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Abstract: 96 

Background: 97 

Tsetse flies (Glossina sp.) are the sole vectors of human and animal trypanosomiasis 98 

throughout sub-Saharan Africa. Tsetse are distinguished from other Diptera by unique 99 

adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate 100 

blood specific diet by both sexes and obligate bacterial symbiosis. This work describes 101 

comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. 102 

morsitans morsitans (G.m. morsitans), G. pallidipes, G. austeni), Palpalis (G. palpalis, G. 103 

fuscipes) and Fusca (G. brevipalpis) which represent different habitats, host preferences and 104 

vectorial capacity. 105 

Results: 106 

Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic 107 

analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation 108 

across the sex-linked X chromosome. Sex linked scaffolds show increased rates of female 109 

specific gene expression and lower evolutionary rates relative to autosome associated genes. 110 

Tsetse specific genes are enriched in protease, odorant binding and helicase activities. 111 

Lactation associated genes are conserved across all Glossina species while male seminal 112 

proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus 113 

relative to other characterized insects. Vision associated Rhodopsin genes show conservation 114 

of motion detection/tracking functions and significant variance in the Rhodopsin detecting colors 115 

in the blue wavelength ranges. 116 

Conclusions: 117 
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Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a 118 

rich body of knowledge for basic science and disease control. They also provide insight into the 119 

evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector 120 

control such as trap design and discovery of novel pest and disease control strategies. 121 

Keywords: 122 

Tsetse, trypanosomiasis, hematophagy, lactation, disease, neglected, symbiosis 123 

  124 
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Background: 125 

Flies in the genus Glossina (tsetse flies) are vectors of African trypanosomes, which are of great 126 

medical and economic importance in Africa. Sleeping sickness (Human African 127 

Trypanosomiasis or HAT) is caused by two distinct subspecies of the African trypanosomes 128 

transmitted by tsetse. In East and Southern Africa, Trypanosoma brucei rhodesiense causes the 129 

acute Rhodesiense form of the disease, while in Central and West Africa T. b. gambiense 130 

causes the chronic Gambiense form of the disease, which comprises about 95% of all reported 131 

HAT cases. Devastating epidemics in the 20th century resulted in hundreds of thousands of 132 

deaths in sub-Saharan Africa [1], but more effective diagnostics now indicate that data 133 

concerning sleeping sickness deaths are subject to gross errors due to under-reporting [2]. With 134 

hindsight, it is thus reasonable to infer that millions died from sleeping sickness during the 135 

colonial period. Loss of interest and funding for control programs within the endemic countries 136 

resulted in a steep rise in incidence after the post-independence period of the 1960s. In an 137 

ambitious campaign to control the transmission of Trypanosomiasis in Africa, multiple groups 138 

came together in a public/private partnership. These include the WHO, multiple non-139 

governmental organizations, Sanofi Aventis and Bayer. The public sector groups developed and 140 

implemented multi-country control strategies and the companies donated the drugs required for 141 

treatment of the disease. The campaign reduced the global incidence of Gambiense HAT to 142 

<3,000 cases in 2015 [3]. Based on the success of the control campaign there are now plans to 143 

eliminate Gambiense HAT as a public health problem by 2030 [4]. In contrast, control of 144 

Rhodesiense HAT has been more complex as disease transmission involves domestic animals, 145 

which serve as reservoirs for the parasite. Hence elimination of the Rhodesiense disease will 146 

require treatment or elimination of domestic reservoirs, and/or reduction of tsetse vector 147 

populations. These strategies play a key part while medical interventions are used largely for 148 

humanitarian purposes. In addition to the public health impact of HAT, Animal African 149 
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Trypanosomiasis (AAT or Nagana) limits the availability of meat and milk products in large 150 

regions of Africa. It also excludes effective cattle rearing from ten million square kilometers of 151 

Africa [5] with wide implications for land use, i.e. constraints on mixed agriculture and lack of 152 

animal labor for ploughing [6]. Economic losses in cattle production are estimated at 1-1.2 billion 153 

dollars US and total agricultural losses caused by AAT are estimated at 4.75 billion dollars US 154 

per year [7, 8].  155 

Achieving disease control in the mammalian host has been difficult given the lack of vaccines. 156 

This is due to the process of antigenic variation the parasite displays in its host. Hence, 157 

accurate diagnosis of the parasite and staging of the disease are important. This is of particular 158 

importance due to the high toxicity of current drugs available for treatment of late-stage disease 159 

although introduction of a simpler and shorter nifurtimox and eflornithine combination therapy 160 

(NECT)[9] and discovery of new oral drugs, such as fexinidazole [10] and acoziborole, are 161 

exciting developments. Although powerful molecular diagnostics have been developed in 162 

research settings, few have yet to reach the patients or national control programs [11]. Further 163 

complicating control efforts, trypanosomes are showing resistance to available drugs for 164 

treatment [12, 13]. While vector control is essential for zoonotic Rhodesiense HAT, it has not 165 

played a major role in Gambiense HAT as it was considered too expensive and difficult to 166 

deploy in the resource poor settings of HAT foci. However, modelling, historical investigations 167 

and practical interventions demonstrate the significant role that vector control can play in the 168 

control of Gambiense HAT [14-16], especially given the possibility of long-term carriage of 169 

trypanosomes in both human and animal reservoirs [17, 18]. The African Union has made 170 

removal of trypanosomiasis via tsetse fly control a key priority for the continent [19]. 171 

Within the Glossinidae, 33 extant taxa are described from 22 species in 4 subgenera. The first 172 

three sub-genera Austenina Townsend, Nemorhina Robineau-Desvoidy and Glossina 173 

Wiedemann correspond to the Fusca, Palpalis, and Morsitans species groups, respectively [20]. 174 
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The fourth subgenus Machadomia was established in 1987 to incorporate G. austeni. The 175 

relationship of G. austeni Newstead with respect to the Palpalis and Morsitans complex flies 176 

remains controversial [21]. While molecular taxonomy shows that Palpalis- and Morsitans-177 

species groups are monophyletic, the Fusca species group emerges as sister group to all 178 

remaining Glossinidae. Morsitans group taxa are adapted to drier habitats relative to the other 179 

two subgenera [22]. Palpalis group flies tend to occur in riverine and lacustrine habitats. Fusca 180 

group flies largely inhabit moist forests of West Africa. The host-specificity of the different 181 

species groups vary, with the Palpalis group flies displaying strong anthrophilicity while the 182 

others are more zoophilic in preference. The principal vectors of HAT include G. palpalis s.l., G. 183 

fuscipes and G. m. morsitans s.l. The riverine habitats of Palpalis group flies and their 184 

adaptability to peridomestic environments along with human blood meal preferences make them 185 

excellent vectors for HAT. Other species belonging to the Morsitans group (such as G. 186 

pallidipes) can also transmit human disease, but principally play an important role in AAT 187 

transmission. In particular, G. pallidipes has a wide distribution and a devastating effect in East 188 

Africa. Also, of interest is G. brevipalpis, an ancestral tsetse species within the Fusca species 189 

complex. This species exhibits poor vectorial capacity with T. brucei relative to G. m. morsitans 190 

in laboratory infection expriments using colonized fly lines [23]. Comparison of the susceptibility 191 

of G. brevipalpis to Trypanosoma congolense (a species that acts as a major causative agent of 192 

AAT) also showed it has a much lower rate of infection relative to Glossina austeni [24]. 193 

To expand the genetic/genomic knowledge and develop new and/or improved vector control 194 

tools a consortium, the International Glossina Genome Initative (IGGI), was established in early 195 

2004 to sequence the G. m. morsitans genome [25]. In 2014 the first tsetse fly genome from the 196 

Glossina m. morsitans species was produced [26]. This project facilitated the use of modern 197 

techniques such as transcriptomics and enabled functional investigations at the genomic level 198 

into tsetse’s viviparous reproductive physiology, obligate symbiosis, trypanosome transmission 199 
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biology, olfactory physiology and the role of saliva in parasite transmission. The species 200 

Glossina m. morsitans was chosen for the first genome discovery effort as it is relatively easy to 201 

maintain under laboratory conditions and many physiological studies had been based on this 202 

species. To study the genetics underlying tsetse species-specific traits, such as host preference 203 

and vector competence, we have now assembled five additional representative genomes from 204 

the species complexes of Glossina: Morsitans (G. m. morsitans, G. pallidipes,), 205 

Morsitans/Machadomia (G. austeni), Palpalis (G. palpalis, G. fuscipes) and Fusca (G. 206 

brevipalpis). These species represent flies with differences in geographical localization, 207 

ecological preferences, host specificity and vectorial capacity (Summarized in Figure 1). Here 208 

we report on the evolution and genetics underlying this genus by comparison of their genomic 209 

architecture and predicted protein-coding sequences and highlight some of the genetic 210 

differences that hold clues to the differing biology between these species. 211 

Results and Discussion: 212 

Multiple genetic comparisons confirm Glossina phylogenetic relationships and the 213 

inclusion of G. austeni as a member of the Morsitans sub-Genus 214 

Sequence similarity between the genomes was analyzed using whole genome nucleotide 215 

alignments of supercontigs and predicted coding sequences from the five new Glossina 216 

genomes as well as those from the Musca domestica genome using G. m. morsitans as a 217 

reference (Figure 2A). The results indicate that G. pallidipes and G. austeni are most similar at 218 

the sequence level to G. m. morsitans. This is followed by the species in the Palpalis sub-genus 219 

(G. fuscipes and G. palpalis). The remaining species (G. brevipalpis) shows the least sequence 220 

conservation relative to G. m. morsitans followed by the outgroup species M. domestica. The 221 

lower sequence similarity between G. brevipalpis and the other tsetse species reinforces its 222 

status as a distant relative to the Morsitans and Palpalis sub-genera. 223 
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Alignment of the predicted coding sequences produced a similar result to that observed in the 224 

whole genome alignment in terms of similarity to G. m. morsitans (Figure 2A). Of interest is that 225 

more than 25% of the G. m. morsitans exon sequences were not align-able with G. brevipalpis, 226 

indicating that they were either lost, have diverged beyond alignability or were in an 227 

unsequenced region in G. brevipalpis. In addition, G. brevipalpis has on average ~5000 fewer 228 

predicted protein-coding genes than the other species. Given the low GC content of the G. 229 

brevipalpis sequenced genome it is possible that some of the regions containing these 230 

sequences lie within heterochromatin. The difficulties associated with sequencing 231 

heterochromatic regions may have excluded these regions from our analysis; however, it also 232 

implies that if these protein coding genes are indeed present they are located in a region of the 233 

genome with low transcriptional activity. 234 

We inferred the phylogeny and divergence times of Glossina using a concatenated alignment of 235 

286 single-copy gene orthologs (478,000 nucleotide positions) universal to Glossina (Figure 236 

2B). The tree recovered from this analysis has support from both Maximum Likelihood and 237 

Bayesian analyses, using respectively homogeneous and heterogeneous models of 238 

replacement. A coalescent-aware analysis further returned full support, indicating a speciation 239 

process characterized by clear lineage sorting (Supplemental Figure 1). These results suggest 240 

an allopatric speciation process characterized by a small founder population size followed by 241 

little to no introgression among newly formed species. 242 

Furthermore, we assembled complete mitochondrial (mtDNA) genome sequences for each 243 

species as well as Glossina morsitans centralis as references for use in distinguishing samples 244 

at the species, sub-species or haplotype levels. All the mtDNA genomes encode large (16S 245 

rRNA) and small (12S rRNA) rRNAs, 22 tRNAs and 13 protein-coding genes. Phylogenetic 246 

analysis of the resulting sequences using the Maximum Likelihood method resulted in a tree 247 

with congruent topology to that produced by analysis of the concatenated nuclear gene 248 
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alignment (Figure 2C). A comparative analysis of the mtDNA sequences identified variable 249 

marker regions with which to identify different tsetse species via traditional sequencing and/or 250 

high-resolution melt analysis (HRM) (Supplemental Figure 2). Analysis of the amplicons from 251 

this region using HRM facilitated the discrimination of these products based on their 252 

composition, length and GC content. Use of HRM on these variable regions successfully 253 

resolved differences between test samples consisting of different tsetse species as well as 254 

individuals with different haplotypes or from different populations (Supplemental Figure 3). This 255 

method provides a rapid, cost effective and relatively low-tech way of identifying differences in 256 

field caught tsetse for the purposes of population genetics and measurement of population 257 

diversity. 258 

The trees derived from the nuclear and mitochondrial phylogenetic analyses agree with 259 

previously published phylogenies for tsetse [27-29] and the species delineate into groups 260 

representing the defined Fusca, Palpalis and Morsitans sub-genera. 261 

A contentious issue within the taxonomy of Glossina is the placement of G. austeni within the 262 

Machadomia sub-Genus. Comparative anatomical analysis of male genitalia places G. austeni 263 

within the morsitans sub-Genus. However, female G. austeni genitalia bear anatomical 264 

similarities to members of the Fusca sub-genus. In addition, G. austeni’s habitat preferences 265 

and some external morphology resemble those of the palpalis sub-Genus [28]. Recent 266 

molecular evidence suggests that G. austeni are closer to the morsitans sub-genus [27, 29]. 267 

The data generated via the three discrete analyses described above all support the hypothesis 268 

that G. austeni is a member of the Morsitans sub-genus rather than the Palpalis sub-genus and 269 

belongs as a member of the Morsitans group rather than its own discrete sub-Genus. 270 

Comparative analysis of Glossina with Drosophila reveals reduced synteny and female 271 

specific gene expression on X-linked scaffolds 272 
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The scaffolds in each Glossina spp. genome assembly were assigned to chromosomal arms 273 

based on orthology and relative position to protein-coding sequences in the D. melanogaster 274 

genome (Drosophila) [30]. The Glossina and Drosophila genomes contain six chromosome 275 

arms (Muller elements A-F) [31-33]. We assigned between 31-52% of annotated genes in each 276 

species to a Muller element, which we used to assign >96% of scaffolds to Muller elements in 277 

each species (Figure 3 and Supplemental table 1). From these results, we inferred the relative 278 

size of each Muller element in each species by counting the number of annotated genes 279 

assigned to each element and calculating the cumulative length of all assembled scaffolds 280 

assigned to each element. Using either measure, we find that element E is the largest and 281 

element F is the shortest in all species, consistent with observations in Drosophila [34]. 282 

Mapping of the Glossina scaffolds to the Drosophila Muller elements reveals differing levels of 283 

conservation of synteny (homologous genomic regions with maintained orders and orientations) 284 

across these six-species relative to Drosophila. In G. m. morsitans, the X chromosome is 285 

composed of Muller elements A, D, and F as opposed to the Drosophila X which only contains A 286 

and sometimes D [33], and all other Glossina species besides G. brevipalpis have the same 287 

karyotype [35].  We therefore assume that the same elements are X-linked in the other Glossina 288 

species (apart from G. brevipalpis). This analysis reveals that scaffolds mapping to Drosophila 289 

Muller element A show a reduced overall level of syntenic conservation relative to the other 290 

Muller elements while the scaffolds mapping to Drosophila Muller element D (part of the 291 

Glossina X chromosome, but not the D. melanogaster X) retain more regions of synteny 292 

conservation. We hypothesize that the lower syntenic conservation on element A reflects a 293 

higher rate of rearrangement because it has been X-linked for more time (both in the Drosophila 294 

and Glossina lineages) than element D (only in Glossina) and rearrangement rates are higher 295 

on the X chromosome (element A) in Drosophila [34] 296 
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To examine the relationship between gene expression and DNA sequence evolution, we 297 

compared gene expression levels between the X chromosome and autosomes using sex 298 

specific RNA-seq libraries derived from whole males, whole non-lactating females and whole 299 

lactating females for all the Glossina species apart from G. pallidipes. Consistent with previous 300 

results from G. m. morsitans [33], the ratio of female:male expression is greater on the X 301 

chromosome than autosomes across species (Supplemental Figure 4). In addition, there is a 302 

deficiency of genes with male-biased expression (up-regulated in males relative to females) on 303 

the X-linked elements in all species (Supplemental Figure 5). Reduced levels of male-biased 304 

gene expression have also been observed in mosquitoes and is a conserved feature of the 305 

Anopheles genus [36]. The X chromosome is hemizygous in males, which exposes recessive 306 

mutations to natural selection and can accelerate the rate of adaptive substitutions and facilitate 307 

the purging of deleterious mutations on the X chromosome [37, 38]. Using dN/dS values for 308 

annotated genes, we fail to find any evidence for this faster-X effect across the entire phylogeny 309 

or along any individual lineages (Supplemental Figure 6). The faster-X effect is expected to be 310 

greatest for genes with male-biased expression because they are under selection in males [37], 311 

but we find no evidence for faster-X evolution of male-biased genes in any of the Glossina 312 

species. In contrast, there is some evidence for “slower-X” evolution amongst female-biased 313 

genes (Supplemental Figure 7), suggesting that purifying selection is more effective at purging 314 

deleterious mutations on the X chromosome [39]. Genes with female-biased expression tend to 315 

be broadly expressed [40], suggesting that pleiotropic constraints on female-biased genes 316 

increase the magnitude of purifying selection and produce the observed slower-X effect [41]. 317 

The exception to these observations is element F. Element F, the smallest X-linked element, 318 

has low female expression and an excess of genes with male-biased expression (Supplemental 319 

Figure 8). In contrast with the other X-linked Muller elements in Glossina, the dN/dS ratios of all 320 

Element F associated genes (male biased and unbiased) suggest that they are evolving faster 321 
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than the rest of the genome across all tsetse lineages (Supplemental Figure 9). The F elements 322 

in Drosophila species, while not being X-linked, show similar properties in that they have lower 323 

levels of synteny, increased rates of inversion, and higher rates of protein coding sequence 324 

evolution, suggesting that the F element is rapidly evolving in flies within Schizophora [42]. 325 

The G. austeni genome contains Wolbachia derived chromosomal insertions (Figure 4) 326 

A notable feature of the G. m. morsitans genome was the integration of large segments of the 327 

Wolbachia symbiont genome via horizontal gene transfer (HGT). Characterization of the G. m. 328 

morsitans HGT events revealed that the chromosomal sequences with transferred material 329 

contained a high degree of nucleotide polymorphisms, coupled with insertions, and deletions 330 

[43]. These observations were used in this analysis to distinguish cytoplasmic from 331 

chromosomal Wolbachia sequences during the in-silico characterization of the tsetse genomes. 332 

Analysis of the six assemblies revealed that all contain Wolbachia sequences although G. 333 

pallidipes, G. fuscipes, G. palpalis and G. brevipalpis had very limited DNA sequence that 334 

displayed homology with Wolbachia. Furthermore, analysis of fly lines from which the 335 

sequenced DNA was obtained with Wolbachia specific primers PCR-amplification was negative. 336 

This is in line with PCR-based screening of Wolbachia infections in natural populations, further 337 

indicating that these short segments could be artifacts or contaminants [44]. However, G. 338 

austeni contains more extensive chromosomal integrations of Wolbachia DNA (Supplemental 339 

Table 2).  340 

All Wolbachia sequences, chromosomal and cytoplasmic, identified in G. austeni were mapped 341 

against the reference genomes of Wolbachia strains wMel, wGmm, and the chromosomal 342 

insertions A & B in G. m. morsitans (Figure 4). The G. austeni chromosomal insertions, range in 343 

size from 500 - 95,673 bps with at least 812 DNA fragments identified in silico. Sequence 344 

homology between wMel, wGmm, and the chromosomal insertions A and B in G. m. morsitans 345 

morsitans varied between 98 – 63%, with the highest sequence homologies observed with 346 
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chromosomal insertions A and B from G. m. morsitans. The similarity between the genomic 347 

insertions in G. m. morsitans and G. austeni relative to cytoplasmic Wolbachia sequences 348 

suggests they could be derived from an event in a common ancestor. The absence of 349 

comparable insertions in G. pallidipes (a closer relative to G. m. morsitans) indicate that either 350 

these insertions occurred independently or that the region containing the insertions was not 351 

assembled in G. pallidipes. Additional data from field based Glossina species/sub-species is 352 

required to determine the true origin of these events. 353 

Analysis of Glossina genus and sub-genus specific gene families reveals functional 354 

enrichments. 355 

All annotated Glossina genes were assigned to groups (orthology groups - OGs) containing 356 

predicted orthologs from other insect and arthropod species represented within Vectorbase. A 357 

global analysis of all the groups containing Glossina genes was utilized to determine the gene 358 

composition of these flies relative to their Dipteran relatives and between the Glossina sub-359 

genera. An array of twelve Diptera are represented within this analysis including Anopheles 360 

gambiae (Nematocera), Aedes aegypti (Nematocera), Lutzomyia longipalpis (Nematocera), 361 

Drosophila melanogaster (Brachycera), Stomoxys calcitrans (Brachycera) and Musca 362 

domestica (Brachycera).  363 

The tsetse associated OGs are represented by groups ranging from universal to the Diptera 364 

included in the analysis to species specific to the individual tsetse species. The composition of 365 

these OGs breaks down to a core of 3,058 OGs with constituents universal to Diptera (93430 366 

genes), 299 OGs specific and universal to Brachyceran flies (4975 genes) and 162 OGs specific 367 

and universal to Glossina (1548 genes). A dramatic feature identified by this analysis is the 368 

presence of 2,223 OGs specific and universal to the Palpalis sub-genus (G. fuscipes and G. 369 

palpalis 4948 genes). This contrasts with the members of the Morsitans sub-genus (G. m. 370 
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morsitans, G. pallidipes and G. austeni) in which there are 137 specific and universal OGs (153 371 

genes) (Figure 5, Supplemental table 3, Supplemental data 2+3). 372 

To understand the functional significance of the Glossina specific OGs, we performed an 373 

analysis of functional enrichment of gene ontology (GO) terms within these groups. Many of the 374 

Glossina specific genes are not currently associated with GO annotations as they lack 375 

characterized homologs in other species. As such these sequences were not included in this 376 

analysis. However, ~60% of the genes within the combined Glossina gene repertoire are 377 

associated with GO annotations, which allowed for analysis of a sizable proportion of the 378 

dataset. 379 

Glossina genus universal and specific genes are enriched in genes coding for proteases 380 

and odorant binding proteins. 381 

The orthology groups containing genes specific and universal to the Glossina genus are 382 

enriched in odorant binding and serine-type endopeptidase activities. The universality of these 383 

genes within Glossina and their absence from the other surveyed Dipteran species suggests 384 

they are currently associated with tsetse specific adaptations. 385 

The ontology category with the lowest p-value represents proteolysis associated genes. This 386 

category encompasses 92 Glossina specific proteases with predicted serine-type 387 

endopeptidase activity. The abundance of this category may be an adaptation to the protein-rich 388 

blood specific diet of both male and female flies. A similar expansion of serine proteases is 389 

associated with blood feeding in mosquitoes and the presence of an equivalent expansion in 390 

tsetse may represent an example of convergent evolution [45]. This class of peptidases is also 391 

associated with critical functions in immunity, development and reproduction in Diptera [46-49].  392 

The other enriched GO term common to all Glossina is for genes encoding odorant binding 393 

proteins (OBPs). Of the 370 OBPs annotated within Glossina, 55 lack orthologs in species 394 
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outside of Glossina. The primary function of OBPs is to bind small hydrophobic molecules to 395 

assist in their mobilization in an aqueous environment. These proteins are primarily associated 396 

with olfaction functions as many are specifically expressed in chemosensory associated 397 

tissues/organs where they bind small hydrophobic molecules and transport them to odorant 398 

receptors [50, 51]. However, functional analyses in G. m. morsitans have associated an OBP 399 

(OBP6) with developmental activation of hematopoiesis during larvigenesis in response to the 400 

mutualistic Wigglesworthia symbiont [52]. In addition, many of the OBPs identified in this 401 

analysis are characterized as Glossina specific seminal proteins with male accessory gland 402 

specific expression patterns. They are primary constituents of the spermatophore structure 403 

produced by the male tsetse during mating [53]. The genus specific nature of these OBPs 404 

suggests that they are key components of reproductive adaptations of male tsetse. 405 

The Palpalis sub-genus contains a large group of sub-genus specific genes. 406 

A large group of genes specific and universal to members of the Palpalis sub-genus (G. palpalis 407 

and G. fuscipes) was a defining feature of the orthology analysis. The expansion includes 2223 408 

OGs and encompasses 4948 genes between G. palpalis and G. fuscipes. Homology based 409 

analysis of these genes by comparison against the NCBI NR database revealed significant (e-410 

value < 1x10-10) results for 603 of the genes. Within this subset of genes, ~ 5% represent 411 

bacterial contamination from tsetse’s obligate endosymbiont Wigglesworthia. Sequences 412 

homologous to another well-known bacterial symbiont Spiroplasma were found exclusively in G. 413 

fuscipes. This agrees with previous observations of Spiroplasma infection of colonized and field 414 

collected G. fuscipes flies [54]. 415 

Four genes bear homology to viral sequences (GPPI051037/GFUI045295 and 416 

GPPI016422/GFUI028200). These sequences are homologus to genes from Ichnoviruses. 417 

These symbiotic viruses are transmitted by parasitic Ichneumonid wasps with their eggs to 418 
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suppress the immune system of host insects [55]. These genes may have originated from a 419 

horizontal transfer event during an attempted parasitization. 420 

Another feature of note is the abundance of putative proteins with predicted helicase activity. Of 421 

the 603 genes with significant hits, 64 (10.5%) are homologous to characterized helicases. 422 

Functional enrichment analysis confirms the enrichment of helicase activity in this gene set. 423 

These proteins are associated with the production of small RNA’s (miRNAs, siRNAs and 424 

piRNAs) which mediate posttranscriptional gene expression and the defensive response against 425 

viruses and transposable elements. Of the 64 genes, 41 were homologous to the armitage 426 

(armi) helicase. Recent work in Drosophila shows that armi is a reproductive tissue specific 427 

protein and is responsible for binding and targeting mRNAs for processing into piRNAs by the 428 

PIWI complex [56]. The reason for the accumulation of this class of genes within the Palpalis 429 

sub-genus is unknown. However, given the association of these proteins with small RNA 430 

production they could be associated with a defensive response against viral challenges or 431 

overactive transposable elements. A similar phenomena is seen in Aedes aegypti where 432 

components of the PIWI pathway have been amplified and function outside of the reproductive 433 

tissues to generate piRNAs against viral genes [57]. 434 

Analysis of gene family variations reveals sub-genus specific expansions and 435 

contractions of genes involved in sperm production and chemosensation 436 

In addition to unique gene families, we identified orthology groups showing significant variation 437 

in gene numbers between Glossina species. Of interest are groups showing significant sub-438 

genus specific expansions or contractions, which may represent lineage specific adaptations. 439 

General trends that we observed in these groups show the largest number of gene family 440 

expansions within the Palpalis sub-genus and the largest number of gene family contractions 441 

within G. brevipalpis (a member of the Fusca sub-genus) (Figure 6 - For completely annotated 442 

figures with descriptions and group IDs see Supplemental Figures 11 and 12, respectively). 443 
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Palpalis sub-genus specific expansion of sperm associated genes (Supplemental data 4) 444 

Members of the Palpalis sub-genus had a total of 29 gene family expansions and 1 contraction 445 

relative to the other 4 tsetse species. Of the three sub-Genera, this represents the largest 446 

number of expansions and parallels with the large number of Palpalis specific orthology groups.  447 

Two gene families expanded within the Palpalis group (VBGT00770000031191 and 448 

VBGT00190000014373) encode WD repeat containing proteins. The Drosophila orthologs 449 

contained within these families (cg13930, dic61B, cg9313, cg34124) are testes specific and 450 

associated with cilia/flagellar biosynthesis and sperm production [58]. Alteration/diversification of 451 

sperm associated proteins could explain the split of the Palpalis sub-genus from the other 452 

Glossina and the potential incipient speciation documented between G. palpalis and G. fuscipes 453 

[59].  454 

The Morsitans sub-genera shows reductions in chemosensory protein genes 455 

Within the Morsitans sub-genus six gene families are expanded and two are contracted relative 456 

to the other tsetse species. Of interest, one of the contracted gene families encodes 457 

chemosensory proteins (VBGT00190000010664) orthologous to the CheB and CheA series of 458 

proteins in D. melanogaster. The genes encoding these proteins are expressed exclusively in 459 

the gustatory sensilla of the forelegs of male flies and are associated with the detection of low 460 

volatility pheromones secreted by the female in higher flies [60]. Of interest is that the number of 461 

genes in G. palpalis (14), G. fuscipes (15) and G. brevipalpis (14) are expanded within this 462 

family relative to D. melanogaster (12), M. domestica (10) and S. calcitrans (4). However, the 463 

Morsitans group flies G. m. morsitans (7), G. pallidipes (7) and G. austeni (5) all appear to have 464 

lost some members of this family. The functional significance of these changes is unknown. 465 

However, it could represent an optimization of the male chemosensory repertoire within the 466 

Morsitans sub-genus. 467 
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In terms of expanded gene families in Morsitans, we find two encoding enzymes associated with 468 

the terpenoid backbone biosynthesis pathway (VBGT00190000010926 -farnesyl pyrophosphate 469 

synthase and VBGT00840000047886 – farnesol dehydrogenase). This pathway is essential for 470 

the generation of precursors required for the synthesis of the insect hormone Juvenile Hormone 471 

(JH). In adult G. m. morsitans, JH levels play an important role in regulating nutrient balance 472 

before and during pregnancy. High JH titers activate lipid biosynthesis and accumulation in the 473 

fat body prior to lactation. During lactation, JH titers fall, resulting in the catabolism and 474 

mobilization of stored lipids for use in milk production [61].  475 

Comparative analysis of the immune associated genes in Glossina species reveals 476 

specific expansions, contractions and losses relative to Musca domestica and 477 

Drosophila melanogaster 478 

Tsetse flies are exposed to bacterial, viral, protozoan and fungal microorganisms exhibiting a 479 

broad spectrum of beneficial, commensal, parasitic and pathogenic phenotypes within their 480 

host. Yet, the diversity and intensity of the microbial challenge facing tsetse flies is limited 481 

relative to that of related Brachyceran flies such as D. melanogaster and M. domestica in terms 482 

of level of exposure, microbial diversity and host microbe relationships. While tsetse larvae live 483 

in a protected environment (maternal uterus) feeding on maternally produced lactation 484 

secretions, larval D. melanogaster and M. domestica spend their entire immature development 485 

in rotting organic materials surrounded by and feeding on a diverse array of microbes. The adult 486 

stages also differ in that tsetse feed exclusively on blood which exposes them to a distinct yet 487 

limited array of microbial fauna. The immune function and genetic complement of D. 488 

melanogaster is well characterized and provides the opportunity to compare the constitution of 489 

orthologous immune gene sequences between M. domestica and the Glossina species [62]. 490 

Orthology groups containing Drosophila genes associated with the ‘Immune System Process’ 491 
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GO tag (GO:0002376) were selected and analyzed to measure the presence/absence or 492 

variance in number of orthologous sequences in Glossina (Figure 7 + Supplemental Table 5). 493 

Several orthologs within this ontology group are highly conserved across all species and are 494 

confirmed participants with the fly’s antimicrobial immune response. These genes include the 495 

peptidoglycan recognition proteins (PGRPs) (with the exception of the PGRP SC1+2 genes) 496 

[63], prophenoloxidase 1, 2 and  3 [52], the reactive oxygen intermediates dual oxidase and 497 

peroxiredoxin 5 [64, 65], and antiviral (RNAi pathway associated) dicer 2 and argonaute 2. The 498 

antimicrobial peptide encoding genes attacin (variants A and B) and cecropin (variants A1, A2, 499 

B and C) are found within Glossina, but have diverged significantly (the highest % identity based 500 

on blastx comparison = 84%) from closely related fly taxa [66-68]. 501 

Glossina species are missing immune gene families present in D. melanogaster and M. 502 

domestica 503 

Several gene families are missing within the Glossina species although expanded within M. 504 

domestica (Figure 7). These include lysozyme E, defensin, elevated during infection, and the 505 

PGRP-SC1+2 gene families. These may be adaptations to the microbe rich diet and 506 

environment in which M. domestica larvae and adults exist. The expansion of immune gene 507 

families in M. domestica relative to D. melanogaster was previously documented in the 508 

publication of the M. domestica genome [69]. However, the added context of the Glossina 509 

immune gene complement highlights the significance of the expansion of these families relative 510 

to their loss in all Glossina species. The loss of these families may represent the reduced 511 

dietary and environmental exposure to microbial challenge associated with the dramatic 512 

differences in life history between these flies. 513 

Glossina species show immune gene family expansions associated with the Toll and IMD 514 

pathways 515 
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In contrast, we observed several Glossina immune related gene families which are expanded 516 

relative to orthologous families in Drosophila and M. domestica (Figure 7). Duplications of this 517 

nature often reflect evolutionarily important aspects of an organism’s biology, and in the case of 518 

tsetse, may have resulted from the fly’s unique association with parasitic African trypanosomes. 519 

Prominent among the expanded immune related Glossina genes are those that encode Attacin 520 

A and Attacin B, which are IMD pathway produced effector antimicrobial molecules, and Cactus, 521 

a component of the Toll signaling pathway. Similarly, the most highly expanded immune related 522 

gene across Glossina species are the orthologs of Drosophila CG4325. RNAi-based studies in 523 

Drosophila indicate that CG4325 is a regulator of both the Toll and IMD signaling pathways [70]. 524 

Significant expansion of this gene family in Glossina substantiates previously acquired data that 525 

demonstrated the functional importance of the Toll and IMD pathways in tsetse’s response to 526 

trypanosome challenge [71, 72]. Finally, all six Glossina genomes encode multiple copies of 527 

moira. This gene, which is involved in cell proliferation processes [73], is differentially expressed 528 

upon trypanosome infection when compared to uninfected G. m. morsitans [74]. In an effort to 529 

eliminate parasite infections, tsetse flies produce reactive oxygen intermediates that cause 530 

collateral cytotoxic damage [64]. Additionally, trypanosome infection of tsetse’s salivary glands 531 

induces expression of fly genes that encode proteins associated with stress and cell division 532 

processes, further indicating that parasite infection results in extensive damage to host cells. 533 

Expansion of moira gene copy number in Glossina’s genome may reflect the fly’s need to 534 

maintain epithelial homeostasis in the face of damage caused by trypanosome infections. 535 

G. brevipalpis has a species-specific expansion of immune associated proteins 536 

An interesting highlight from this analysis is the identification of a gene expansion associated 537 

with alpha-mannosidase activity (VBGT00190000009892). An orthologous Drosophila gene (α-538 

Man-Ia) is an essential component in the encapsulation response by hemocytes to attack by 539 

parasitoid wasps. This enzyme modifies lamellocyte surface glycoproteins to facilitate the 540 
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recognition and encapsulation of foreign bodies. As described in the G. m. morsitans genome 541 

paper and here, there is evidence of parasitization by parasitoid wasps in the genomes of these 542 

flies in the form of integrated gene sequences homologous to polynavirus genes [26]. The 543 

expansion of these proteins could be an evolutionary response to pressure induced by 544 

parasitization although the current status of tsetse associated parasitoids is unknown. 545 

Tsetse reproductive genetics 546 

Milk protein genes are universal and tightly conserved in Glossina (Figure 8 + Supplemental 547 

table 6) 548 

The intrauterine development and nourishment of individual larval offspring is a defining 549 

characteristic of the Hippoboscoidea superfamily, which includes the Glossinidae (Tsetse flies), 550 

Hippoboscidae (Ked flies), Nycteribiidae (Bat flies), and Streblidae (Bat flies) families [75]. 551 

Nutrient provisioning is accomplished by the secretion of a milk-like substance from specialized 552 

glands into the uterus where the larval flies consume the milk. Dry weight of tsetse milk is 553 

roughly 50% protein and 50% lipids [76]. A compiled list of the milk protein orthologs from the 554 

six species of tsetse have been assembled (Supplemental Table 6). 555 

Milk protein genes 2-10 (mgp2-10) in G. m. morsitans are the largest milk protein gene family. 556 

These genes are tsetse specific, lack conserved functional protein domains and their origin is 557 

currently unknown. However, experimental evidence suggests they act as lipid emulsification 558 

agents and possible phosphate carrier molecules in the milk [77]. Search for orthologous 559 

sequences to these genes revealed 1:1 orthologs to each of the 9 genes in the 5 new Glossina 560 

species except for G. brevipalpis which lacks an orthologous sequence for the mgp2 gene. 561 

These genes are conserved at the levels of both synteny and sequence (Figure 8A+B). 562 

Comparative expression analysis of these genes (and the other characterized milk protein 563 

orthologs: milk gland protein 1, acid sphingomyelinase and transferrin [78, 79]) in male, non-564 

lactating and lactating females shows sex and lactation specific expression profiles across the 565 
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five species for which sex-specific RNA-seq data was available (Figure 8C+D). Comparison of 566 

sequence variation across species for these genes by dN/dS analysis indicates that they are 567 

under heavy negative selective pressure (Figure 8D). Enrichment analysis based on 568 

comparison of lactation-based RNA-seq data confirms that these 12 orthologous sequences are 569 

enriched in lactating flies across all Glossina (Figure 8E). The mgp2-10 gene family is a unique 570 

and conserved adaptation that appears essential to the evolution of lactation in the Glossina 571 

genus. Determination of the origins of this protein family requires genomic analyses of other 572 

members of the Hippoboscoidea superfamily that exhibit viviparity along with other species 573 

closely related to this group.  574 

Tsetse seminal protein genes are rapidly evolving and vary in number and sequence 575 

conservation between species (Figure 9) 576 

Recent proteomic analysis of male seminal proteins in G. m. morsitans revealed an array of 577 

proteins transferred from the male to the female as components of the spermatophore [80]. 578 

Cross referencing of the proteomic data with tissue specific transcriptomic analyses of the 579 

testes and male accessory glands (MAGs) allowed us to identify the tissues from which these 580 

proteins are derived. Many of the MAG associated proteins are Glossina-specific and are 581 

derived from gene families with multiple paralogs. These sequences were used to identify and 582 

annotate orthologous sequences in the other five Glossina species. In contrast to the milk 583 

proteins, sequence variance and differences in paralog numbers varies in male reproductive 584 

genes between the six Glossina species.  585 

This is particularly evident in the genes with MAG biased/specific expression. MAG 586 

biased/specific genes are represented by 22 highly expressed gene families encoding 587 

characterized seminal fluid proteins (SFP). We investigated the evolutionary rate of reproductive 588 

genes over-expressed in the MAGs and testes, relative to a set of 5,513 G. m. morsitans genes, 589 

orthologous between the six species (Figure 9A). The average dN/dS ratio is higher in MAG 590 
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biased genes than in testes biased genes or the entire Glossina ortholog gene set suggesting 591 

that the MAG genes are under relaxed selective constraints. In addition, we found high 592 

heterogeneity in the selective pressure across MAG genes. This is specifically evident in the 593 

tsetse specific genes GMOY002399, GMOY007759, GMOY004505 and GMOY005874 (a 594 

protein with OBP like conserved cysteine residues) as well as the OBP ortholog GMOY007314. 595 

All five genes encode seminal fluid proteins as confirmed by the proteomic analysis of the 596 

spermatophore [80].  597 

In addition to sequence variability the number of paralogs per species differs as well (Figure 598 

9B). This is similar to comparative analysis observations in Anopheles and Drosophila species 599 

[81, 82]. This variance is especially evident in Glossina specific protein families (i.e. 600 

GMOY002399, GMOY004505/4506, GMOY005771). In particular, there are a large number of 601 

gene orthologs/paralogs to the GMOY005771 gene across all Glossina species revealing a 602 

large family of MAG genes of unknown function. The number of orthologs/paralogs differs 603 

significantly between Glossina species. In addition, the two G. m. morsitans paralogs 604 

GMOY004724 and GMOY004725 (predicted peptidase regulators), appear to display a higher 605 

number of putative gene duplications in the Morsitans sub-genus relative to the Palpalis and 606 

Fusca sub-Genera. Conservation appears instead to be more evident across testes genes that 607 

code for proteins associated with conserved structural and functional components of sperm. 608 

Overall, comparison of the MAG biased genes across Glossina reveals that this group shows 609 

substantial variability in terms of genomic composition and rate of evolution. This is in 610 

agreement with other studies indicating that male accessory proteins evolve at high rates due to 611 

intraspecific competition between males or sexually antagonistic coevolution between males 612 

and females [83]. 613 

Olfactory associated protein-coding genes are conserved and reduced in number relative 614 

to other Diptera. 615 
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Comparative analyses of genes responsible for perireceptor olfaction activities revealed high 616 

conservation of the repertoire among the six species. The genes appear to scatter across their 617 

respective genomes with only a few duplicates occurring in clusters [84]. Glossina species 618 

expanded loci that include Gr21a (responsible for CO2 detection) [85], Or67d (mediates cis-619 

vaccenyl acetate reception) and Obp83a, (thought to be olfactory specific) [86]. The expanded 620 

loci suggest involvement of gene duplication and/or transposition in their emergence [84]. All six 621 

species lack sugar receptors likely as a result of tsetse’s streamlined blood-feeding behavior. 622 

Although our analysis did not reveal major discrepancies among the species, G. brevipalpis has 623 

lost three key gustatory receptors (Gr58c, Gr66a and Gr32a) compared to other species. In 624 

addition, G. brevipalpis showed higher structural gene rearrangements that could be attributed 625 

to its evolutionary distance relative to the other tsetse species [87].  626 

A salivary protein gene shows sub-genus specific repeat motifs (Figure 10) 627 

Efficient acquisition of a blood meal by tsetse relies on a broad repertoire of physiologically 628 

active saliva components inoculated at the bite site. These proteins modulate early host 629 

responses, which, in addition to facilitating blood feeding can also influence the efficacy of 630 

parasite transmission [88, 89]. The differences in the competence of different tsetse fly species 631 

to develop mature T. brucei salivary gland infections may also be correlated with species-632 

specific variations in saliva proteins. Tsetse saliva raises a species-specific IgG response in 633 

their mammalian hosts [90]. This response could potentially function as a biomarker to monitor 634 

exposure of host populations to tsetse flies [91].  635 

The sgp3 gene [92] is characterized in all the tsetse species by two regions: a 636 

metallophosphoesterase/5`nucleotidase and a repetitive glutamate/aspartate/asparagine-rich 637 

region (Figure 10A). The complete sequence for this gene from G. brevipalpis could not be 638 

obtained due to a gap in the sequence. The metallophosphoesterase/5`nucleotidase region is 639 

highly conserved between all tsetse species. However, the sequences contain sub-genus 640 
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specific (Morsitans and Palpalis) repeat motifs within the glutamate/aspartate/asparagine 641 

region. The motifs differ in size (32 amino acids in the Morsitans group and 57 amino acids in 642 

the Palpalis group) and amino acid composition (Figure 10B). Moreover, within each sub-genus, 643 

there are differences in the number of repetitive motifs. Within the Morsitans group, G. m. 644 

morsitans and G. pallidipes have five motifs while G. austeni has only four. In the Palpalis 645 

group, G. palpalis has three repetitive motifs and G. fuscipes five. Between the  646 

metallophosphoesterase/5`nucleotidase and the glutamate/aspartate/asparagine-rich regions 647 

there are a series of amino acids doublets comprising a lysine at the first position followed on 648 

the second position by another amino acid (glutamic acid, glycine, alanine, serine, asparagine 649 

or arginine). These differences may account for the differential immunogenic ‘sub-Genus-650 

specific’ antibody response caused by Sgp3 in Morsitans and Palpalis group flies [90]. 651 

Comparison of vision associated Rhodopsin genes reveals conservation of motion 652 

tracking receptors and variation in receptors sensitive to blue wavelengths (Figure 11). 653 

Vision plays an important role in host and mate seeking by flies within the Glossina genus. This 654 

aspect of their biology is a critical factor in the optimization and development of trap/target 655 

technologies [93, 94]. Analysis of the light sensitive Rhodopsin proteins across the Glossina 656 

species reveals orthologs to those described in the G. m. morsitans genome (Figure 11A). The 657 

expanded analysis provided by these additional genomes corroborates observations made for 658 

the original G. m. morsitans genome, including the conservation of the blue sensitive Rh5 659 

rhodopsin and the loss of one of the two dipteran UV-sensitive Rhodopsins: Rh4 [26]. The 660 

availability of the new genomes provides complete sequences for an additional long wavelength 661 

sensitive Rhodopsin gene, Rh2. Prior to this analysis the recovery of a complete sequence from 662 

G. m. morsitans was not possible due to poor sequence quality at its locus. 663 

Rhodopsin protein sequence divergence among the six Glossina species and M. domestica (as 664 

an outgroup) was investigated by calculating pairwise sequence divergence. As expected, the 665 
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average pairwise sequence divergence between M. domestica and any Glossina species is 666 

higher than maximum sequence divergence among Glossina species for any of the five 667 

investigated Rhodopsin subfamilies, ranging between 0.13 to 0.3 substitutions per 100 sites. 668 

Average sequence divergence of G. brevipalpis to other Glossina is consistently lower than 669 

Musca vs Glossina but also higher than the average pairwise distances between all other 670 

Glossina, suggesting the older evolutionary lineage of G. brevipalpis (Figure 11B).  671 

Three interesting aspects emerge in the comparison between subfamilies at the level of 672 

sequence divergence between Glossina species. The Rh1 subfamily, which is deployed in 673 

motion vision, has the lowest average sequence divergence suggesting the strongest level of 674 

purifying selection. Rh2, which is expressed in the ocelli, and Rh5, which is expressed in color-675 

discriminating inner photoreceptors, are characterized by conspicuously higher than average 676 

sequence divergence among Glossina species. This observation could account for the varying 677 

attractivity of trap and targets to different tsetse species. 678 

Conclusions 679 

The comparative genomic analysis of these six Glossina species highlights important aspects of 680 

Glossina evolution and provides further insights into their unique biology. Additional comparative 681 

analyses of the genome assemblies, repetitive element composition, genes coding for 682 

neuropeptides and their receptors, cuticular protein genes, transcription factor genes and 683 

peritrophic matrix protein genes are available in the associated supplemental materials text, 684 

figures and data files (Supplemental Material; Supplemental Figures 10 and 13, Supplemental 685 

Tables 15, 16, 17, 18, 19; Supplemental Data 6 and 7). The results derived from the analysis of 686 

these genomes are applicable to many aspects of tsetse biology including host seeking, 687 

digestion, immunity, metabolism, endocrine function, reproduction and evolution. This expanded 688 

knowledge has important practical relevance. Indeed, tsetse control strategies utilize trapping as 689 

a key aspect of population management. These traps use both olfactory and visual stimuli to 690 
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attract tsetse. The findings of a reduced contingent of olfactory associated genes and the 691 

variability of color sensing Rhodopsin genes provide research avenues into improvements of 692 

trap efficacy. Deeper understanding of the important chemosensory and visual stimuli 693 

associated with the different species could facilitate the refinement of trap designs for specific 694 

species. The findings associated with Glossina digestive biology, including the enrichment of 695 

proteolysis-associated genes and identification of Glossina specific expansions of immune 696 

associated proteins provide new insights and avenues of investigation into vector competence 697 

and vector/parasite relationships. Analysis of the female and male reproduction associated 698 

genes reveals the differential evolutionary pressures on females and males. The conservation of 699 

female milk proteins across species highlights the fact that this unique biology is optimized and 700 

under strong negative evolutionary pressure. In counterpoint, male accessory gland derived 701 

seminal proteins appear to have evolved rapidly between Glossina species and with little 702 

conservation relative to other Diptera in gene orthology and functional conservation. Tsetse 703 

reproduction is slow due to their unique viviparous adaptations, making these adaptations a 704 

potential target for the development of new control measures. The knowledge derived from 705 

these comparisons provide context and new targets for functional analysis of the genetics and 706 

molecular biology of tsetse reproduction. In addition to the practical aspects of the knowledge 707 

derived from these analyses, they also provide a look at the genetics underlying the evolution of 708 

unique adaptive traits and the resources to develop deeper understanding of these processes. 709 

Materials and Methods: 710 

Aim 711 

The aim of these studies was to generate and mine the genomic sequences of six species of 712 

tsetse flies with different ecological niches, host preferences and vectorial capacities. The goals 713 

of the analyses performed here are to identify novel genetic features specific to tsetse flies and 714 

to characterize differences between the Glossina species to correlate genetic changes with 715 
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phenotypic differences in these divergent species. This was accomplished by the analyses 716 

described below. 717 

Glossina strains 718 

All genomes were sequenced from DNA obtained from 2-4 lines of flies originating from 719 

individual pregnant females and their female offspring. Species collections were derived from 720 

laboratory strains with varied histories (See Supplemental Table 8). The G. pallidipes, G. 721 

palpalis and G. fuscipes flies were maintained in the laboratory at the Slovak Academy of 722 

Sciences in Bratislava, Slovakia. The G. brevipalpis strain were maintained in the Insect Pest 723 

Control Laboratory of the Joint FAO/IAEA Division of Nuclear Techniques in Food and 724 

Agriculture, Seibersdorf, Austria. Finally, G. austeni were obtained from the Tsetse 725 

Trypanosomiasis Research Institute in Tanga, Tanzania. Females were given two blood meals 726 

supplemented with 20 mg/ml tetracycline to cure them of symbionts to eliminate non-tsetse 727 

derived DNA. 728 

Genomic sequencing and assembly 729 

Total genomic DNA was isolated from female pools for each species. High quality/ high 730 

molecular weight DNA was isolated from individual flies using Genomic-tip purification columns 731 

(QIAGEN) and the associated buffer kit. Samples were treated according to the protocol for 732 

tissue-based DNA extraction. The pooled individual DNA isolates were utilized for sequencing 733 

on Illumina HiSeq2000 instruments. The sequencing plan followed the recommendations 734 

provided in the ALLPATHS-LG assembler [95]. Using this model, we targeted 45x sequence 735 

coverage each of fragments (overlapping paired reads ~180bp length) and 3kb paired end (PE) 736 

sequences as well as 5x coverage of 8kb PE sequences. The first draft assembly scaffold gaps 737 

of each species were closed where possible with mapping of the same species assembly input 738 

sequences (overlapping paired reads ~180bp length) and local gap assembly [96]. 739 

Contaminating sequences and contigs 200bp or less were removed (Supplemental Table 9). 740 
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Scaffold mapping to Muller Elements and Sex Specific Muller Element Expression Biases 741 

We mapped scaffolds in each Glossina spp. genome assembly to chromosomes using 742 

homology relationships with D. melanogaster (Supplemental Table 1). This method exploits the 743 

remarkable conservation of chromosome arm (Muller element) gene content across flies [33, 744 

97, 98]. We used the 1:1 orthologs between each Glossina species and D. melanogaster from 745 

OrthoDB [99] to assign scaffolds from each species to Muller elements, applying an approach 746 

previously developed for house fly [30]. For each species, a gene was assigned to a Muller 747 

element if it was a 1:1 ortholog with a D. melanogaster gene. Then, each scaffold was assigned 748 

to a Muller element if the majority (>50%) of genes with 1:1 orthologs on that scaffold were 749 

assigned to a single Muller element. 750 

We used the RNA-seq data (described below) to compare gene expression in males and 751 

females. Expression comparisons were between male flies and either lactating (L) or non-752 

lactating (NL) females. 753 

Repeat feature annotation 754 

Repeat libraries for each species were generated using RepeatModeler [100]. The resultant 755 

libraries were used to annotate the genome with RepeatMasker [101], alongside tandem and 756 

low complexity repeats identified with TRF [102] and DUST [103]. The proportion of the genome 757 

covered by repeats is shown in (Supplemental Table 10), with the figures for G. m. morsitans 758 

provided for comparison. 759 

Automated gene annotation 760 

Gene annotation was performed with MAKER [104], using the first 2 rounds to iteratively 761 

improve the training of the ab initio gene predictions derived from the combined Benchmarking 762 

Universal Single-Copy Orthologs (BUSCO) [105] and Core Eukaryotic Genes Mapping 763 

Approach (CEGMA) [106] HMMs, which were aligned to the genome assemblies using 764 
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GeneWise [107]. RNA-seq data for each species (described below) were used to build a 765 

reference-guided transcriptome assembly with Tophat [108] and Cufflinks [109]. The initial 766 

MAKER analysis produced unrealistically high numbers of gene models, so InterProScan [110] 767 

and OrthoMCL [111] were used to identify gene predictions which lacked strong evidence. Only 768 

gene models that met one or more of the following criteria were retained: (a) an annotation edit 769 

distance < 1 [112]; (b) at least one InterPro domain (other than simple coils or signal peptides); 770 

(c) an ortholog in the Glossina species complex. This process resulted in a reduction of 12-25% 771 

in the number of gene models for each species (Supplemental Table 11). Genes from all six 772 

species were assigned to 15,038 orthology groups via the Ensembl Compara ‘GeneTrees’ 773 

pipeline [113]. 774 

For all types of ncRNA except tRNA and rRNA genes, we predicted RNA gene models by 775 

aligning sequences from Rfam [114] against the genome using BLASTN [115]. The BLAST 776 

results were then used to seed Infernal [116] searches of the aligned regions with the 777 

corresponding Rfam covariance models. rRNA genes were predicted with RNAmmer [117], and 778 

tRNA genes with tRNAScan-SE [118]. 779 

Manual gene annotation 780 

Glossina sequence data and annotation data were loaded into the Apollo [119] community 781 

annotation instances in VectorBase [120]. Manual annotations, primarily from a workshop held 782 

in Kenya in 2015, underwent both manual and automated quality control to remove incomplete 783 

and invalid modifications, and then merged with the automated gene set. Gene set versions are 784 

maintained at (www.vectorbase.org) for each organism. All highlighted cells relate to the current 785 

gene set version indicated in the table. Statistics for older gene set versions are provided along 786 

with the relevant version number. 787 

Genome completeness analysis (BUSCO and CEGMA Analysis) 788 
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Quality of the genome assembly and training of the ab initio predictors used in the gene 789 

prediction pipeline was determined using the diptera_odb9 database which represents 25 790 

Dipteran species and contains a total of 2799 BUSCO (Benchmarking Universal Single-Copy 791 

Orthologs) genes derived from the OrthoDB v9 dataset [105] (Supplemental Table 12). 792 

Identification of Horizontal Gene Transfer Events 793 

All genome sequence files for G. pallidipes, G. palpalis, G. fuscipes, G. austeni, and G. 794 

brevipalpis used for the whole genome assembly were also introduced into a custom pipeline for 795 

the identification of putative Horizontal Gene Transfer (HGT) events between Wolbachia and 796 

tsetse. Wolbachia sequences were filtered out from WGS reads using a combination of MIRA 797 

[121] and NextGenMap [122] mapping approaches. The reference sequences used were wMel 798 

(AE017196), wRi (CP001391), wBm (AE017321), wGmm (AWUH01000000), wHa 799 

(NC_021089), wNo (NC_021084), wOo (NC_018267), wPip (NC_010981), and the 800 

chromosomal insertions A and B in G. morsitants morsitans. All filtered putative Wolbachia-801 

specific sequences were further examined using blast and custom-made databases. 802 

To identify the chromosomal Wolbachia insertions, the following criteria were used: Sequences 803 

that (relative to the reference genomes): (a) exhibit high homology to insertion sequences A & B 804 

from G. m. morsitans, (b) exhibit a high degree of nucleotide polymorphisms (at least 10 805 

polymorphisms/100bp) with the reference genomes, and (c) contain a high degree of 806 

polymorphism coupled with insertions and/or deletions. Wolbachia specific sequences for each 807 

Glossina species were assembled with MIRA using a de novo approach. For G. pallidipes, G. 808 

palpalis, G. fuscipes, and G. brevipalpis assembled sequences corresponding only to 809 

cytoplasmic Wolbachia were identified. Genomic insertions were only observed in assembled 810 

sequences from G. austeni (Supplemental Table 2). The statistics for the G. austeni assembled 811 

sequences are as follows: N50 4493, N90 1191, and mean contig length, 2778bps. During the 812 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 27, 2019. ; https://doi.org/10.1101/531749doi: bioRxiv preprint 

https://doi.org/10.1101/531749


35 

 

process of identifying HGT events in G. fuscipes, we also recovered Spiroplasma sequences 813 

but none of the recovered sequences were chromosomal. 814 

Whole-genome pairwise alignment 815 

We generated all possible pairwise alignments between the six Glossina species (including G. 816 

m. morsitans) and an outgroup, M. domestica, using the Ensembl Compara software pipeline 817 

[123]. LASTZ [124] was used to create pairwise alignments, which were then joined to create 818 

'nets' representing the best alignment with respect to a reference genome [125]. G. m. 819 

morsitans was always used as the reference for any alignment of which it was a member, 820 

otherwise the reference genome was randomly assigned. Coverage statistics and configuration 821 

parameters for all alignments are available at 822 

https://www.vectorbase.org/compara_analyses.html. 823 

Glossina phylogeny prediction 824 

We identified orthologous genes across the six Glossina species and six outgroups (M. 825 

domestica, D. melanogaster, D. ananassae, D. grimshawi, L. longipalpis, and A. gambiae) by 826 

employing a reciprocal-best-hit (RBH) approach in which G. m. morsitans was used as focal 827 

species. We identified 286 orthologs with a clear reciprocal relationship among the 12 species. 828 

All orthologs were aligned individually using MAFFT [126] and concatenated in a super-829 

alignment of 478.617 nucleotide positions. The nucleotide alignment was translated in the 830 

corresponding amino acids and passed through Gblocks [127] (imposing “half allowed gap 831 

positions” and leaving remaining parameters at default) to obtain a dataset of 117.783 amino 832 

acid positions. This dataset was used for a Maximum Likelihood analysis in RAxML [128] 833 

employing the LG+G+F model of replacement, and for a Bayesian analysis using Phylobayes 834 

[129, 130] employing the heterogeneous CAT+G model of replacement. We further performed a 835 

coalescent-aware analysis using Astral [131] and the 286 single gene trees obtained using 836 
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Raxml [128] and analyzing the alignments at the nucleotide level with the GTR+G model of 837 

replacement. 838 

Mitochondrial genome analysis and phylogeny 839 

The mtDNA genomes of G. m. centralis and G. brevipalpis were sequenced using the Illumina 840 

HiSeq system and about 15 kb of mitochondrial sequence of each species was obtained. These 841 

sequences were used to identify the mtDNA sequences within the sequenced tsetse genomes 842 

(G. pallidipes, G. m. morsitans, G. p. gambiensis, G. f. fuscipes and G. austeni) from the 843 

available genomic data. Sanger sequencing confirmed the mtDNA genome sequence of each 844 

tsetse species. This involved PCR amplification of the whole mtDNA genome using fourteen 845 

pairs of degenerate primers designed to cover the whole mitochondrial genomes of the 846 

sequences species (Supplemental Table 13). The PCR products were sent for Sanger 847 

sequencing. The sequences obtained by Sanger and Illumina sequencing for each species were 848 

assembled using the SegMan program from the lasergene software package (DNAStar Inc., 849 

Madison, USA). The phylogenetic analysis based on these sequences was performed using 850 

maximum likelihood method with the MEGA 6.0 [132]. 851 

Synteny analysis 852 

The synteny analysis was derived from whole genome alignments performed as follows using 853 

tools from the UCSC Genome Browser [133]. The LASTZ software package (version 1.02.00) 854 

generated the initial pairwise sequence alignments with the parameters: E=30, H=2000, 855 

K=3000, L=2200, O=400 and the default substitution matrix. From these alignments, Kent’s 856 

toolbox (version 349) [133] was used to generate chain and nets (higher-level abstractions of 857 

pairwise sequence alignments) with the parameters: -verbose=0 -minScore=3000 and -858 

linearGap=medium. The multiple alignment format (MAF) files were built with MULTIZ for TBA 859 

package (version 01.21.09) [134], using the chains and nets, along with the phylogenetic 860 

relationships and distances between species. Using the MAF files, pairwise homologous 861 
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synteny blocks (HSBs) were automatically defined using the SyntenyTracker software [135]. 862 

Briefly, the SyntenyTacker software defines an HSB as a set of two or more consecutive 863 

orthologous markers in homologous regions of the two genomes, such that no other defined 864 

HSB is within the region bordered by these markers. There are two exceptions to this rule: the 865 

first involves single orthologous markers not otherwise defined within HSBs; and the second 866 

involves two consecutive singleton markers separated by a distance less than the resolution 867 

threshold (10 kb for this analysis). As the 10 Kb blocks were too small for visualisation in Circos 868 

[136], they were aggregated into larger 100 Kb histogram blocks, where each 100 Kb Circos 869 

block shows the fraction of sequence identified as syntenic for a particular species when aligned 870 

to D. melanogaster. Synteny blocks are available for visualisation from the Evolution Highway 871 

comparative chromosome browser: http://eh-demo.ncsa.uiuc.edu/drosophila/.  872 

Orthology and paralogy inference and analysis 873 

Phylogenetic trees were inferred with the Ensembl Compara 'GeneTrees' pipeline [123, 137] 874 

using all species from the VectorBase database of arthropod disease vectors [120]. The trees 875 

include 33 non-Glossina species, such as D. melanogaster, which act as outgroup comparators. 876 

All analyses are based on the VectorBase April 2016 version of the phylogenetic trees. 877 

Representative proteins from all genes were clustered and aligned, and trees showing orthologs 878 

and paralogs were inferred with respect to the NCBI taxonomy tree 879 

(http://www.ncbi.nlm.nih.gov/taxonomy). 880 

The 15,038 predicted gene trees containing Glossina sequences were parsed to quantify the 881 

trees based on their constituent species. Raw tree files (Supplemental Data 1) were parsed 882 

using a custom PERL script (Supplemental File 1) to determine gene counts for representative 883 

Dipteran species for each gene tree. Count data were imported into Excel and filtered using 884 

pivot tables to categorize orthology groups based upon species constitution (Supplemental Data 885 

2). 886 
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The orthology groups were broken into cohorts based on the phylogenetic composition of 887 

species within each group. The Glossina containing orthology groups were categorized as 888 

follows: common to Diptera (including the Nematocera sub-order), Brachycera sub-order 889 

specific, Glossina genus specific, Glossina sub-genus specific (Morsitans and Palpalis) or 890 

Glossina species specific. Each category is sub-divided into two groups, universal groups that 891 

contain representative sequences from all species within the phylogenetic category or partial 892 

orthology groups containing sequences from some but not all members of the phylogenetic 893 

category. Glossina gene IDs and associated FASTA sequences associated with groups of 894 

interest were extracted using a custom Perl script for gene ontology analysis (Supplemental File 895 

2) 896 

Gene Ontology (GO) analysis 897 

Gene associated GO terms were obtained from the VectorBase annotation database via the 898 

BioMart interface. Genes from Glossina genus, and sub-genus specific orthology groups were 899 

isolated and tested for enrichment of GO terms. Analysis for GO terms for enrichment was 900 

performed with the R package “topGO”. The enriched genes were separated into species 901 

specific lists compared against the entirety of predicted protein-coding genes from the 902 

respective species. Significance of enrichment was determined using Fisher’s Exact Test 903 

(Supplemental Table 3 + Supplemental Data 3). 904 

Identification and analysis of gene expansions/contractions 905 

Gene trees containing orthologs/paralogs representing each of the six Glossina species were 906 

analyzed to identify sub-genus associated gene expansions/contractions. Gene trees were 907 

considered for analysis if the variance in the number of orthologs/paralogs between the 6 908 

species was greater than 2. Variable gene trees were tested for phylogenetic significance 909 

relative to the predicted Glossina phylogeny using the CAFE software package [138] to reject 910 

potentially inaccurate variance predictions due to erroneous gene annotations. Gene trees with 911 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 27, 2019. ; https://doi.org/10.1101/531749doi: bioRxiv preprint 

https://doi.org/10.1101/531749


39 

 

a CAFE score of <0.05 were considered significant (Supplemental table 4 + Supplemental data 912 

4).  913 

Sequences from gene trees satisfying the variance and CAFE thresholds were extracted with a 914 

custom PERL script (Supplemental File 2) and analyzed by BLASTP analysis against an insect 915 

specific subset of the NCBI NR database. Gene trees were annotated with the most common 916 

description associated with the top BLAST hits of its constituent sequences. Gene trees were 917 

subjected to PCA analysis in R using the FactoMineR and Factoextra packages using species 918 

specific gene counts as input data. The results were plotted and annotated with their associated 919 

BLAST derived descriptions. 920 

RNA-seq data 921 

Total RNA was isolated for each of the six tsetse species from whole male and whole female 922 

(non-lactating and lactating) for RNA-seq library construction. Poly(A)+ RNA was isolated, then 923 

measured with an Agilent Bioanalyzer for quality. Samples were considered to be of high quality 924 

if they showed intact ribosomal RNA peaks and lacked signs of degradation. Samples passing 925 

quality control were used to generate non-normalized cDNA libraries with a modified version of 926 

the Nu-GEN Ovation® RNASeq System V2 (http://www.nugeninc.com). We sequenced each 927 

cDNA library (0.125 lane) on an Illumina HiSeq 2000 instrument (~36 Gb per lane) at 100 bp in 928 

length. 929 

RNA-seq analyses were conducted based on methods described in Benoit et al. [77], 930 

Rosendale et al.[139], and Scolari et al.[140] with slight modifications. RNA-seq datasets were 931 

acquired from whole males, whole dry females, and whole lactating females. The SRA numbers 932 

for each of the libraries are listed in (Supplemental Table 14). 933 

RNA-seq datasets were quality controlled using the FastQC (Babraham Bioinformatics) 934 

software package. Each set was trimmed/cleaned with CLC Genomics (Qiagen) and quality was 935 
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re-assessed with FastQC. Each dataset was mapped to the predicted genes from each 936 

Glossina genome with CLC Genomics. Each read required at least 95% similarity over 50% of 937 

length with three mismatches allowed. Transcripts per million (TPM) was used as a proxy for 938 

gene expression. Relative transcript abundance differences were determined as the TPM in one 939 

sample relative to the TPM of another dataset (e.g. male/lactating Female). A proportion based 940 

statistical analysis [141] followed by Bonferroni correction at 0.05 was used to identify genes 941 

with significant sex and stage specific transcript enrichment. This stringent statistical analysis 942 

was used as only one replicate was available for each treatment. 943 

Enriched transcripts in lactating and dry transcriptomes from the species examined were 944 

compared to orthologous sequences in G. m. morsitans [142]. Overlap was determined by 945 

comparison of the enrichment status of orthologous sequences in the Glossina species tested. 946 

The results of this analysis are visualized in a Venn diagram 947 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). Determination of dN/dS values and 948 

production of phylogenetic trees was conducted with the use of DataMonkey [143, 144] for 949 

dN/dS analyses and MEGA5 for alignment and tree construction [145]. 950 

Cuticular Protein Analysis 951 

The predicted peptide sequences from each species were analyzed by BLASTp analysis [115] 952 

against characteristic sequence motifs derived from several families of cuticle proteins [146]. 953 

Predicted cuticle proteins were further analyzed with CutProtFam-Pred, a cuticle protein 954 

prediction tool described in Ioannidou et al. [147], to assign genes to specific families of cuticle 955 

proteins. To find the closest putative homolog to cuticle protein genes in Glossina, genes were 956 

searched (BLASTp) against Refseq protein database from the National Center for 957 

Biotechnology Information (NCBI). The protein sequences with the lowest e-value were 958 

considered the closest putative homologs (Supplemental Data 5). 959 

Transcription factor identification and annotation 960 
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Likely transcription factors (TFs) were identified by scanning the amino acid sequences of 961 

predicted protein-coding genes for putative DNA binding domains (DBDs). When possible, we 962 

predicted the DNA binding specificity of each TF using the procedures described in Weirauch et 963 

al. [148]. Briefly, we scanned all protein sequences for putative DBDs using the 81 Pfam [149] 964 

models listed in Weirauch and Hughes [150] and the HMMER tool [151], with the recommended 965 

detection thresholds of Per-sequence Eval < 0.01 and Per-domain conditional Eval < 0.01. Each 966 

protein was classified into a family based on its DBDs and their order in the protein sequence 967 

(e.g., bZIPx1, AP2x2, Homeodomain+Pou). We then aligned the resulting DBD sequences 968 

within each family using clustalOmega [152], with default settings. For protein pairs with multiple 969 

DBDs, each DBD was aligned separately. From these alignments, we calculated the sequence 970 

identity of all DBD sequence pairs (i.e. the percent of AA residues that are identical across all 971 

positions in the alignment). Using previously established sequence identity thresholds for each 972 

family [148], we mapped the predicted DNA binding specificities by simple transfer. For 973 

example, the DBD of the G. austeni GAUT024062-PA protein is identical to the DBD of D. 974 

melanogaster mirr (FBgn0014343). Since the DNA binding specificity of mirr has already been 975 

experimentally determined, and the cutoff for Homeodomain family of TFs is 70%, we can infer 976 

that GAUT024062-PA will have the same binding specificity as mirr. All associated data can be 977 

found in (Supplemental Data 6) 978 

 979 

Abbreviations: 980 

DBD – DNA binding domain, HAT – Human African Trypanosomiasis, AAT – Animal African 981 

Trypanosomiasis, mtDNA – mitochondrial DNA, rRNA – ribosomal RNA, tRNA- transfer RNA, 982 

HGT – horizontal gene transfer, OG – orthology group, GO – gene ontology, OBP – odorant 983 

binding protein, miRNA – micro RNA, siRNA – small interfering RNA, piRNA – piwi interacting 984 

RNA, MGP – milk gland protein, MAG – male accessory gland, SFP – seminal fluid protein. 985 
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Figure 1: Geographic distribution, ecology and vectorial capacity of sequenced Glossina 1044 

species. Visual representation of the geographic distribution of the sequenced Glossina species 1045 

across the African continent. Ecological preferences and vectorial capacities are described for 1046 

each associated group. 1047 

Figure 2: Glossina whole genome alignment, phylogenetic analysis of orthologous 1048 

protein-coding nuclear genes and phylogenetic analysis of mitochondrial sequences. 1049 

A. Analysis of whole genome and protein-coding sequence alignment. The left graph reflects the 1050 

percentage of total genomic sequence aligning to the G. m. morsitans reference. The right side 1051 

of the graph represents alignment of all predicted coding sequences from the genomes with 1052 

coloration representing matches, mismatches, insertions and uncovered exons. B. Phylogenic 1053 

tree from conserved protein-coding sequences. Black dots at nodes indicate full support from 1054 

Maximum likelihood (Raxml), Bayesian (Phylobayes), and coalescent-aware (Astral) analyses. 1055 

Raxml and Phylobayes analyses are based on an amino acid dataset of 117,782 positions from 1056 

286 genes from 12 species. Astral analyses is based on a 1125 nucleotide dataset of 478,617 1057 

positions from the 6 Glossina (full trees are in Supplemental Figure 1A-C). C. Molecular 1058 

phylogeny derived from whole mitochondrial genome sequences. The analysis was performed 1059 

using the maximum likelihood method with MEGA 6.0. 1060 

Figure 3: Visualization of syntenic block analysis data and predicted Muller Element 1061 

sizes 1062 

Level of syntenic conservation between tsetse scaffolds and Drosophila chromosomal 1063 

structures (Muller Elements). The color-coded concentric circles consisting of bars represent the 1064 

percent of syntenic conservation of orthologous protein-coding gene sequences between the 1065 

Glossina genomic scaffolds and Drosophila Muller elements. Each bar represents 100 kb of 1066 

aligned sequence and bar heights represent the percent of syntenic conservation. The graphs 1067 

on the periphery of the circle illustrate the combined predicted length and number of genes 1068 
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associated with the Muller elements for each tsetse species. The thin darkly colored bars 1069 

represent the number of 1:1 orthologs between each Glossina species and D. melanogaster. 1070 

The thicker lightly colored bands represent the predicted length of each Muller element for each 1071 

species. This was calculated as the sum of the lengths of all scaffolds mapped to those Muller 1072 

elements. 1073 

Figure 4: Homology map of the Wolbachia derived cytoplasmic and horizontal transfer 1074 

derived nuclear sequences. Circular map of the G. austeni Wolbachia horizontal transfer 1075 

derived genomic sequences (wGau - blue), the D. melanogaster Wolbachia cytoplasmic 1076 

genome sequence (wMel - green), the G. m. morsitans Wolbachia cytoplasmic genome 1077 

sequence (wGmm - red), and the Wolbachia derived chromosomal insertions A & B from G. m. 1078 

morsitans (wGmm Insertion A and Insertion B yellow and light yellow respectively). The 1079 

outermost circle represents the scale in kbp. Contigs for the wGau sequences, wGmm and the 1080 

chromosomal insertions A & B in G. m. morsitans are represented as boxes. Regions of 1081 

homology between the G. austeni insertions and the other sequences are represented by 1082 

orange ribbons. Black ribbons represent syntenic regions between the wGau insertions and the 1083 

cytoplasmic genomes of wGmm and wMel. 1084 

Figure 5: Constituent analysis of Glossina associated gene orthology groups. 1085 

Visualization of relative constitution of orthology groups containing Glossina gene sequences. 1086 

Combined bar heights represent the combined orthogroups associated with each Glossina 1087 

species. The bars are color-coded to reflect the level of phylogenetic representation of clusters 1088 

of orthogroups at the order, sub-order, genus, sub-genus and species. Saturated bars represent 1089 

orthology groups specific and universal to a phylogenetic level. Desaturated bars represent 1090 

orthogroups specific to a phylogenetic level but lack universal representation across all included 1091 

species. Gene ontology analysis of specific and universal groups can be found in Table 3. 1092 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 27, 2019. ; https://doi.org/10.1101/531749doi: bioRxiv preprint 

https://doi.org/10.1101/531749


47 

 

Figure 6: Sub-genus specific gene family expansions/retractions. Principal component 1093 

analysis-based clustering of gene orthology groups showing significant differences in the 1094 

number of representative sequences between the six Glossina species. Orthology groups 1095 

included have sub-genus specific expansions/contractions as determined by CAFE test (P-value 1096 

< 0.05). Detailed information regarding the functional associations of the unlabeled groups is 1097 

provided in Supplemental Figures 10+11 and in Supplemental Table 4. 1098 

Figure 7: Heat map of counts of Glossina homologs to Drosophila immune genes. Counts 1099 

of Glossina sequences within ortholog groups containing Drosophila genes annotated with the 1100 

“Immune System Process” GO tag (GO:0002376). 1101 

Figure 8: Conservation of synteny, sequence homology and stage/sex specific 1102 

expression of tsetse milk proteins between species. Overview of the conservation of tsetse 1103 

milk protein genes and their expression patterns in males, non-lactating and lactating females. 1104 

A.) Syntenic analysis of gene structure/conservation in the mgp2-10 genetic locus across 1105 

Glossina species. B.) Phylogenetic analysis of orthologs from the mgp2-10 gene family. C.) 1106 

Combined sex and stage specific RNA-seq analysis of relative gene expression of the 12 milk 1107 

protein gene orthologs in males, non-lactating and lactating females of 5 Glossina species. D.) 1108 

Visualization of fold change in individual milk protein gene orthologs across 5 species between 1109 

lactating and non-lactating female flies. Gene sequence substitution rates are listed for each set 1110 

of orthologous sequences. E.) Comparative enrichment analysis of differentially expressed 1111 

genes between non-lactating and lactating female flies. 1112 

Figure 9: Comparative analysis of Glossina male accessory gland (MAG) protein family 1113 

memberships 1114 

Graphical representation of the putative Glossina orthologs and paralogs to characterized MAG 1115 

genes from G. m. morsitans. The genes are categorized by their functional classes as derived 1116 

by orthology to characterized proteins from Drosophila and other insects. 1117 
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Figure 10: 5’Nuc/apyrase salivary gene family organization and sequence features across 1118 

Glossina species. A.) Chromosomal organization of the 5’Nuc/apyrase family orthologs on 1119 

genome scaffolds from the six Glossina species. The brown gene annotations represent 5’Nuc 1120 

gene orthologs; purple gene annotations represent sgp3 gene orthologs and the blue gene 1121 

annotations an apyrase-like encoding gene. The broken rectangular bars on the G. brevipalpis 1122 

scaffold indicate that the sequence could not be determined due to poor sequence/assembly 1123 

quality. B.) Schematic representation of sgp3 gene structure in tsetse species. The K(.) denotes 1124 

a repetition of a Lysine (K) and another amino acid (Glutamic acid, Glycine, Alanine, Serine, 1125 

Asparagine or Arginine). The green oval represents a repetitive motif found in Morsitans sub-1126 

genus; the red oval represents a repetitive motif found in Palpalis group. The dashed line 1127 

indicates a partial motif present. For each of the two motifs the consensus sequence is shown in 1128 

the right by a Logo sequence. The poor sequence/assembly quality of the G. brevipalpis 1129 

scaffold prevented inclusion of this orthology in the analysis. 1130 

Figure 11: Phylogenetic and sequence divergence analysis of Glossina vision associated 1131 

proteins. Phylogenetic and sequence conservation analysis of the vision associated Rhodopsin 1132 

G-protein coupled receptor genes in Glossina and orthologous sequences in other insects. A.) 1133 

Phylogenetic analysis of Rhodopsin protein sequences. B.) Pairwise analysis of sequence 1134 

divergence between M. domestica and Glossina species and within the Glossina genus. 1135 

Supplemental Figure 1: Maximum Likelihood, Bayesian and Astral based phylogenetic 1136 

analysis of a concatenated single gene ortholog alignment. 1137 

Supplemental Figure 2: Tsetse variable mitochondrial DNA sequence and species delineation 1138 

by high resolution melt curve analysis 1139 

Supplemental Figure 3: Application of high-resolution melt curve analysis to distinguish Tsetse 1140 

haplotypes/populations 1141 
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Supplemental Figure 4: The percent of female-, male-, and un-biased genes that are on an X 1142 

chromosome scaffold (Muller elements A, D, or F) is plotted for each species. Sex-biased 1143 

expression was measured between males and either lactating (L) or non-lactating (NL) females. 1144 

Asterisks indicate a significant difference between the percent of sex-biased genes that are X-1145 

linked when compared to unbiased genes (*P<0.05 in Fisher’s exact test). 1146 

Supplemental Figure 5: The distribution of the log2 (fold-change between females and males) 1147 

is plotted for autosomal and X-linked genes in each species. Female-male gene expression 1148 

comparisons are between males and either lactating or non-lactating females. 1149 

Supplemental Figure 6: Rates of non-synonymous to synonymous substitution (dN/dS) along 1150 

different evolutionary lineages within the Glossina genus. 1151 

Supplemental Figure 7: Rates of non-synonymous to synonymous substitution (dN/dS) rates 1152 

of female, male and non-sex biased genes across the X and autosomal muller elements. 1153 

Supplemental Figure 8: The distribution of male biased gene expression across the predicted 1154 

Glossina Muller Elements. Bar heights represent the percentage of genes per element with 1155 

male biased gene expression. 1156 

Supplemental Figure 9: Rates of non-synonymous to synonymous substitution (dN/dS) rates 1157 

across the predicted muller elements. 1158 

Supplemental Figure 10: Repetitive element constitution of Glossina genomes. Analysis of 1159 

repetitive element composition across the six Glossina species. A.) Graphical representation of 1160 

the constitution and sequence coverage by the various classes of identified repetitive elements. 1161 

B.) Relative constitution of DNA Terminal Inverted Repeat (TIR) families across the Glossina 1162 

genomes. C.) Relative constitution of Long Interspersed Nuclear Elements (LINEs) across the 1163 

Glossina genomes. 1164 
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Supplemental Figure 11: Sub-genus specific gene family expansions/retractions (with 1165 

functional annotations). Principal component analysis-based clustering of gene orthology 1166 

groups showing significant differences in the number of representative sequences between the 1167 

six Glossina species.  1168 

Supplemental Figure 12: Sub-genus specific gene family expansions/retractions (with 1169 

orthology group number annotations). Principal component analysis-based clustering of 1170 

gene orthology groups showing significant differences in the number of representative 1171 

sequences between the six Glossina species. 1172 

Supplemental Figure 13: Distribution of transcription factor families across insect 1173 

genomes. Heatmap depicting the abundance of transcription factor (TF) families across a 1174 

collection of insect genomes. Each entry indicates the number of TF genes for the given family 1175 

in the given genome, based on presence of DNA binding domains. Color key is depicted at the 1176 

top (light blue means the TF family is completely absent) – note log (base 2) scale. 1177 
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