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Abstract

LD SCore regression (LDSC) has become a popular approach to estimate confounding bias,

heritability and genetic correlation using only genome wide association study (GWAS) test

statistics. SumHer is a newly-introduced alternative with similar aims. We show using theory

and simulations that both approaches fail to adequately account for confounding bias, even

when the assumed heritability model is correct. Consequently, these methods may estimate

heritability poorly if there was inadequate adjustment for confounding in the original GWAS

analysis. We also show that choice of summary statistic for use in LDSC or SumHer can have a

large impact on resulting inferences. Further, covariate adjustments in the original GWAS can

alter the target of heritability estimation, which can be problematic when LDSC or SumHer is

applied to test statistics from a meta-analysis of GWAS with different covariate adjustments.

LD SCore regression (LDSC) uses genome-wide association test statistics to estimate confounding

bias, the heritability tagged by SNPs (h2SNP), how h2SNP is distributed across the genome and the

genetic correlation of pairs of traits [1, 2, 3, 4]. Its use of test statistics rather than individual

genotype data means that it is effectively unlimited in sample size, and can make use of published

studies that do not release the genotypes of participants. Moreover the test statistics can be obtained

from a single GWAS or from a meta-analysis of multiple GWAS. These advantages have led to LDSC

being very widely used.

LDSC regresses the test statistic at each SNP on an “LD score”, defined as a sum of linkage

disequilibrium (LD) coefficients over neighbouring SNPs. The regression slope and intercept are

interpreted as, respectively, h2SNP and confounding bias not corrected in the GWAS analysis. SumHer
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[5] and S-LDSC [3, 4] generalise LDSC by introducing weights into the LD score. The weights

correspond to a heritability model that relates the expected heritability of a SNP to its properties

known a priori. SumHer uses fixed, SNP-specific weights reflecting LD and minor allele fraction

(MAF). In the most recent version of S-LDSC [4], weights based on LD and MAF as well as functional

annotations are estimated in the summary statistic analysis. HESS [6] and RSS [7] are other summary

statistic methods that require more information than association test statistics.

Researchers using LDSC or SumHer rely on assumptions about the test statistics. Usually, these

researchers have not performed the underlying GWAS analyses, but use test statistics obtained from

public data repositories [8] that may lack information required to check these assumptions. Here,

we examine the linear regression models underpinning these methods and assess their validity under

a range of scenarios. We do not revisit the topic of the underlying heritability model [5], rather we

will highlight problems that arise even when the simulation and analysis heritability models are the

same.

We derive expected values of association statistics and show that confounding effects are SNP

dependent, and correlated with LD score (Appendix, sections 1-2), contravening a fundamental

assumption of LDSC and its SumHer analogue. Thus a global adjustment term can fail to remove

confounding effects, although a multiplicative adjustment can correct an over-conservative use of

genomic control [5].

We illustrate the magnitude of the problem through simulations. Our investigation covers two

possible summary statistics and we show that inferences from LDSC or SumHer can be greatly

impacted by this choice. Further, we show that the definition of h2SNP targeted by LDSC and SumHer

varies with the covariates fitted in the GWAS analyses. This can be important in meta-analysis: if the

component studies use different covariate adjustments, any subsequent summary statistic heritability

analysis will merge estimates of different quantities.

Choice of test statistics

LDSC and SumHer both fit a linear regression to summary statistics Sj, j = 1, . . . ,m, obtained from

a GWAS on n individuals. Associated with SNP j is h2j ≥ 0, interpreted as the expected heritability

attributable uniquely to that SNP, with h2SNP =
∑m

j=1 h
2
j . SumHer is the case A = 1 in

E[Sj] = C
(
A+ n

∑
i

h2i r
2
ij

)
, (1)

while LDSC assumes both C = 1 and h2j = h2SNP/m for all j. In (1), r2ij is an estimated LD coefficient

with rii = 1 (see Methods), while A and C are alternative adjustments for confounding effects not
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accounted for in the GWAS analysis; as they cannot both be estimated, we fix either A = 1 or C = 1

or both. Estimates of C using SumHer were reported to be much lower than the corresponding

estimates of A from LDSC [5], but this was due to the difference in heritability model rather than

whether the confounding term was additive or multiplicative. The SumHer results indicated that

many GWAS had over-corrected for confounding (C < 1), whereas LDSC analyses of the same data

typically found A > 1, indicating a need for further confounding adjustment [5].

In practice, Sj is often the Wald statistic T 2
j from a classical simple linear regression [9, 1, 3],

which can be inferred from p-values. Its null distribution is F1,n−2, which converges to χ2
1 as n

increases. However, LDSC was proposed assuming that Sj = nα̂2
j , where αj is the effect of SNP j

when both Z and y are standardised [1]. Assuming that no covariates were fitted, Sj is n/(n−1)

times the standardised regression sum of squares ˜SSRj = (n−1)SSRj/SST . When covariates are

included this equality no longer holds, but we check using simulation that E[ ˜SSRj] ≈ E[nα̂2
j ], and

where convenient we compute E[ ˜SSRj] rather than E[nα̂2
j ].

Recently, GWAS test statistics have often been derived from a mixed regression model [10, 11]

in which SNP j is tested while other SNPs are used to compute the variance structure of a random

effect modelling the role of cryptic kinship and/or population structure. We report the expectation

of a general mixed model test statistic ( Appendix, section 2.7), but we do not examine it further

here because the expectation requires quantities not usually available from GWAS data repositories.

A general model

To assess the validity of (1), we derive approximations for E[Sj] and perform simulation studies using

the phenotype model

y = 1µ+ Zα+ Xβ + ε, α ∼ N (0,Σ), ε ∼ N (0, σ2
eI), (2)

where µ is an intercept, Z an n×m matrix of standardised SNP genotypes, α a vector of SNP effect

sizes, and Σ a diagonal matrix with jth entry σ2
j . The n× p matrix X contains column-standardised

covariate values, while β is a vector of covariate effects. If Cor(X,Z) 6= 0, the X are confounders for

genetic association analysis. The most important example is population structure when both X and

Z vary with, for example, geography or social strata.

When (2) is used as a simulation model, usually only a subset of the available SNPs are assigned

non-zero effects. When used as an analysis model, because the causal SNPs are unknown all available

SNPs should be included in (2). This mismatch between simulation and analysis models arises as it

is impossible in practice to limit analyses to causal SNPs.

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 27, 2019. ; https://doi.org/10.1101/532069doi: bioRxiv preprint 

https://doi.org/10.1101/532069


Two definitions of h2
SNP

We define σ2
y =

∑m
j=1 σ

2
j + σ2

e , the phenotypic variance after conditioning on covariates/confounders

X. However X may not be recorded, or may be omitted from the analysis, in which case σ2
y cannot

be estimated, and only the total phenotypic variance σ2
y +σ2

c is available, where σ2
c = β′X′Xβ/(n−1)

with ′ denoting transpose. This leads to two definitions of the heritability of SNP j [12]:

h2j,a = σ2
j/σ

2
y, (3)

h2j,b = σ2
j/(σ

2
y + σ2

c ). (4)

The conditional heritability, h2j,a, is standard when the X are modelled as fixed effects [13, 14], while

the marginal heritability, h2j,b, is usually preferred for random-effect covariates [15, 16]. We use h2j

when there are no covariates or it is unimportant to distinguish h2j,a from h2j,b. Henceforth we assume

that the phenotype vector y is sample standardised, in which case σ2
j = h2j .

Results

For derivations of the expectations given below, see Supporting Information, section B. Simulation

results reported here are for SumHer analyses of LDAK phenotypes (see Methods); corresponding

results using LDSC analyses of GCTA phenotypes are broadly similar (Appendix, Figures S1-4).

No confounding (Cor(X,Z) = 0)

For a single GWAS with no covariate/confounder effects

E[T 2
j ] ≈ cj

(
1 + n

∑
i

r2ijh
2
i

)
(5)

which is (1) with A = 1 and C = cj = 1/(1 −
∑

i r
2
ijh

2
i ). (5) resembles (1) with A = 1 and C 6= 1,

but the deviation from unity does not indicate confounding. For complex traits h2i is typically small,

so that cj slightly exceeds 1 for many j. Further,

E[(n−1)α̂2
j ] = E[ ˜SSRj] =

E[SSRj]

E[SST ]
≈ n

σ2
y + n

∑
i r

2
ijσ

2
i

(n−1)σ2
y

≈ 1 + n
∑
i

r2ijh
2
i , (6)

which is (1) with A = C = 1.

SumHer estimates of h2SNP based on GWAS summary statistics in the absence of covariate/confounder

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 27, 2019. ; https://doi.org/10.1101/532069doi: bioRxiv preprint 

https://doi.org/10.1101/532069


effects are centred close to the true value of 0.5 for both statistics (Figure 1(a)), so that for our sim-

ulations the deviation of the cj from 1 appears to be negligible. The mean estimate of h2SNP does not

noticeably change when A or C is estimated rather than fixed at the true values (A = C = 1), but

the variance increases due to uncertainty arising from the additional parameter estimation.

●

● ●

●

● ●

Zero CEPT GC Zero CEPT GC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β = 0

a

h S
N

P
2

●●

● ●

●●

● ●

Zero CEPT GC Zero CEPT GC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β ≠ 0, X ignored and independent of Z

b

h S
N

P
2

●

● ●
●

●

Zero CEPT GC Zero CEPT GC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β ≠ 0, X adjusted for and independent of Z 

c

h S
N

P
2

Statistic = Tj
2

Statistic = nα̂j

2

Figure 1: Estimates of h2SNP obtained from SumHer analysis of summary statistics calculated from a GWAS of
LDAK simulated phenotypes. The black and red horizontal lines indicate the values of h2SNPa and h2SNPb, the SNP
heritability without and with conditioning on covariates. Zero, CEPT and GC refer to no, A and C confounding terms
in the analysis model. (a) Phenotypes with no covariate effects. (b) Phenotypes with covariate effects but X ignored
in the analysis. (c) Phenotypes with covariate effects and X adjusted for in the analysis. The “Zero” estimates when
Sj = nα̂2

j are all negative and are not shown.

When covariates affect y but X is ignored in the GWAS analysis, h2j,b is estimated rather than

h2j,a because now E[SST ] ≈ σ2
y+σ2

c rather than σ2
y . Again, the average estimate of h2SNP changes little

when A or C is estimated rather than fixed at 1 (Figure 1(b)). When X is included in the GWAS

analysis,

E[T 2
j ] = E[E[T 2

j |X]] ≈
σ2
y + (n−p)

∑
i r

2
ijσ

2
i

σ2
y −

∑
i r

2
ijσ

2
i

= cj

(
1 + (n−p)

∑
i

r2ijh
2
i,a

)
, (7)

which is the same as (5) but with n−p in place of n and h2i = h2i,a. Further,

E[ ˜SSRj] ≈ C

(
1 + (n−p)

∑
i

r2ijh
2
i,a

)
= A+ (n−p)

∑
i

r2ijh
2
i,b, (8)

where A = C = σ2
y/(σ

2
y + σ2

c ) = h2SNPb/h
2
SNPa. We see from (7) that only h2SNPa can be estimated

from T 2
j (see also Figure 1(c)) whereas in (8) either h2SNPa or h2SNPb can be estimated, according to
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whether A or C is fitted.
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Figure 2: Estimates of h2SNP obtained from SumHer analysis of summary statistics calculated from a meta-analysis
of two GWAS. The black and red horizontal lines indicate the values of h2SNPa and h2SNPb. Zero, CEPT and GC refer
to no, A and C confounding terms in the analysis model.

Figure 2 shows that h2SNPa and h2SNPb are estimated with no apparent bias if, respectively, both

studies did and did not adjust for covariates in a two-GWAS meta-analysis. Again, the inclusion

of A or C terms has little effect on the mean estimates, as there is no confounding. When there is

a mismatch in covariate adjustments between the two GWAS, the estimate of h2SNP is intermediate

between h2SNPa and h2SNPb (Figure 2, green bars). In practice many meta-analyses do combine studies

with different covariate adjustments, which may not adversely affect association tests but does affect

heritability analyses. Examples include the meta-analyses of height [17] and blood pressure [18]

re-analysed using LDSC [1], and those of psychiatric traits [19] and type 2 diabetes [20].

Confounding (Cor(X,Z) 6= 0)

When confounder X is ignored in the GWAS analysis:

E[T 2
j ] ≈ cj

(
1 +

naj
σ2
y + σ2

c

+ n
∑
i

r2ijh
2
i,b

)
= cjE[ ˜SSRj], (9)

where 1/cj = 1 − aj/(σ
2
y+σ2

c ) −
∑

i6=j r
2
ijh

2
i,b and aj = (

∑p
k=1 Cor(Zj,Xk)βk)

2
with Xk denoting

column k of X. Assuming cj ≈ 1, only h2j,b is estimable, and (9) includes an additive constant

resembling A in (1). However, this term is SNP-dependent, and for it to correspond to A in (1) we
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require aj to be independent of LD score, which typically does not hold (see Appendix, section 1).

Instead, we expect the estimate of h2SNP to be inflated by an amount that depends on both Cov(X,Z)

and σ2
c/(σ

2
y+σ2

c ). Replacing (9) with the SumHer regression model leads to similar difficulties.

When X is included in the GWAS analysis, the estimated SNP effect, α̂j, can be obtained from

the linear regression of the residuals of y|X on the residuals of Z|X [21], and

E[T 2
j |Z,X] ≈

bσ2
e + n

∑
i(r̂ij−γ̂ ′iΣ̂2

Xγ̂j)
2σ2

i /R̄
2
j

bσ2
e+
∑

i6=j R̄
2
iσ

2
i−
∑

i6=j(r̂ij−γ̂ ′iΣ̂2
Xγ̂j)

2σ2
i /R̄

2
j

, (10)

where Σ2
X = Var[X] and, from the regression of Zj on X, R̄2

j is one minus the coefficient of determi-

nation and γ̂j is the vector of estimated coefficients, while b = (n−p−2)/(n−2). Further,

E[ ˜SSRj|Z] ≈
σ2
y

σ2
y + σ2

c

(b(1−h2SNPa) + n
∑
i

(r̂ij − γ̂ ′iΣ̂2
Xγ̂j)

2h2i,a/R̄
2
j ). (11)
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Figure 3: Similar to Figure 1, but here GWAS phenotypes are subject to confounding: phenotype means differ among
three subpopulations that each consist of three sub-subpopulations. Subpopulations were constructed by applying k-
means clustering to principal components of the SNPs with non-zero LDAK weight. Estimates of h2SNP from a GWAS
with (a) no covariate adjustment, (b) adjustment for the three subpopulations but not the sub-subpopulations, (c)
full covariate adjustment. Note that the y-axis differs among (a), (b) and (c).

Now, ˜SSRj = (n−1−Z′jX(X′X)−1X′Zj)α̂
2
j and, unlike when Cor(X,Z) = 0, the term multiply-

ing α̂2
j varies over SNPs.

As expected, ignoring confounders results in inflated estimates of h2SNP (Figures 3(a) and 4(a,

b)). The estimable heritability parameter is h2SNPb, which is 0.45 for C1, 0.475 for C2, and 0.49 for
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Figure 4: Estimating h2SNP and confounding parameters from phenotypes with differing proportions of phenotypic
variance due to confounding when h2SNPa = 0.5. The confounding corresponds to ignoring subpopulations, which were
constructed by applying k-means clustering to principal components of the SNPs with non-zero LDAK weight. The
black lines in (a,b) indicate the simulated value of h2SNPa and the red lines the simulated value of h2SNPb, while the
box-plot shows the distribution of h2SNP estimates when applying the confounding adjustment indicated in the plot
heading. In (c), the black line at A/C = 1 corresponds to an estimate of zero confounding bias. Note that the y-axis
differs between (a,b) and (c).

C3 phenotypes, yet the average estimates of h2SNP are in the reverse order (C1 > C2 > C3) because

of the inadequately-corrected confounding (Figure 4(a,b)).

The A/C estimates are consistently too low (Figure 4(c)) because the positive association between

aj and LD score leads to some of the confounding being misinterpreted as heritability. Comparing

C1, C2 and C3 phenotypes, we find that the bias in h2SNP is, like aj, a function of σ2
c/(σ

2
y+σ2

c ), the

proportion of phenotypic variance due to confounding. Figure 4(c) shows average A/C estimates

> 1 in the presence of confounding, but this does not always hold, and estimates A < 1 have been

reported, such as in GWAS of rheumatoid arthritis [1], age at first birth and number of children born

[22], body mass index and hip-waist ratio [5] among others, which could be due to confounding of

the type considered here. The level of bias in h2SNP was higher in the LDAK simulations than for the

GCTA simulations (Appendix, section 3.1).

Our finding of inadequate adjustment for confounding is concordant with the results of two recent

papers [23, 24] that analysed stratified populations, but not with Lee et al. [25] which considered

confounding by parental genotype. This is because parental average genotype generates an additive

genetic effect, which inflates the slope but not the intercept of the summary statistic regression.

Their examples of non-trivial intercepts are based on twins, which can be viewed as combining two

dependent samples each of unrelated individuals. This deviation from model assumptions, which
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is not confounding as defined at (2) because the inflation was not generated by an unaccounted

effect Xβ, is corrected using an additive adjustment. A meta-analysis with overlapping samples

also generates an intercept different from 1 that can be corrected using an additive adjustment (see

Appendix, section 2.6 and Figure S9). In contrast, the population structure in our simulations implies

some relatedness among all individuals, leading to a non-ignorable relationship between confounding

and LD.

Partial covariate adjustment in the GWAS analysis reduced but did not eliminate bias in h2SNP

estimates (Figure 3(b)) and led to divergence of the estimates based on T 2
j and nα̂2

j . Full covariate

adjustment did lead to unbiased estimates of h2SNPa when Sj = T 2
j whether or not we allowed A 6= 1

or C 6= 1 (Figure 3(c)). When Sj = nα̂2, allowing A 6= 1 or C 6= 1 led to estimates of h2SNPb and

h2SNPa, respectively. These results indicate that although confounding adjustment can mask causal

signal, which is intuitively why (10) and (11) differ from (7) and (8), the differences appear negligible

in this case. However, for populations with much stronger stratification adjusted for in the GWAS

stage, the distinction between (10), (11) and (7), (8) was reported to be important for estimating

h2SNP [26].

Discussion

We have shown theoretically, and illustrated using simulation, that GWAS confounding bias is in

general SNP dependent and correlated with LD, so that the adjustment terms in the summary-

statistic regression models of LDSC [1] and SumHer [5] can fail to adequately account for confounding

bias, and hence also h2SNP, if the original GWAS analysis did not avoid confounding effects. This

finding accords with findings by others [23, 24] and some statements and results in the original

LDSC paper [1]. Firstly, in Bulik-Sullivan et al. [1] a small amount of polygenicity was inferred

in simulations of confounding-only phenotypes, which was attributed to linked selection generating

the correlation between confounding effect and LD score. Secondly, statements on interpreting the

intercept were based on average results from distinct populations, not replicate samples from the

same population. This ignores the structure, and hence confounding, that is specific to a population.

For example, Supplementary Table 4C in Bulik-Sullivan et al. [1] shows that in the presence of

confounding only (h2SNP = 0), one population (cou3) has higher LDSC h2SNP estimates for all three

traits (0.144, 0.254, 0.229) than for any of the other 18 trait/population combinations (average:

0.030). Most importantly, the claim that LD score is not associated with confounding [1] was based

on marginalising over the confounding component, defined as a function of allele frequency change,

which is inappropriate as the test statistic and LD score are both SNP specific.
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One source of error in published GWAS test statistics is genomic control, which applies a common

multiplicative adjustment to all statistics, derived under an assumption of sparse causal effects. It

tends to over-adjust for highly-polygenic traits, and can be corrected by use of C, the SumHer

multiplicative adjustment term [5].

When covariates were fitted in the GWAS analysis, we found very different results according

to whether Sj was chosen to be the Wald statistic T 2
j or the statistic nα̂2

j used to justify LDSC

[1]. Further, the estimable definition of h2SNP varies with the covariate adjustment performed in the

original association analysis. The statistic ˜SSR, closely related to nα̂2
j , can be used to estimate

h2SNPb regardless of the (non-confounder) covariates fitted, and hence a valid meta-analysis of h2SNP

estimates is possible. However, ˜SSR is often not available in published GWAS results, and like T 2
j

it is subject to SNP-dependent confounding that can bias estimates of h2SNP.

We have only considered quantitative phenotypes, and we have not examined in detail the ques-

tion of the validity of h2SNP analyses based on mixed model association statistics. We have shown that

the expected values of such statistics contain terms not usually obtainable from public databases,

but this may not preclude the development of h2SNP estimation based on linear regression of mixed

model test statistics. As the expectation contains both intercept and slope terms, the relationship

between the two can involve either only a shift (suggesting fitting A) or only a change in scale (sug-

gesting fitting C) for h2SNP to remain estimable. We believe that change in scale is a more plausible

relationship, both because of published simulations [5] and because theoretical properties suggest

that mean estimates of α̂j (but not their variances) should be similar whether obtained using linear

regression or a mixed model.

Methods

Data processing

We used genotypes from the eMERGE network [27], following the same quality control steps as [5].

From the 25,875 individuals, we randomly selected 8000 to form the study population, simulated

their phenotypes and computed GWAS summary statistics. The remaining 17,875 individuals were

used as a reference panel to compute r2 values for the summary statistic analyses.

We also generated three meta-analyses by dividing the study population randomly into two stud-

ies of size 4000, and calculating summary statistics for each study, both without and with covariate

adjustment. Each meta-analysis used within-study phenotype standardisation, and computed T 2
j

using inverse-variance [28] weighting.

Of the SNPs remaining after quality control, 558,431 had non-zero LDAK weights [29] and

only these SNPs contribute causal effects under the LDAK model and to SumHer analyses. We
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also restricted LDSC analyses, and simulations under the GCTA model [30], to a set of 558,431

randomly-chosen SNPs.

Simulation of phenotypes and summary statistics

The GCTA model [30] is the special case of (2) in which, like the LDSC model, σ2
j = h2SNP/m for all

j. LDAK [29, 31] is another special case of (2), and we adopt in the SumHer model its SNP weights

based on LD and MAF [5]. For 150 iterations, we randomly sampled 35,000 causal SNPs and, under

each of the GCTA and LDAK models, we generated five phenotypes with different covariate and

confounding effects, such that h2SNPa = 0.5 in all cases.

The five phenotypes are yA (no covariates or confounding), yB (covariate effect, no confounders),

and yCi, i = 1, 2, 3 (confounding, Cor(X,Z) 6= 0). For yB, X has two columns, and the simulated

effects were such that σ2
c = σ2

y/9, so that h2SNPb = 0.45. To explore incomplete control of confounding,

for all yC phenotypes confounders correspond to a two-level hierarchical population structure. First,

three subpopulations were identified using k-means clustering on the leading 2 principal components

(PCs) of the SNP correlation matrix ZTZ/m, restricted to SNPs with non-zero LDAK weight in

order to minimise any effect of correlated SNPS.

Within each of these subpopulations, three sub-subpopulations were defined by k-means clus-

tering on the two leading PCs computed only from subpopulation members. We assigned different

phenotype means to the nine sub-subpopulations, while SNP effect sizes remained the same. For

yC phenotypes we consider both X corresponding to the three subpopulations (two columns), and

X corresponding to all nine sub-subpopulations (eight columns). The h2SNPb values were 0.45 (C1),

0.475 (C2) and 0.49 (C3).

yA phenotypes and principal components were calculated using LDAK software, while k-means

clustering and the simulation of yB and yC phenotypes was undertaken in R [32].

For all phenotypes we compute T 2
j and nα̂2

j , both with and without adjusting for covariates X.

Based on these statistics we estimate h2SNP using SumHer for LDAK phenotypes (results in main

text) while for GCTA phenotypes (Appendix, section 3.1) we used LDSC as implemented in the

LDAK software [29]. The two sets of results are broadly similar; we comment in the text on notable

differences.

Large-effect SNPs

In part because of the problem of the unknown number of causal SNPs, but also due to model mis-

specification such as incomplete control of confounding, in many GWAS values of Sj arise that are

extreme outliers under the GWAS assumed analysis model. Ideally, the solution would be to improve
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the analysis model, for example using a distribution with thicker tails than the Gaussian, or assigning

an atom of prior probability at each SNP to a zero effect. However, because of computational

advantages associated with model (2), in practice an ad-hoc data filtering approach is often adopted

in which a SNP is removed if its estimated effect size is too large to be well-supported under the

model. As we have control over confounding in our simulations, our main results do not use filtering.

In Appendix, section 3.2, we consider the impact of filtering, where we follow [8] and exclude from

analysis any SNP with Sj > 80. In the analysis of yA and yB simulations, no SNP was excluded,

while for 32 C1, 2 C2, and 0 C3 LDAK and 44 C1, 14 C2, and 0 C3 GCTA simulations, at least one

SNP was excluded for both T 2
j and nα̂2

j when X was ignored in the GWAS analysis.
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