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Abstract

Motivation: Finding nonlinear relationships between biomolecules and a biological outcome is
computationally expensive and statistically challenging. Existing methods have crucial drawbacks, among
others lack of parsimony, non-convexity, and computational overhead. Here we present the block HSIC
Lasso, a nonlinear feature selector that does not present the previous drawbacks.
Results: We compare the block HSIC Lasso to other state-of-the-art feature selection techniques in
synthetic data and real data, including experiments over three common types of genomic data: gene-
expression microarrays, single-cell RNA-seq, and GWAS. In all the cases, we observe that features
selected by block HSIC Lasso retain more information about the underlying biology than features of other
techniques. As a proof of concept, we applied the block HSIC Lasso to a single-cell RNA-seq experiment
on mouse hippocampus. We discovered that many genes linked in the past to brain development and
function are involved in the biological differences between the types of neurons.
Availability: Block HSIC Lasso is implemented in the Python 2/3 package pyHSICLasso, available
in Github (https://github.com/riken-aip/pyHSICLasso) and PyPi (https://pypi.org/
project/pyHSICLasso).
Contact: myamada@i.kyoto-u.ac.jp
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomarker discovery, the goal of many bioinformatics experiments,
aims at identifying a few key biomolecules that explain most of
an observed phenotype. Without a strong prior hypothesis, these

molecular markers have to be identified from data generated by high-
throughput technologies. Unfortunately, finding relevant molecules is
a combinatorial problem: for d features, 2d binary choices must be
considered. As the number of features vastly outnumbers the number
of samples, biomarker discovery is a high-dimensional problem. The
statistical challenges posed by such high-dimensional spaces have been
thoroughly reviewed elsewhere (Clarke et al., 2008; Johnstone and
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Titterington, 2009). In general, due to the curse of dimensionality,
fitting models in many dimensions and on a small number of samples is
extremely hard. Moreover, since biology is complex, a simple statistical
model such as linear regression might not be able to find important
biomarkers. Even when they are found, often they are hard to reproduce,
suggesting overfitting. Exploring the solution space and finding true
biomarkers is not only statistically challenging, but also computationally
expensive.

In machine learning terms, biomarker discovery can be formulated
as a problem of feature selection: identifying the best subset of features
to separate between categories, or to predict a continuous response. In
the past decades, many feature selection algorithms that deal with high-
dimensional datasets have been proposed. Due to the difficulties posed
by high-dimensionality, linear methods tend to be the feature selector
of choice in bioinformatics. A widely used linear feature selector is the
Least Absolute Shrinkage and Selection Operator, or Lasso (Tibshirani,
1996), a sparse learning algorithm. Lasso fits a linear model between the
input features and phenotype by minimizing the sum of the least square
loss and an `1 penalty term. The balance between the least square loss
and the penalty ensures that the model explains the linear combination
of features, while keeping the number of features in the model small.
However, in many biology instances do not behave linearly. In such cases
there is no guarantee that Lasso can capture those nonlinear relationships
or an appropriate effect size to represent them.

In the past decade, several nonlinear feature selection algorithms for
high-dimensional datasets have been proposed. Among them, the widely
used sparse additive model, or SpAM (Ravikumar et al., 2009), models
the outcome as a sparse linear combination of nonlinear functions based
on kernels, where the input of each function is a feature. However, since
SpAM assumes an additive model over the selected features, it cannot
select important features if the phenotype cannot be represented by
the additive functions of input features (for example, if there exist a
multiplicative relationship between features (Yamada et al., 2014)).

Another family of nonlinear feature selectors are association-based:
they compute the association scores between each input feature and the
outcome and rank features according to the association scores. Since
these approaches do not assume any model about the output, they can
detect important features as long as there exist some association. When
using a nonlinear association measure, such as the mutual information
(Cover and Thomas, 2006) or the Hilbert-Schmidt Independence
Criterion (HSIC) (Gretton et al., 2005), they select the features with
the strongest dependence with the phenotype. However, association-
based methods do not account for the redundancy between the features,
which is frequent in biological data sets, since they do not take into
account relationships between features. Hence, many redundant features
are typically selected, hindering interpretability. This is important in
applications like drug target discovery, where only a small number
of targets can be validated, and it is crucial to discriminate the most
important target out of many other top-ranked targets.

To deal with the problem of redundant features, Peng et al. (2005)
proposed the minimum redundancy maximum relevance (mRMR)
algorithm. The goal of mRMR is to select a set of non-redundant
features that have high association to the phenotype, while penalizing
the selection of mutually dependent features by a mutual information
term. Ding and Peng (2005) used mRMR to extract biomarkers from
microarray data, finding that the selected genes captured better the
variability in the phenotypes than other feature selectors. However,
mRMR has three main drawbacks: the optimization problem is discrete,

it must be solved by a greedy approach, and the mutual information
estimation is hard (Walters-Williams and Li, 2009). To be precise,
it is unknown whether the objective function of mRMR has good
theoretical properties such as submodularity (Fujishige, 2005), which
would guarantee that the optimisation approach actually finds the
mathematically optimal solution.

Recently, Yamada et al. (2014) proposed a kernel-based minimum
redundancy maximum relevance algorithm called HSIC Lasso. Instead
of mutual information, HSIC Lasso employs the Hilbert-Schmidt
Independence Criterion (HSIC) (Gretton et al., 2005) to measure
dependency between variables. In addition, it uses an `1 penalty term to
select a small number of features. This results in a convex optimization
problem, for which one can therefore find a globally optimal solution.
In practice, HSIC Lasso has been found to outperform mRMR in
several experimental settings (Yamada et al., 2014). Moreover, thanks
to the sparsity assumption, it scales well in memory with the number
of features. However, HSIC Lasso is memory-intensive: its memory
complexity is O(dn2), where d is the number of features and n is
the number of samples. Hence, HSIC Lasso cannot be applied to
datasets with thousands of samples, nowadays widespread in biology.
A MapReduce version of HSIC Lasso has been proposed to solve this
drawback (Yamada et al., 2018). MapReduce HSIC Lasso is able to
select features in ultra-high dimensional settings (106 features, 104

samples) in a matter of hours (Yamada et al., 2018). However, it
requires a large number of computing nodes, inaccessible to common
laboratories. And, since it relies on the Nyström approximation
(Schölkopf and Smola, 2002) of Gram matrices, the final optimization
problem is no longer convex, and hence finding a globally optimal
solution cannot be easily guaranteed.

In this paper, we propose the block HSIC Lasso: a simple yet
effective nonlinear feature selection algorithm based on HSIC Lasso.
The key idea is to estimate the HSIC terms with the recently proposed
block HSIC estimator (Zhang et al., 2018). Thanks to the block
HSIC estimator, the memory complexity goes from O(dn2) down to
O(dnB), where B ⌧ n is the block size. Moreover, as opposed
to MapReduce HSIC Lasso, the optimization problem of the block
HSIC Lasso remains convex. Through its application to synthetic
data and biological datasets, we show that block HSIC Lasso can be
applied to a variety of biomarker discovery settings and compares
favorably with the vanilla HSIC Lasso algorithm and other feature
selection approaches, linear and nonlinear, as it selects features more
informative of the biological outcome. Both the block HSIC Lasso
and HSIC Lasso are available in the Python 2/3 package pyHSICLasso
(https://pypi.org/project/pyHSICLasso).

2 Materials and methods

2.1 Problem formulation

Assume a data set with n samples described by d features, each
corresponding to a biomolecule (for example, the expression of one
transcript, or the number of major alleles observed at a given SNP),
and a label, continuous or binary, describing the outcome of interest
(for example, the abundance of a target protein, or disease status). We
denote the i-th sample by xi = [x

(1)
i , x

(2)
i , . . . , x

(d)
i ]> 2 Rd, where

> denotes transpose; and its label by yi 2 Y , where Y = {0, 1} for a
binary outcome, corresponding to a classification problem, and Y = R
for a continuous outcome, corresponding to a regression problem. In
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addition, we denote by fk = [x
(k)
1 , x

(k)
2 , . . . , x

(k)
n ]> 2 Rn the k-th

feature in the data.
The goal of supervised feature selection is to find m features (m ⌧

d) that are the most relevant for predicting the output y for a sample x.

2.2 HSIC Lasso

Measuring the dependence between two random variables X and Y

can be achieved by the Hilbert-Schimdt Independence Criterion, or
HSIC (Gretton et al., 2005):

HSIC(X,Y )=Ex,x0,y,y0 [K(x, x0)L(y, y0)]

+ Ex,x0 [K(x, x0)]Ey,y0 [L(y, y0)] (1)

� 2Ex,y
⇥
Ex0 [K(x, x0)]Ey0 [L(y, y0)]

⇤
,

where K(x, x0) and L(y, y0) are positive definite kernels, and
Ex,x0,y,y0 denotes the expectation over independent pairs (x, y) and
(x0, y0) drawn from p(x, y). HSIC can be used as an independence
measure if we use the characteristic kernels (Fukumizu et al., 2004;
Sriperumbudur et al., 2011). That is, X and Y are independent if
and only if HSIC(X,Y ) = 0 and take positive value otherwise.
Thus, we can select important features by ranking HSIC scores
{HSIC(Xm, Y )}dm=1 in descending order, where Xm is the random
variable of the m-th feature (Song et al., 2012).

In practice, for a given Gram matrix Kk 2 Rn⇥n, computed from
k-th feature, and a given output Gram matrix L 2 Rn⇥n, HSIC is
computed as

HSICv(fk,y) = tr(Kk L), (2)

where for any Gram matrix K 2 Rn⇥n, K is defined as

K =
HKH

kHKHkF

with H 2 Rn⇥n a centering matrix defined by Hij = �ij � 1
n . Here

�ij is equal to 1 if i = j and 0 otherwise, and tr denotes the trace.
HSICv(fk,y) is equal to zero when fk and y are independent, and
has a non-negative value (the larger the more dependence between the
inputs) when they are not. Note that we employ the normalized variant
of the original empirical HSIC.

In this paper, we use the following kernels:

• The RBF Gaussian kernel for continuous variables (or outcomes):

K : x
(k)
i , x

(k)
j 7! exp

0

@�
kx(k)

i � x
(k)
j k22

2�2

1

A ,

where �2 > 0 is the bandwidth of the kernel;
• The normalized Dirac kernel for categorical variables (or outcomes):

L : yi, yj 7!
(

1
nc

if yi = yj = c

0 otherwise,

where nc is the number of samples in class c.

The goal of HSIC Lasso (Yamada et al., 2014) is to select
independent features that have a high dependence with the outcome.

For that purpose, it introduces a vector ↵ = [↵1, . . . ,↵d]> of feature
weights and solves the following optimization problem:

max
↵�0

dX

k=1

↵kHSICv(fk,y)�
1

2

dX

k,k0=1

↵k↵k0HSICv(fk,fk0 )

� �k↵k1. (3)

The selected features are those that have a non-zero coefficient ↵k .
Here � > 0 is a regularization parameter that controls the sparsity of
the solution: the larger �, the fewer features have a non-zero coefficient.

The HSIC Lasso optimization problem can be rewritten as

min
↵�0

kvec(L)� [vec(K1), . . . , vec(Kd)]↵k22 + �k↵k1,

where vec : Rn⇥n ! Rn2
,K 7! [K11, . . . ,K1n,K21, . . . ,Knn]

is the vectorization operator. Using this formulation, we can solve the
problem using an off-the-shelf non-negative Lasso solver.

HSIC Lasso performs well in particular for high-dimensional data.
However, it requires a large memory space (O(dn2)), since it stores d
Gram matrices. To handle this issue, two approximation methods have
been proposed. The first approach uses a memory lookup to dramatically
reduce the memory space (Yamada et al., 2014). However, since this
method needs to perform a large number of memory lookups, it is
computationally expensive. Another approach (Yamada et al., 2018)
is to rewrite the problem using the Nyström approximation (Schölkopf
and Smola, 2002) and solve the problem using a cluster. However using
the Nyström approximation makes the problem non-convex.

2.3 Block HSIC Lasso

In this paper, we propose an alternative HSIC Lasso method for large-
scale problems, the block HSIC Lasso, which is convex and can be
efficiently solved on a reasonably-sized server.

Block HSIC Lasso employs the block HSIC estimator (Zhang
et al., 2018) instead of the V-statistics estimator of Equation (2). More
specifically, to compute the block HSIC, we first partition the training
dataset into n

B partitions {{(x`
i , y

`
i )}Bi=1}

n/B
`=1 , whereB is the number

of samples in each block. Note that the block size B is set to a relatively
small number such as 10 or 20 (B ⌧ n). Then, the block HSIC
estimator can be written as

HSICb(fk,y) =
B

n

n/BX

`=1

HSICv(f
(`)
k ,y(`)),

where f
(`)
k 2 RB represents the k-th feature vector of the `-th

partition. Note that the computation of HSICv(f
(`)
k ,y(`)) requires

O(B2) memory. That is, the required memory for the block HSIC
is O(nB), where nB ⌧ n2.

If we denote by K
(`)
k 2 RB⇥B the restriction of Kk to the `-th

partition, and byL(`) 2 RB⇥B the restriction ofL to the `-th partition,
then

HSICv

⇣
f
(`)
k ,y(`)

⌘
= tr

⇣
K

(`)
k L

(`)
⌘
= vec

⇣
K

(`)
k

⌘>
vec

⇣
L

(`)
⌘
.
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The block HSIC Lasso is obtained by replacing the HSIC estimator
HSICv with the block HSIC estimator HSICb in Equation (3):

max
↵�0

dX

k=1

↵kHSICb(fk,y)�
1

2

dX

k,k0=1

↵k↵k0HSICb(fk,fk0 )

� �k↵k1. (4)

Using the vectorization operator, the block estimator can be written
as

HSICb(fk,fk0 ) = u
>
k uk0 , HSICb(fk,y) = u

>
k v,

where

uk =

r
B

n


vec

⇣
K

(1)
k

⌘>
, . . . , vec

⇣
K

(n/B)
k

⌘>
�>

2 RnB ,

v =

r
B

n


vec

⇣
L

(1)
⌘>

, . . . , vec
⇣
L

(n/B)
⌘>

�>
2 RnB .

Hence, the block HSIC Lasso can also be written as

min
↵�0

kv �U
>
↵k22 + �k↵k1,

where U = [u1, . . . ,ud] 2 RnB⇥d.
Since the objective function of the block HSIC Lasso is convex, we

can obtain a globally optimal solution. And, as with HSIC Lasso, we can
solve the block HSIC Lasso using an off-the-shelf Lasso solver. Here, we
use the non-negative least angle regression-LASSO, or LARS-LASSO
(Efron et al., 2004), to solve the problem in a greedy manner.

The required memory space for block HSIC Lasso is O(dnB),
which compares favorably to vanilla HSIC Lasso’sO(dn2); as the block
size B ⌧ n, the memory space is dramatically reduced. However, the
computational cost of the proposed method is still large when both d

and n are large. Thus, we implemented the proposed algorithm using

multiprocessing by parallelizing the computation of K(`)
k . Thanks to

the combination of the block HSIC Lasso and the multiprocessing
implementation we can efficiently find solutions on large datasets with
a reasonably-sized server.

2.4 Improving selection stability using bagging

Since we need to compute the block HSIC of the paired data
{{(x`

i , y
`
i )}Bi=1}

n/B
`=1 with a fixed partition, the performance can be

highly affected by the partition. Thus, we propose to use a bagging
version of the block HSIC estimator. Given M random permutations of
the n samples, we define bagging block HSIC as

HSICbb(fk,y) =
1

M

MX

m=1

B

n

n/BX

`=1

HSICv

⇣
f
(`,m)
k ,y(`,m)

⌘

= u
>
k v,

where f
(`,m)
k is the k-th feature vector restricted to the `-th block as

defined by the m-th permutation,

uk =

r
1

M


u
(1)
k

>
, . . . ,u

(M)
k

>
�>

2 RnBM ,

v =

r
1

M

h
v
(1)>, . . . ,v(M)>

i>
2 RnBM ,

and u
(m)
k 2 RnB and v

(m)
k 2 RnB are the vectors of the m-th block

HSIC Lasso, respectively.

Hence, the bagging block HSIC Lasso can be written as

min
↵�0

kv �U
>
↵k22 + �k↵k1,

where U = [u1, . . . ,ud] 2 RnBM⇥d.
Note that the memory space O(dnBM) required for B = 60 and

M = 1 is equivalent to B = 30 and M = 2. It is not clear which
choice of parameters provides better feature selection accuracy.

3 Experimental setup

3.1 Feature selection methods

HSIC Lasso and block HSIC Lasso: We used HSIC Lasso and block
HSIC Lasso implemented in Python 2/3 package pyHSICLasso. In block
HSIC Lasso, M was set to 3 in all experimental settings; the block size
B was set on an experiment-dependent fashion. In all the experiments,
when we wanted to selectk features, HSIC Lasso versions were required
to first retrieve 50 features, and then the top k features were selected as
the solution.

mRMR: Minimum Redundancy Maximum Relevance (mRMR) selects
features that have high relevance with respect to the outcome and
are non-redundant (Peng et al., 2005). To that end, it uses mutual
information between different variables and between the outcome and
the variables. The mRMR score of a set of features V is defined as

mRMR(V) =
1

m

dX

k=1

MI(fk,y)�
1

m2

dX

k,k0=1

MI(fk,fk0 )

where MI(fk,y) is an empirical estimate of mutual information (Peng
et al., 2005). As the problem of finding the set of features V is
nonconvex, mRMR implementations rely on a greedy search.

We used a C++ implementation of mRMR (Peng, 2005). The
maximum number of samples and the maximum number of features
were set to the actual number of samples and features in the data. In
regression problems, discretization was set to binarization.

LARS: Least angle regression (LARS) is a forward stagewise feature
selector (Efron et al., 2004). It is an efficient way of solving the same
problem as Lasso. We used the SPAMS implementation of LARS
(Mairal et al., 2010), with the default parameters.

3.2 Evaluation of the selected features

Selection accuracy on simulated data: We simulated high-
dimensional data where a few variables were truly related to the
outcome. We used these datasets to find out the ability of the tested
algorithms to find the true causal variables, instead of other, likely
spuriously correlated. To that end, we requested each algorithm to
retrieve the known number of causal features. Then, we studied how
many of them were actually causal.

Classification with a random forest: To evaluate the information
retained in the features selected by a method, we trained a random forest
classifier using only those features to recover the original categories.
We used the random forest because it is able to handle nonlinearity.
We selected the features on the whole training set. We estimated the
best parameters by cross-validation on the training set: the number of
trees (200, 500), the maximum depth of the threes (4, 6, 8), the number
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Table 1. Summary of benchmark datasets.

Type Dataset Features (d) Samples (n) Classes

Image

AR10P 2,400 130 10
PIE10P 2,400 210 10
PIX10P 10,000 100 10
ORL10P 10,000 100 10

Microarray

CLL-SUB-111 11,340 111 3
GLIOMA 4,434 50 4
SMK-CAN-187 19,993 187 2
TOX-171 5,748 171 4
Haber et al. (2017) 15,972 7,216 19

scRNA-seq Habib et al. (2016) 25,393 13,302 8
Villani et al. (2017) 23,395 1,140 10

GWA data
RA vs. controls 362,577 3,479 2
T1D vs. controls 393,676 3,443 2
T2D vs. controls 393,722 3,479 2

of features to consider (
p
d, log2 d), and the criterion to measure the

quality of the chosen features (Gini impurity, information gain). Then,
we trained a model with those parameters on the whole training set and
made predictions on a separate testing set to find out the accuracy.

3.3 Datasets

We evaluated the performance of the different algorithms on synthetic
data and four types of real-world high dimensional datasets (Table 1).
All real-world datasets are on classification problems here, though HSIC
Lasso can handle regression problems (continuous-valued outcomes) as
well, as we show on synthetic data.

Synthetic data: We simulated random matrices of features X ⇠
N (0, 1). A number of variables were selected as related to the
phenotype, and functions that are nonlinear in the data range were
selected (cosine, sine and square) and combined additively to create
the outcome vector y.

Images: Facial recognition is a classical supervised nonlinear feature
selection problem. We used four face image datasets from Arizona State
University feature selection repository (Li et al., 2016)): pixraw10P,
warpAR10P, orlraws10P, and warpPIE10P.

Gene expression microarrays: We looked for biomarkers in four gene
expression microarray datasets from Arizona State University feature
selection repository (Li et al., 2016). The phenotypes were subtypes
of B-cell chronic lymphocytic leukemia (CLL-SUB-111), hepatocyte
phenotypes under different diets (TOX-171), glioma (GLIOMA) and
smoking-driven carcinogenesis (SMK-CAN-187).

Single-cell RNA-seq: Single-cell RNA-seq (scRNA-seq) measures
gene expression at cell resolution, allowing to characterize the diversity
in a tissue. We looked for biomarkers on the three most popular datasets
in Broad Institute’s Single Cell Portal, related to mouse small intestinal
epithelium (Haber et al., 2017), mouse hippocampus (Habib et al.,
2016), and human blood cells (Villani et al., 2017). Gene expression
was imputed with MAGIC (van Dijk et al., 2018)).

GWA datasets: We studied the WTCCC1 datasets (Burton et al.,
2007) for rheumatoid arthritis (RA), type 1 diabetes (T1D) and type
2 diabetes (T2D) (2,000 samples each), using the 1958BC cohort as
control (1,504 samples). Affymetrix 500K was used for genotyping.
We removed the samples and the SNPs that did not pass WTCCC’s
quality controls, as well as SNPs in sex chromosomes and those that

were not genotyped in both cases and controls. Missing genotypes were
imputed with CHIAMO. When they could not be imputed, we replaced
the missing value by the major allele in homozygosis.

Preprocessing: Images, microarrays and scRNA-seq data were
normalized feature-wise by subtracting the mean and dividing by the
standard deviation. GWAS data did not undergo any normalization.

3.4 Computational resources

We ran the experiments on synthetic data, images, microarrays and
scRNA-seq on CentOS 7 machines with Intel® Xeon® 2.6GHz and 50
GB RAM memory. For the GWA datasets experiments, we used the
CentOS 7 server with 96 core Intel® Xeon® 2.2GHz and 1TB RAM
memory.

3.5 Software availability

Block HSIC Lasso was implemented in the Python 2/3 package
pyHSICLasso. The source code is available at Github (https:
//github.com/riken-aip/pyHSICLasso), and the package
can be installed from PyPi (https://pypi.org/project/
pyHSICLasso). All the analyses and the scripts needed to
reproduce them are available in Github (https://github.com/
hclimente/nori).

4 Results

4.1 Block HSIC Lasso performance is comparable to
state of the art

At first, we worked on synthetic, nonlinear data (section 3.2).
We generated synthetic data with combinations of the following
experimental parameters: n = {100, 1000, 10000} samples; d =

{100, 2500, 5000, 10000} features; and 5, 10 and 20 causal features
i.e. features truly related to the outcome. We evaluated the performance
of different feature selectors at retrieving the causal features. The
algorithms compared where the block HSIC Lasso, two other nonlinear
methods (vanilla HSIC Lasso (Yamada et al., 2014) and mRMR (Peng
et al., 2005)) and a linear method (LARS (Efron et al., 2004)).

Each of the methods was required to retrieve the number of true
causal features. In Figure 1 we show the proportion of the causal
features retrieved by each method. The different versions of HSIC
Lasso outperform the other approaches in virtually all settings. Block
HSIC Lasso with decreasing block sizes results in worse performances.
As expected, vanilla HSIC Lasso outperforms the block versions in
accuracy, but increases memory use. Crucially, block HSIC Lasso on a
larger number of samples performs better than vanilla HSIC Lasso on
fewer samples. Hence, when the number of samples is in the thousands,
it is better to apply block HSIC Lasso on the whole dataset, than to apply
vanilla HSIC Lasso on a subsample.

We wanted to test these conclusions using a nonlinear, real-world
dataset. We selected four image-based face recognition tasks (section
3.3). In this case, we selected different numbers of features (10, 20, 30,
40 and 50). Then, we trained random forest classifiers on these subsets
of the features, and compared the accuracy of the different classifiers
on a test set (Figure S1). Block HSIC Lasso displayed a performance
comparable to vanilla HSIC Lasso, and comparable or superior to the
other methods. This is remarkable, since it shows that, in many practical
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block HSIC Lasso at different block sizes B and number of permutations M .

cases, block HSIC Lasso does not need more samples to achieve vanilla
HSIC Lasso performance.

4.2 Block HSIC Lasso is computationally efficient

In our experiments on synthetic data, vanilla HSIC Lasso runs into
memory issues already with 1,000 samples (Figure 1). This experiment
shows how block HSIC Lasso keeps the good properties of HSIC Lasso,
while extending it to more experimental settings. Block HSIC Lasso
with B = 20 reaches the memory limit only at 10,000 samples, which
is already sufficient for most common bioinformatics applications. If
larger datasets need to be handled, that can be done by using smaller
block sizes or a larger computer cluster.

We next quantified the computational efficiency improvement the
block HSIC estimator brings. We compared the runtime and the peak
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Fig. 3. Random forest classification accuracy of microrarray gene expression samples
after feature extraction by the different methods. The gray line represents the mean
accuracy of 10 classifiers trained on all the dataset.

memory usage in the highest-dimensional setting where all methods
could run (n = 1000, d = 2500, 20 causal features) (Figure 2).
We observe how, as expected, block HSIC Lasso requires an order of
magnitude less memory than vanilla HSIC Lasso. Block versions also
run notoriously faster, thanks to the lower number of operations and the
parallelization. mRMR is ten times faster than block HSIC Lasso, at
the expense of a clearly lower accuracy. However, a fraction of this gap
is likely due to mRMR having been implemented in C++, while HSIC
Lasso is written in Python. In this regard, there is potential for other
faster implementations of (block) HSIC Lasso.

4.3 HSIC estimator improves with more permutations

We were interested in the trade-off between the block size and the
number of permutations, which affect both the computation time and
accuracy of the result. We tested the performance of block HSIC Lasso
with B = {5, 10, 15, 30, 60} and M = {1, 2, 3, 5} in datasets of
n = 1000, d = 2500 and 20 causal features. As expected, causal
feature recovery increases with M and B (Figure 2C), as the HSIC
estimator approaches its true value.

The memory usage O(dnBM) of several of the conditions was the
same e.g. B = 10, M = 3 and B = 30, M = 1. Such conditions
are indistinct from the points of view of both accuracy, and memory
requirements. In practice, we found no major differences in runtime
between different combinations of B and M . Hence, a reasonable
strategy is to fix B to a given size, and tune the M to the available
memory/desired amount of information.

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/532192doi: bioRxiv preprint 

https://doi.org/10.1101/532192


i
i

“output” — 2019/1/28 — 9:02 — page 7 — #7 i
i

i
i

i
i

22

11

6 6

0

5

10

15

20

25

In
te

rs
ec

tio
n 

si
ze

●

●

●

●

●Block HSIC Lasso (B = 20)
mRMR
LARS

   

01020

# selected biomarkers

Fig. 4. Overlap between the pooled SNPs selected by three feature selectors (block
HSIC Lasso, mRMR and LARS) on three GWAS datasets. We asked each method to
select 10 features in each dataset. The horizontal histogram represents the total number
of SNPs selected by each algorithm. The vertical histogram represents the size of the
overlap between SNP sets (22 SNPs are selected by both block HSIC Lasso and mRMR;
11 were exclusively selected by LARS and so on).

4.4 Block HSIC Lasso finds relevant features efficiently

We tested the dimensionality reduction potential of different feature
selectors. We selected a variable number of features from different multi-
class biological datasets, then used a random forest classifier to retrieve
the original classes (section 3.2). The underlying assumption is that only
selected features which are biologically relevant will be useful to classify
unseen data. To that end, we evaluated the classification ability of the
biomarkers selected in four gene expression microarrays (Figure 3) and
three scRNA-seq experiments (Figure S2). Unsurprisingly, we observe
that nonlinear feature selectors perform notably better than linear
selectors. Of the nonlinear methods, in virtually all cases block HSIC
Lasso showed similar or superior performance to mRMR. Interestingly,
as little as 20 selected genes retain enough information to achieve a
plateau accuracy in most experiments.

Surveying 105 � 106 SNPs in 103 � 104 patients, genome-wide
association (GWA) datasets are among the most high-dimensional in
biology, an unbalance which worsens the statistical and computational
challenges. We performed the same evaluation on three WTCCC1
phenotypes (section 3.3). As a baseline, we also computed the accuracy
of a classifier trained on all the SNPs (Table S2). We observe that a
feature selection prior step is not always favourable: LARS worsens the
classification accuracy by 10%. On top of that, LARS could not select
any SNP in 3 out of the 15 experimental settings. On the other hand,
nonlinear methods improve the classification accuracy by 15-20%, with
mRMR and block HSIC Lasso achieving similar accuracies. In fact,
mRMR and block HSIC Lasso selected the same 22 out of 30 SNPs
when we selected 10 SNPs in each the three datasets with each method
(Figure 4).

4.5 Block HSIC Lasso is robust to ill-conditioned
problems

Single-cell RNA-seq datasets differ from microarray datasets in two
ways. First, the number of features is larger, equaling the number of
genes in the annotation (>20,000). Second, the expression matrices are
very sparse, due to biological variability (genes actually not expressed
in a particular cell) and dropouts (genes whose expression levels have
not been measured, usually because they are low, i.e. technical zeroes).

In summary, the problem is severely ill-conditioned, and the feature
selectors need to deal with this issue. We observed that block HSIC
Lasso runs reliably when faced with variations in the data, even on
ill-conditioned problems like scRNA-seq. In the different scRNA-seq
datasets, LARS was unable to select the requested number of biomarkers
in any of the cases, returning always a lower number (Figure 5). mRMR
did in all cases. However, the implementation of mRMR that we used
crashed while selecting features on the full Villani et al. (2017) dataset.

4.6 Block HSIC Lasso for biomarker discovery

4.6.1 New biomarkers in mouse hippocampus scRNA-seq

To study the potential of block HSIC lasso for biomarker discovery
in scRNA-seq data, we focused on the mouse hippocampus dataset
from Habib et al. (2016), as a list of 1 669 known biomarkers for
the different cell types is also provided by the authors. We requested
block HSIC Lasso, mRMR and LARS to select the best 20 genes for
classification of 8 cell types (Table 1). The cell types were four different
hippocampal anatomical subregions (DG, CA1, CA2 and CA3), glial
cells, ependymal, GABAergic and unidentified cells.

The overlap between the genes selected by different algorithms was
empty. We compared the selected genes to the known biomarkers. Out
of the 20 genes selected by mRMR, 14 are known biomarkers, a number
that goes down to 0 in the case of block HSIC Lasso (Figure 5A). Hence,
these 20 genes, which are sufficient for accurately separating the cell
types, are potential novel biomarkers. However, we have no reason
to believe that HSIC Lasso generally has a higher tendency to return
novel biomarkers than other approaches; we merely emphasize that it
suggests alternative, statistically plausible biological hypotheses that
can be worth investigating.

We therefore evaluated whether the novel biomarkers found by block
HSIC Lasso participate in biological functions known to be different
between the cell classes. To obtain the biological processes responsible
for the differences between classes, we mapped the known biomarkers
to GO Biological process categories using the GO2MSIG database
(Powell, 2014). Then we repeated the process using the genes selected
by the different feature selectors, and compared the overlap between
them. The overlap between the different techniques increases when
we consider the biological process instead of specific genes (Figure
5B). Specifically, one biological process term that is shared between
mRMR and block HSIC Lasso, “Adult behaviour” (associated to Sez6

and Klhl1, respectively), is clearly related to hippocampus function.
This reinforces the notion that the selected biomarkers are relevant for
the studied phenotypes.

Then we focused on potential biomarkers and biologically
interesting molecules among those genes selected by block HSIC
Lasso. As it is designed specifically to select non-redundant features,
often-used GO enrichment analyses are not meaningful: we expect
biomarkers belonging to the same GO annotation to be correlated,
and HSIC lasso should not accumulate them. Among the top 5 genes
we find 2 genes mapped to a biological processes known to be
involved: the aforementioned Klhl1 and Pou3f1 (related to Schwann
cell development). Klhl1 is gene expressed in 7 of the studied cell types
and which has been related to neuron development in the past (He et al.,
2006). Pouf1 is a transcription factor which in the past has been linked
to myelination, and neurological damage in its absence (Jaegle et al.,
1996). The only gene among the top 5 that was expressed exclusively
in one of the clusters is the micro RNA Mir670, expressed exclusively
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Fig. 6. Manhattan plot of the GWA datasets using p-values from the genotypic test. A
constant of 10�220 was added to all p-values to allow plotting p-values of 0. SNPs in
black are the SNPs selected by block HSIC Lasso (B = 20), 10 per phenotype. When
SNPs are located within the boundaries of a gene (±50 kb), the gene name is indicated.
The red line represents the Bonferroni threshold with ↵ = 0.05.

in CA1. According to miRDB (Wong and Wang, 2015), Mir670 top
predicted target of its 3’ arm is Pcnt, which is involved in neocortex
development.

4.6.2 GWAS without assumptions on genetic architecture

We applied block HSIC Lasso (B = 20) to all the three GWA datasets.
Typically the GWAS practitioner assumes a genetic model before the
biomarker discovery. Two common, well-known models are the additive
model – the minor allele in homozygosity has twice the effect as the
minor allele in heterozygosity – and the dominant model – any number
of copies of the minor allele have a phenotypic outcome. Using nonlinear
models such as block HSIC Lasso to explore the relationship between
SNPs and outcome is attractive since no assumptions are needed on
the genetic architecture of the trait. On top of that, by penalizing the
selection of redundant features, block HSIC Lasso avoids selecting
multiple SNPs in high linkage disequilibrium.

In our experiments, we selected 10 SNPs with block HSIC Lasso
for each of the three phenotypes. These are the SNPs that best balance
high relatedness to the phenotype and not giving redundant information,
be it through linkage disequilibrium or through an underlying shared
biological mechanism. We compared these SNPs to those selected
by the univariate statistical tests implemented in PLINK 1.9 (Chang
et al., 2015). Some of them explicitly account for nonlinearity by
considering dominant and recessive models of inheritance. We found
that the genotypic test is the statistical procedure that displays the largest
overlap with block HSIC Lasso selected biomarkers (28 out of 30). It
consists of a 2df �2 test on a 3-by-2 contingency table representing
the genotypes and the outcome. The genotypic test also displays the
largest overlap with the other methods (Figure S3). Hence, in this case
relaxing the assumptions on the genetic model of inheritance does not
bring advantages over making stronger assumptions on the data, but on
the other hand, roughly the same results can be achieved without the
assumptions.

We compared the genome-wide genotypic p-values to the SNPs
selected by block HSIC Lasso (Figure 6). Block HSIC Lasso selects
SNPs among those with the most extreme p-values. However, not
being constrained by a conservative p-value threshold, block HSIC
Lasso selects two SNPs in type 2 diabetes with low, albeit non-
Bonferroni significant, p-values when they improve classification
accuracy (rs597414, p = 1.781 ⇥ 10�7; rs543759, p = 2.904 ⇥
10�6). Moreover, the selected SNPs are scattered all across the genome,
displaying the lack of redundancy between them. This strategy gives
a more representative set of SNPs than other approaches common in
bioinformatics, like selecting the smallest 10 p-values.

5 Discussion

In this work, we presented block HSIC Lasso, a nonlinear feature
selector. Block HSIC Lasso retains the properties of HSIC Lasso while
extending its applicability to larger datasets. Among the attractive
properties of block HSIC Lasso we find, first, its ability to handle
both linear and nonlinear relationships between the variables and the
outcome. Second, block HSIC Lasso has a convex formulation, ensuring
that a global solution exists, and that it is accessible. Third, the HSIC
score can be accurately estimated, as opposed to other measures of
nonlinearity like mutual information. Fourth, block HSIC Lasso’s
memory consumption scales linearly with respect to both the number of
features and the number of samples. Lastly, block HSIC Lasso can be
easily adapted to different problems via different kernel functions that
better capture similarities in new datasets. Due to all these properties,
we show how block HSIC Lasso outperforms all other algorithms in the
tested conditions.

Block HSIC Lasso can be applied to different kinds of datasets. As
other nonlinear methods, block HSIC Lasso is particularly useful when
we do not want to make assumptions about how the causal variables
and the outcome are related. Owing to the advantages mentioned above,
HSIC Lasso and block HSIC Lasso tend to outperform other state-of-
the-art approaches when comparing the classification accuracy.

Regarding its potential in bioinformatics, we applied block HSIC
Lasso to images, microarrays, single-cell RNA-seq and GWAS. The two
latter involve thousands of samples and variables, making it unfeasible to
find a server with enough memory for vanilla HSIC Lasso. The selected
biomarkers are biologically plausible, agree with the outcome of other
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methods, and provide a good classification accuracy when used to train
a classifier. Such a ranking is useful, for instance, when selecting SNPs
or genes to assay in in vitro experiments.

Block HSIC Lasso’s main drawback is the memory complexity,
markedly lower than in vanilla HSIC Lasso but still O(dnB). Memory
issues might appear in low-memory servers in cases with a large number
of samples n, of features d, or both. However, through our work on
GWA datasets, the largest type of dataset in bioinformatics, we show
that working on these datasets is feasible. Another drawback, which
block HSIC Lasso shares with the other nonlinear methods, is their
black box nature. Block HSIC Lasso looks for biomarkers which, after
an unknown, nonlinear transformation, would allow a linear separation
between the samples. Unfortunately, we cannot access this transformed
space and explore it, which makes the results hard to interpret.
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