for only a small subset of gnomAD individuals, future 

efforts integrating sequencing and deep phenotyping of large biobanks will provide valuable 

insight into the biological implications of partial disruption of specific genes. This is illustrated in 

a companion manuscript exploring the clinical correlates of heterozygous pLoF variants in the 

LRRK2 gene, demonstrating that life-long partial inactivation of this gene is likely to be safe in 

humans13. 

Such examples, and the sheer scale of pLoF discovery in this dataset, suggest the near-

future feasibility and considerable value of a “human knockout project” - a systematic attempt to 

discover the phenotypic consequences of functionally disruptive mutations, in either the 

heterozygous or homozygous state, for all human protein-coding genes. Such an approach will 

require cohorts of millions of sequenced and deeply, consistently phenotyped individuals and, 

for the discovery of “complete knockouts”, would benefit substantially from the targeted inclusion 

of large numbers of samples from populations that have either experienced strong demographic 

bottlenecks, or high levels of recent parental relatedness (consanguinity)12. Such a resource 

would allow the construction of a comprehensive map directly linking gene-disrupting variation 

to human biology. 
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Extended Data Figures 

Extended Data Figure 1 | Overview of the sample QC workflow. a, Exome (square) and 
genome (circle) samples underwent quality control as described in detail in the Supplementary 
Information in the following stages: hard filtering (step 1), relatedness inference (step 2), 
ancestry inference (step 3), platform inference (step 4, for exomes only), and population- and 
platform-specific outlier filtering (step 5). Except for samples failing hard filters (dotted outline), 
all quality control analyses were applied to all samples, regardless of the presence/absence of 
other QC flags (e.g., relatedness, lack of release permissions, or outlier status; red diagonal 
bar). Assignment of ancestry labels is represented by fill color and accompanying three-letter 
ancestry group abbreviation. Assignment of platform labels is represented by outline color and a 
numbered label for exomes (corresponding to imputed platforms) and a PCR +/- label for 
genomes. The final set of samples included in the gnomAD release (125,748 exomes and 
15,708 genomes) was defined to be the set of unrelated samples with release permissions, no 
hard filter flags, and no population- and platform-specific outlier metrics (step 6). b, In exomes, 
the chromosomal sex of samples was inferred based on the inbreeding coefficient on 
chromosome X and the coverage of chromosome Y into male (green), female (amber), 
ambiguous sex (pink), and sex chromosome aneuploid (blue). c, The top two principal 
components from PCA-HDBSCAN analysis of exome capture regions. Sequencing platforms 
were inferred for exome samples based on PCA analysis of biallelic variant call rates over all 
known exome capture regions, and samples were assigned a cluster label (0-15, or unknown) 
using HDBSCAN. d, We performed platform- and population-specific outlier filtering for a 
number of quality control metrics: here, we show the distribution of the number of deletions in 
South Asians across platforms. Distributions (and accordingly, median and median absolute 
deviations, MAD) for these metrics varied widely both by population and sequencing platform 
(numbered on y-axis). Outliers (black dots) were defined as samples with values outside four 
MAD (shown by dotted vertical lines) from the median of a given metric. 
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Extended Data Figure 2 | Variant calling performance for common variants. Precision-
recall curves are shown for variant calls in two samples with independent gold-standard data, 
NA1287847 (a-d) and a synthetic diploid mixture48 (e-h). The random forest (RF, blue) approach 
described here is compared to the current state-of-the-art GATK Variant Quality Score 
Recalibration (VQSR, orange) for exome SNVs (a, e) and indels (b, f), and genome SNVs (c, g) 
and indels (d, h). Note that the indels presented in (f) and (h) exclude 1bp indels as they aren’t 
well characterized in the synthetic diploid mixture gold standard sample. In all cases, at the 
thresholds chosen (dashed lines representing 10% and 20% of SNVs and indels filtered, 
respectively), RF outperforms or is similar to VQSR. 
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Extended Data Figure 3 | Variant calling performance for rare variants. For each of the 
curves in this figure, the x-axis shows the cumulative ranked percentile for our random forest 
(RF, blue) model and, as a comparison, for the current state-of-the-art GATK Variant Quality 
Score Recalibration (VQSR, orange). That is, the point at 10 shows the performance of the 10% 
best scored data, the point at 50, shows the performance 50% best-scored data, etc. a-d, The 
number of transmitted singletons (singletons in the unrelated individuals that are transmitted to 
an offspring) on chromosome 20 for exome SNVs (a) and indels (b), and genome SNVs (c) and 
indels (d). Chromosome 20 was not used for training our random forest model. We expect most 
of these to be real variants since we observe Mendelian transmission of an allele that was 
sequenced independently in a parent and child. e-h, The number of bi-allelic de novo calls per 
child (4,568 exomes, 212 genomes) outside of low-complexity regions. The expectation is that 
there is ~1.6 de novo SNV (e) and ~0.1 de novo indels per exome (f), and ~65 de novo SNVs 
(g) and ~5 de novo indels (h) per genome21. i-j, The number of independently validated de novo
mutations, available for a subset of 331 exome samples for which de novo mutations were 
validated as part of other studies49. In all cases, at the thresholds chosen (dashed lines 
representing 10% and 20% of SNVs and indels filtered, respectively), RF outperforms or is 
similar to VQSR.  
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Extended Data Figure 4 | Variant discovery at large sample sizes. a-b, The total number of 
variants observed (a) and the proportion of possible variants observed (b) as a function of 
sample size, broken down by variant class. At large sample sizes, CpG transitions become 
saturated, as previously described4. Colours are consistent in a-b. c, This results in a decrease 
of the transition:transversion (Ti/Tv) ratio. d, When broken down by functional class, we observe 
the effects of selection, where synonymous variants have the highest proportion observed, 
followed by missense and pLoF variants. e-f, The number of additional pLoF variants introduced 
into the cohort as a function of sample size on a log (e) and linear (f) scale. Here, gnomAD 
(black) refers to a uniform sampling from the population distribution of the full cohort of exome 
equenced individuals. 
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Extended Data Figure 5 | Using LOFTEE to create a high confidence set of pLoF 
variation. a, Schematic of LOFTEE filters. LOFTEE filters out putative stop-gained, essential 
splice, and frameshift variants based on sequence and transcript context, as well as flagging 
exonic features such as conservation (not shown). For instance, variants that are not predicted 
to disrupt splicing based on retention of a strong splice site, or rescue of a nearby splice site. 
Additional filters not shown include: ANC_ALLELE (the alternate allele is the ancestral allele), 
NON_ACCEPTOR_DISRUPTING and DONOR_RESCUE (opposite to those already shown). b,
In order to tune the END_TRUNC filter, we retained variants that pass the 50 base pair rule (are 
more than 50 bp before the 3’-most splice site). The overall MAPS score for variants that fail this
rule is shown in gray. For the remaining 39,072 variants, we computed the sum of the GERP 
score of bases deleted by the variant. At 40 bins of this score, we compute the MAPS score for 
those variants retained at this threshold (red) compared to variants removed at this threshold 
(blue), and plot this as a function of the proportion of variants filtered at this threshold. We chose
the 50% point as it retains variants with a MAPS score of 0.14, while removing variants with a 
MAPS score of 0.06. Error bars represent 95% confidence intervals. c, Density plot of 
aggregate pLoF frequency computed from high-confidence pLoF variants discovered using 
LOFTEE. 
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Extended Data Figure 6 | Computing the depletion of variation of functional categories. a, 
The distribution of mean methylation values across 37 tissues and across every CpG 
dinucleotide in the genome. We divided the genome into 3 levels (low methylation, missing or < 
0.2; medium, 0.2-0.6; and high, > 0.6) and computed all ensuing metrics based on these 
categories. b, Comparison of estimates of the mutation rate with previous estimates50. For 
transversions and non-CpG transitions, we observe a strong correlation (linear regression r = 
0.98; p = 2.6 x 10-65). For CpG transitions, the new estimates are calculated separately for the 3 
levels of methylation and track with these levels. Colors and shapes are consistent in b-d. c, For 
panels (c-e), only synonymous variants are considered. The proportion of possible variants 
observed for each context is correlated with the mutation rate. We compute two fit lines, one for 
CpG transitions, and one for other contexts to calibrate our estimates. d, Calibration of each 
context to compute a predicted proportion observed after fitting the two models in (c), which is 
used to calculate an expected number of variants at high coverage. e, With an expectation 
computed from high coverage regions, the observed/expected ratio follows a logarithmic trend 
with the median coverage below 40X, which is used to correct low coverage bases in the final 
expectation model. f-h, For each transcript, the observed number of variants is plotted against 
the expected number from the model described above, for synonymous (f), missense (g), and 
pLoF (h) variants, and the linear regression coefficient is shown. Note that the expectation does 
not include selection, and so, pLoF and, to a lesser extent, missense variants exhibit lower 
observed values than expected. 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 8, 2020. ; https://doi.org/10.1101/531210doi: bioRxiv preprint 

https://doi.org/10.1101/531210
http://creativecommons.org/licenses/by/4.0/


Extended Data Figure 7 | Genomic properties of constrained genes. a-b, Histogram of 
observed/expected ratio of pLoF variation (a) and LOEUF (b). Most genes have fewer observed 
variants than expected (median o/e = 0.48), and the genes with no observed pLoFs are 
distinguished between confidently constrained genes and noise by LOEUF. c, A 2-d density plot 
of the number of observed vs expected pLoF variants. The boundaries of each decile are 
plotted as gradients (the most constrained decile is below the lowest red line, etc.). d, 
Observed/expected ratios of various functional classes across genes within each LOEUF decile. 
The most constrained decile has approximately 6% of the expected pLoFs, while synonymous 
variants are not depleted and missense variants exhibit modest depletion. e, The percentage of 
each LOEUF decile that was described in ExAC as constrained, or pLI > 0.94. f, The percentage 
of each LOEUF decile that have at least one homozygous pLoF variant. g, Boxplots of the 
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aggregate pLoF frequency for each LOEUF decile (center line, median; box limits, upper and 
lower quartiles; whiskers, 1.5x interquartile range; points, outliers). In d-f, error bars represent 
95% confidence intervals (note that in some cases these are fully contained within the plotted 
point). 
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Extended Data Figure 8 | Biological properties of constrained genes. a, The percentage of 
genes in each functional category from Pharos (see Supplementary Information) is broken down 
by LOEUF decile. b, The mean number of tissues where a transcript is expressed, binned by 
transcript-based LOEUF decile, is shown for all transcripts and canonical transcripts. c, The 
percent of genes where the most expressed transcript is also the most constrained is plotted in 
red, which is enriched compared to a permuted set (blue). d, For 927 genes with expected pLoF 
>= 10 in both the African/African-American and European population subsets (n = 8,128), the 
LOEUF scores are highly correlated (linear regression r = 0.78, p < 10-100), with a lower mean 
score observed in the African/African-American population (0.49 vs 0.62; two-sided t-test p = 
4.1 x 10-14), which has a higher effective population size. e, The mean LOEUF score for 865 
genes with expected pLoF >= 10 in all populations (n = 8,128). Error bars represent 95% 
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confidence intervals. 
 

Extended Data Figure 9 | Applications of constraint metrics to rare variant analysis of 
disease. a, Proportion of each LOEUF decile found in OMIM. b, Proportion of disease-
associated genes discovered by whole exome/genome sequencing (WES/WGS) compared to 
conventional (typically linkage), plotted by LOEUF decile. The latter are more constrained 
(LOEUF 0.674 vs 0.806, two-sided t-test p = 1.2 x 10-16), suggesting the effectiveness of these 
techniques picking up genes with a de novo mechanism of disease, compared to recessive 
genes by linkage methods. c, Similar to Fig. 5a, the rate ratio is defined by the rate of de novo 
variants (number per patient) in autism cases divided by the rate in controls. pLoF variants in 
the most constrained decile of the genome are approximately 4-fold more likely to be found in 
cases compared to controls. d, The mean odds ratio of a logistic regression of schizophrenia29 
is plotted for each LOEUF decile. Error bars in a-d correspond to 95% confidence intervals. 
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Extended Data Figure 10 | Applications of constraint metrics to common variant analysis 
of disease. a,  coefficient for each LOEUF decile across 276 independent traits. , unlike the 
enrichment measure reported in Fig. 5, is adjusted for 74 baseline genomics annotations. 
Positive values of  indicate greater per-SNP heritability than would be expected based on the 
other annotations in the baseline model, while negative values indicate depleted per-SNP 
heritability compared to that baseline expectation. b, Enrichment coefficient for each LOEUF 
decile using different window sizes to define which SNPs to include upstream and downstream 
of each gene. c, Enrichment coefficient for each LOEUF decile across traits after controlling for 
brain expression and gene size. Results are consistent with those shown in Fig. 5 indicating that 
brain gene expression and gene size do not fully explain the enrichment of heritability observed 
in constrained genes. Error bars represent 95% confidence intervals. 
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