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Abstract

Long-range forensic familial searching is a new method in forensic genetics. In long-range search, a
sample of interest is genotyped at single-nucleotide polymorphism (SNP) markers, and the genotype is
compared with a large database in order to find relatives. Here, we perform some simple calculations
that explore the basic phenomena that govern long-range searching. Two opposing phenomena—
one genealogical and one genetic—govern the success of the search in a database of a given size.
As one considers more distant genealogical relationships, any target sample is likely to have more
relatives—on average, one has more second cousins than first cousins, and so on. But more distant
relatives are also harder to detect genetically. Starting with third cousins, there is an appreciable
chance that a given genealogical relationship will not be detectable genetically. Given the balance
of these genealogical and genetic phenomena and the size of databases currently queryable by law
enforcement, it is likely that most people with substantial recent ancestry in the United States are
accessible via long-range search.

Note: This material was originally posted on the Coop lab site on May 7th, 2018, soon after the report-
ing of the arrest of Joseph DeAngelo in the Golden State Killer case, one of the first high-profile uses
of long-range familial search. Subsequently, Erlich et al. (2018) published a detailed analysis in a large
empirical dataset along with a theoretical analysis of a model similar to the one we use here, obtaining
results broadly consistent with the ones presented here. Because Erlich and colleagues kindly cited this
work when describing their model, we thought it would be appropriate to post this material in a venue
where it is more easily cited.

On April 24th, 2018, police arrested Joseph DeAngelo as a suspect in case of the Golden State Killer,
an infamous serial murderer and rapist whose case has been open for over forty years. The arrest is huge
news in and of itself, but for people interested in the social uses of genetic data, the way in which DeAn-
gelo was identified—using genetic genealogy & genetic data from crime-scene samples—was noteworthy.
Here, we discuss some of the genetics and math underlying the way in which he was identified (see also
HENN et al. (2012)). Because there’s been lots of discussion of the ethics of these approaches, we will
not focus on that here; see here for a collection of links & news articles.

The use of genetic data to identify suspects is not new. In the US, law enforcement makes extensive
use of their CODIS (Combined DNA Index System) database—genetic searches against the database
have aided almost 400,000 investigations since the mid-1990s. The CODIS database contains the geno-
types of over 13 million people, most of whom have been convicted of a crime. The genetic information
included about each person in the CODIS database is relatively sparse. Most of the profiles record
genotypes at just 13 sites in the genome (since 2017, 20 sites have been genotyped). Because the CODIS
sites are highly variable microsatellites, CODIS genotypes identify people nearly uniquely—they are
sometimes called DNA fingerprints. (The CODIS markers reveal more than fingerprints do, though—they
can reveal considerable ancestry information (ALGEE-HEWITT et al., 2016) , can reveal close relatives
(ROHLFS et al., 2013), and in some cases, its possible to identify genome-wide genetic profiles that match
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a particular CODIS dataset well (EDGE et al., 2017).)

In a typical case in which law enforcement uses genetic data, the procedure is to genotype a crime-
scene sample at the CODIS loci and look for a full or partial match against the CODIS database. If the
sample came from a person who is in the CODIS database, he or she is likely to be identified. If there
is no match, then the genetic search ends unless other information can be brought to bear.

In the Golden State Killer case, genotyping the samples at the CODIS markers did not reveal a
match—Joseph DeAngelo was apparently not included in the CODIS database. Nonetheless, the genetic
search continued. Investigators apparently genotyped the crime scene sample at a genome-wide set of
SNPs, or single-nucleotide polymorphisms. SNPs are the markers of choice for large consumer genetics
services like Ancestry and 23andMe (as well as for genome-wide association studies, GWAS). The police
cannot access private databases like these—at least not without an extended legal process—but they do
not have to. Many users upload their SNP data to third-party websites to perform advanced analyses or
to search for matches with people tested by different companies.

These SNP databases are growing rapidly. Figure 1 shows the number of users in each of a set of repos-
itories over the last few years (plot from here). The largest databases—AncestryDNA and 23andMe—
are private. But the fourth-largest—GEDmatch, which now has about 950,000 profiles (LUSSIER and
KEINAN, 2018)—is an online service that searches for genetic matches with any user who uploads an
appropriately formatted genotype file. Thats the one that police searched for DeAngelo.
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Figure 1: The numbers of people included in various genetic genealogy databases have grown rapidly in
the past few years. Image courtesy of Leah Larkin.

Investigators searched for the suspects profile by making a personal user account and uploading a
genotype file created from the SNP data obtained from crime-scene samples. To do this, the investigators
must have created a data file mimicking the SNP set and file format provided by some genetic genealogy
company. There was no exact match in the GEDmatch database—indeed, investigators did not expect
that DeAngelo would have uploaded his own data—but the trail was not yet cold. The police could still
run a search scanning the database for relatives of the suspect. If it is possible to identify a close relative,
then the search for the suspect will be narrowed considerably, even if the suspect is not in the database.
This is similar to the familial searching done using the CODIS database, which is legal in some states.
(But it is imperfect, see ROHLFS et al. (2013) and ROHLFS et al. (2012).)

However, in the CODIS database, familial search efficacy is limited to close relatives (usually parents
and siblings, and more tenuously uncles/aunts/nieces/nephews and first cousins). Thirteen microsatellite
markers worth of information is simply not enough to distinguish a distant cousin from an unrelated
person. With the hundreds of thousands of markers on a typical SNP chip, familial searching is much
more powerful—third cousins can be found most of the time, and many (but not all) fourth cousins can
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be found too. A sample set of profile matches from GEDmatch is shown in Figure 2.

Figure 2: An anonymized screenshot of an example set of matches provided by GEDmatch.

Looking at SNP-based relative matches in GEDmatch, police found what they needed in the form of
10 to 20 likely relatives. These likely relatives represented third-to-fourth cousins of DeAngelo, most of
whom he had probably never met. Using this genetic data, in combination with genealogical information
about these relatives, the Golden State Killer investigation narrowed to one extended family, eventually
honing in on DeAngelo himself.
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Figure 3: The probability of a random person having at least one cousin in the database, and the
expected number of cousins in the database, as a function of the degree of cousin, p, and database
size. The calculation on the left is based on the work of SHCHUR and NIELSEN (2018). To make our
calculations, we adopt some simplifying assumptions that are certainly wrongnamely complete inbreeding
avoidance, monogamy with random mating, non-overlapping generations, random participation in the
database, and population sizes similar to US census sizes across the last few generations. However, these
calculations are useful to get a rough sense of the problem. Some details and pointers to other sources are
in the notes below. The primary caveat that our assumptions entail is that our computations apply most
directly to ancestry groups that are well represented in the database. GEDmatch is mostly composed
of profiles from Americans of European ancestry. Recent immigrants to the US and people from non-
European backgrounds are likely to find fewer relatives in GEDmatch than are European-Americans
whose families have been in the US for a few generations.

Geneticists and genetic genealogists have been using these techniques for some time; the GEDmatch
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database exists because genealogists wanted to share genomic resources to help identify relatives, allow-
ing families to be reunited (see here). Widespread reporting of the method used to identify DeAngelo
as the suspected Golden State Killer has inspired a surge of interest in genetic privacy (see ERLICH
and NARAYANAN, 2014, for a general review of topic). Though DeAngelos capture is widely celebrated,
people are also understandably surprised that the decisions of third or fourth cousins can potentially
expose one to surveillance. In this post, we explore some simple models to ask questions about the extent
of surveillance that is possible using the methods employed in the Golden State Killer case.

Two opposed phenomena govern the effectiveness of familial searches on genetic databases, one ge-
nealogical and one genetic. The genealogical phenomenon, which we could call "genealogical blowup,"
is that the number of relatives one has at a specified degree of relatedness increases as the relatedness
becomes more distant. For example, whereas a typical person may have one, two, or three siblings, he
or she will usually have a large number—dozens or even hundreds—of third cousins (or third-degree
cousins). Figure 3 shows the genealogical blowup phenomenon. On the left, we see the probability that a
random person has at least one cousin of degree p in a database (depending on the size of the database),
and on the right, we see the average number of cousins contained in a database. The number of ge-
nealogical cousins one has—where genealogical cousins are cousins in the usual sense, those connected
by genealogy—increases rapidly for more distant relationships.

The opposing genetic phenomenon is the noisiness of genetic inheritance (see DONNELLY, 1983; HUFF
et al., 2011). Whereas the typical person has many distant cousins, the amount of genetic material shared
with each of these distant cousins is small. You are nearly certain to share a lot of your genome with
your first cousin, as you both have inherited a lot of your genomes from your shared grandparents. As
a result, it is easy to identify pairs of first cousins if they are in the database.
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Figure 4: The degree of genetic overlap (identity by descent) for a pair of first cousins in one simulation.
Shared regions from one of two shared grandparents are shown. The left and center panels show each
cousin’s inheritance from the shared grandparent, whereas the right panel shows both, with regions where
both cousins inherited material from the same grandparent—and thus will be identical by descent—
colored in purple.

The genomic material you share with your first cousin is the overlapping fragments of genome that
both of you have inherited from your shared grandparents. In Figure 4 we show a simulation of you
and your first cousins genomic material that you both inherited from your shared grandmother (details
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about how we made these simulations here). In the third panel we show the overlapping genomic regions
in purple. These are regions where you and your cousin will have matching genomic material, due to
having inherited it identical by descent from your shared grandmother. (If you are full first cousins, you
will also have shared genomic regions from your shared grandfather, not shown here.)

Now consider the case of third cousins. You share one of eight sets of great-great grandparents with
each of your (likely many) third cousins. On average, you and your third cousin each inherit one-sixteenth
of your genome from each of those two great-great grandparents. This turns out to imply that on aver-
age, a little less than one percent of your and your third cousins genomes (2 x (1/16)? = 0.78%) will be
identical by virtue of descent from those shared ancestors. If you do share one percent of your genomes,
then your relationship to your cousin will likely be detectable using SNPs—the shared portions will be
concentrated in relatively long stretches of chromosome that are easy to see statistically. But the more
interesting thing is the variation around that average. There is a non-trivial chance (about 2%) that you
will actually share no identical segments of your genome with your third cousin—in that case, we say
you are genealogical cousins but not genetic cousins.

Figure 5 shows an example where third cousins share some blocks of their genome (on chromosome
16 and 2) due to their great, great grandmother. While Figure 6 show an example where the same
individual shares the same great, great grandmother with another 3rd cousin, but has no genetic sharing
due to that connection.
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Figure 5: The degree of genetic overlap (identity by descent) for a pair of third cousins in one simulation.
Shared regions from one of two shared great-great grandparents are shown. The left and center panels
show each cousin’s inheritance from the shared great-great grandparent, whereas the right panel shows
both, with regions where both cousins inherited material from the same ancestor—and thus will be
identical by descent—colored in purple.

As the degree of relatedness decreases—on to fourth cousins, fifth cousins, and so on—an ever-larger
proportion of ones genealogical cousins will not be genetic cousins. Figure 7 shows the proportion of
degree-p cousins with which one expects to share either at least one, two, or three genetic blocks. Sharing
1 block is not very informative (see here). Individuals with whom one shares three or more large genetic
fragments are likely strong leads. (Again, the assumptions used here are explained in the notes below.)

An appreciation of these two phenomena—genealogical blowup and the noisiness of genetic inheritance—
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Figure 6: Another simulation of third cousins—in this simulation, the third cousins share no genetic
material identical by descent by virtue of their shared ancestor.

T T T T
1 2 3 4

o . .
= ._.?. Cousins (w. >0 genomic blocks)
° Cousins (w. >1 genomic blocks)
—— Cousins (w. >2 genomic blocks)
o | °
= o
[0}
el [ ]
8
O
2
[}
> 9o |
-
‘©
3
Q
o
E=
T < )
a .
2 o
= °
ey
©
Qo
o
o o]
e °
[ ]
.\ \
[ ]
e ° ——
p=] [} ° [
T
5

p (degree of cousin)

Figure 7: The probability that a cousin of degree p is detectable genetically as a function of p. Genetic
detection depends on the threshold one sets for declaring a pair of people related (different colored lines).

is crucial for understanding how public SNP databases might be used by law enforcement in the future.
There is a tradeoff. One typically has a large number of genealogical eighth cousins, but only a small
proportion of them will be genetic cousins, and even these are often impossible to identify as such. On
the other hand, it is easy to detect ones first cousins, but because one typically has a small number
of first cousins, the probability that a random person has one in a genetic database is low unless the
database is very large. (Another factor relevant for law enforcement is that closer matches are more
useful; they narrow the pool of possible suspects more.) Figure 8 combines the considerations illustrated
in the previous plots, showing the expected numbers of genetic cousins in the database. The tradeoff
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of genealogical blowup and the noisiness of genetic inheritance is optimized in the third to fifth cousin
range—you have a lot of genealogical cousins at this degree of relatedness, and many of them will be
detectable genetic cousins. Because closer relatives are more useful to law enforcement than more distant
relatives, it’s likely that many of the cases that could be solved by these methods would involve some
mix of 2nd, 3rd, and 4th cousins.
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Figure 8: The expected number of genetically detectable cousins in a database (where a cousin match is
declared if greater than two genetic blocks are identical by descent) as a function of the degree of cousin
(horizontal axis) and database size (different colored lines).

The Golden State Killer results are close to what we expect given the size of the GEDmatch database.
Under the assumptions we make here, its likely that a large percentage of people have at least one high-
confidence genetic cousin in GEDmatch, and the number of 3rd-4th cousins found for DeAngelo—10 to
20—is not too far from the expectations. Its striking that uploading ones information to a matching
database potentially opens up a large number of other people to eventual identification, and that most
of these people are distant enough relatives that one would likely never have met them. To illustrate,
consider that 13 million individuals in CODIS likely wouldnt reveal a familial match because only very
close relatives are detectable in CODIS. But using the far smaller GEDmatch database (approximately 1
million people), investigators tracked DeAngelo down. As Yaniv Erlich put it recently, You are a beacon
who illuminates 300 people around you. Its also striking that were already in an era in which familial
searches against publicly accessible SNP databases are feasible for a lot of cases, probably the majority
of cases where the suspect has substantial recent ancestry in the US—the public datasets are big enough
(or will be soon). The limiting factor here may be the genealogical work to trace distant cousins through
family trees, but big public datasets might make the genealogical task easier too. From here, its a ques-
tion of deciding the circumstances under which we as a society want these familial searches to be used.
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Notes

A pth cousin is a person with whom one shares an ancestor (in our model, an ancestral couple) p + 1
generations ago (your great(p — 1) grandparents). If theres no inbreeding in ones recent family tree, then
one is descended from 2P ancestral couples p+ 1 generations ago. A pair of individuals in the present are
pth cousins (or closer) if their sets of 2P ancestral couples overlap—they share ancestors p+ 1 generations
ago. Lets assume that there are NN, potential ancestors in N/2 couples, p generations back. If each of
these couples have the same probability of having children and there is not too much variation in family
size, we can view the problem as if people in the present choose their ancestors p + 1 generations ago at
random. Your ancestors were no doubt very special people, but as far as this model is concerned they
were just 2P random draws from all the couples whove left descendants. To calculate the probability
that you and I are pth cousins, we just need to calculate the probability that our two sets of 2P ancestors
overlap (note that this assumes monogamy, i.e. that well be full not half cousins, but even if that wasnt
true, that just alters things by a factor of two). Now, we have something close to a classic probability
problem: we draw a set of 27 balls at random from an urn with N, balls, replace the balls in the urn,
and repeat the draw of 2P balls—what is the probability that at least one ball is a member of both sets
of 2P balls?

The probability that you and I are pth cousins is roughly (47/(N,/2)), when N,, < 2P i.e. when your
ancestors are a small fraction of the total people in the population. In a current-day database of K indi-
viduals, drawn from the same population as you, your expected number of pth cousins is K x 47 /(N,/2).
Two factors make this blow up quickly back over the generation. First, 4P grows quickly back over the
generations; second, population sizes have increased rapidly in the recent past, which means that N,
declines quickly with p (because p counts generations backward in time).

One of biggest uncertainties in our calculations is the size of the pool of possible ancestors. Our
calculations should therefore be viewed as crude approximation. Our calculations are based on assuming
that the population size of possible ancestors is given by the census population size of the USA. To get
the census population size we assume a generation time of 30 years, and take the population size in the
decade 1950 —30 x (p+1). We assume that roughly 1/2 of the individuals in the population are potentially
parents, and that 90% of potentially parents have children. We impose a floor on the population size
that it cannot drop below 1 million potential parents, to reflect the fact that for people of European
ancestry, the pool of ancestors back then would also include Europe. Given the large variation in family
sizes N should likely be lower still, as variation in family size decreases the effective N further.

SHCHUR and NIELSEN (2018) recently worked through the probability that you have no pth cousins
in a database of K individuals, in a model similar to that described above. The model SHCHUR and
NIELSEN (2018) use is more realistic than the one we consider here—it allows for some inbreeding and
takes explicit account of the fact that some couples will not have children. They find (their equation 7)
that the probability that an individual has no pth cousins in the database, given a fixed population size
of N, is approximately exp(—2(2*P~2) x K/N).

The math underlying the genetic calculation is described in more detail here (see DONNELLY, 1983;
HUFF et al., 2011). To summarize: if you share two ancestors p + 1 generations with your pth cousin,
then you share a particular autosomal chromosomal region with probability 2 x (1/2P*1 — 1). You
have 22 autosomal chromosomes, and each generation, recombination happens in ~34 places on these
chromosomes. Looking back p + 1 generations, your chromosomes are broken up into approximately
(22434 x (p+ 1)) chunks, which are spread across your ancestors. Likewise, your relatives genome is
broken into (22+ 34 x (p+ 1)) chunks. Because recombination events rarely happen in the exactly same
place, your two genomes combined are broken into (22 + 34 x d x 2) pieces. As each of these is inherited
identical by descent to both you and your cousins from that ancestor with probability 1/ 22(p+1-1) " you
and your cousins should expect to share Ep = 1/22(P+1)=12 % (22 4 34(p + 1)) blocks of your autosomal
genome. The probability that you share 0 blocks is approximately exp(—FEp), while the probability of
sharing 2 or more blocks (()p) can approximately be obtained under the Poisson distribution (which is
a good approximation beyond 1st cousins).
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Putting all of this together, your expected number of genetic pth cousins is (@, x K x 47 /(N,/2).
Thats the solid line plotted in the final figure.
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