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ABSTRACT
Motivation: Proper prioritization of candidate genes is essential
to the genome-based diagnostics of a range of genetic diseases.
However, it is a highly challenging task involving limited and noisy
knowledge of genes, diseases and their associations. While a number
of computational methods have been developed for the disease gene
prioritization task, their performance is largely limited by manually
crafted features, network topology, or pre-defined rules of data fusion.
Results: Here, we propose a novel graph convolutional network-
based disease gene prioritization method, PGCN, through the
systematic embedding of the heterogeneous network made by genes
and diseases, as well as their individual features. The embedding
learning model and the association prediction model are trained
together in an end-to-end manner. We compared PGCN with five
state-of-the-art methods on the Online Mendelian Inheritance in
Man (OMIM) dataset for tasks to recover missing associations and
discover associations between novel genes and diseases. Results
show significant improvements of PGCN over the existing methods.
We further demonstrate that our embedding has biological meaning
and can capture functional groups of genes.
Availability: The main program and the data are available at https:
//github.com/lykaust15/Disease_gene_prioritization_GCN.

1 INTRODUCTION
The last decade has seen a rapid increase in the adoption of whole-exome
sequencing in the clinical diagnosis of genetic diseases (Feero, 2014).
However, the success rate of such genome-based diagnostics still remains
far from perfect, with reported yields for a range of Mendelian diseases
ranging from ∼20 to ∼50% (Taylor et al., 2015; Retterer et al., 2016).
This relatively low yield is largely attributed to a considerable difficulty
in differentiating disease-causing variants from a large pool of rare genetic
variants that are not pathogenic and do not play roles in the expression of
the disease phenotype (MacArthur et al., 2014; Tranchevent et al., 2016).
To efficiently detect pathogenic variants and to improve the diagnostic
rate of the genome-based approach, it is essential to have disease gene
prioritization that substantially reduces the number of candidate causal
variants and ranks them for further interrogations based on the association
of the corresponding genes with the disease phenotype.

A number of computational methods have been developed to tackle
the disease gene prioritization problem (Wang et al., 2011; Moreau and
Tranchevent, 2012), and have been shown to be useful. For example,
Endeavour (Aerts et al., 2006; Tranchevent et al., 2008, 2016) was able
to associate GATA4 with congenital diaphragmatic hernia (Yu et al.,
2013); GeneDistiller (Seelow et al., 2008) discovered the role of MED17
mutations in infantile cerebral and cerebellar atrophy (Kaufmann et al.,
2010). Based on the underlying computational techniques, existing
disease gene prioritization methods can be categorized into five types.
The first type is filter methods (Franke et al., 2004; Bush et al., 2009;
Mordelet and Vert, 2011; Deo et al., 2014), which sift the candidate list
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of genes into a smaller one according to the properties that associated
genes should have. The second type of methods is based on text mining
(Perez-Iratxeta et al., 2005; Yu et al., 2008; ElShal et al., 2016; Smaili
et al., 2018a,b). Such methods score the candidate genes using the co-
occurrence evidence with a certain disease from the literature. Thus,
these methods can only detect associations that are already known. The
third type is similarity profiling and data fusion methods (Aerts et al.,
2006; De Bie et al., 2007; Chen et al., 2009; Gefen et al., 2010; Li
and Patra, 2010; Britto et al., 2012; Zitnik et al., 2015; Zakeri et al.,
2015; Kim et al., 2015; Tranchevent et al., 2016; Kumar et al., 2018).
This is the dominant type in the disease gene prioritization community
and includes the famous Endeavour method (Aerts et al., 2006). These
methods are based on the idea that similar genes should be associated with
similar sets of diseases and vise versa. The similarity measurement can be
defined using different data sources, such as Gene Ontology (GO) or the
BLAST score. After obtaining the similarity scores from each data source,
such methods apply data fusion to aggregate these scores into a global
ranking. The fourth type is network-based methods (Wang et al., 2011;
Lee et al., 2011; Guan et al., 2012; Li and Li, 2012; Magger et al., 2012;
Kacprowski et al., 2013; Nitsch et al., 2011; Singh-Blom et al., 2013;
Rao et al., 2018). Such methods represent diseases and genes as nodes
in a heterogeneous network, in which the edge weight represents their
similarities. The last type is based on matrix completion techniques in
recommender systems (Natarajan and Dhillon, 2014; Zakeri et al., 2018).
These methods represent the disease gene association as an incomplete
matrix and solve the disease gene prioritization problem by filling the
missing values of the matrix. This category of methods has been shown
to be the state-of-the-art (Zakeri et al., 2018).

Despite the advances of the existing efforts, they have the following
bottlenecks. Firstly, the similarity-based methods, which are rooted in the
“guilt-by-association” principle, often fail to handle new diseases whose
associated genes are completely unknown (Zakeri et al., 2018). Secondly,
although the performance of the network-based methods is reasonable,
they are biased by the network topology and cannot easily integrate
multiple sources of information about genes and diseases (Moreau and
Tranchevent, 2012). Thirdly, matrix completion methods assume and look
for a weighted linear relationship between genes and diseases, which, in
reality, is most likely to be highly nonlinear (Navlakha and Kingsford,
2010). In addition, most of the existing methods rely heavily on manually-
crafted features or pre-defined rules of data fusion. Therefore, the disease
gene prioritization problem remains elusive. On the other hand, the recent
success of graphical models and deep learning in bioinformatics (Zitnik
et al., 2018; Li et al., 2017; Dai et al., 2017; Kim et al., 2018; Xia
et al., 2018) suggests the possibility to systematically incorporate multiple
sources of information in the heterogeneous network and learn the highly
nonlinear relationship between diseases and genes.

In this paper, we propose a novel disease gene prioritization method,
PGCN, based on graph convolutional neural networks (GCN) (Dai et al.,
2016; Kipf and Welling, 2016; Hamilton et al., 2017; Zitnik et al., 2018).
Starting from a heterogeneous network which is composed of the genetic
interaction network, the human disease similarity network, and the
known disease-gene association network, with the additional information
about genes and diseases from multiple sources, our method first learns
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embeddings for genes and diseases through graph convolutional neural
networks, by considering both the network topology and the additional
information of diseases and genes. Such embeddings are fed into an
edge decoding (edge prediction) model to make predictions for disease
gene associations. Although we describe our method in two steps, our
model is trained in an end-to-end manner so that the model can learn the
embedding and the decoding jointly.

We compared PGCN with five state-of-the-art methods (GeneHound
(Zakeri et al., 2018), IMC (Natarajan and Dhillon, 2014), GCAS (Rao
et al., 2018), Catapult (Singh-Blom et al., 2013), and Katz (Singh-Blom
et al., 2013)) on the Online Mendelian Inheritance in Man (OMIM)
dataset (Hamosh et al., 2005). Extensive experiments suggest that our
method significantly outperforms the existing methods on recovering
missing associations, and on discovering associations for novel genes
and/or diseases that are not seen in the training. We further demonstrate
that our embedding has biological meaning and can capture functional
groups of genes.

2 METHODS
In our work, we cast the disease gene prioritization problem as a
link prediction problem. Unlike the previous studies (Natarajan and
Dhillon, 2014; Zakeri et al., 2018) which solve the problem with matrix
factorization, we propose a novel method based on graph convolutional
neural networks. We compile the disease similarities, genetic interactions,
and disease-gene associations into a multi-nodal heterogeneous network,
as shown in Fig. 1. In this network, the potential disease-gene associations
can be considered as missing links and our goal is to predict these links
(Chen et al., 2005; Ying et al., 2018). The overview of our method is
shown in Fig. 2. The core idea of our method is to learn the nodes’
latent representations (embeddings) from their initial raw representations
(information encoded from different sources), considering the graph’s
topological structure and the nodes’ neighborhood, after which we make
predictions using the learned embeddings with the edge decoding model.
Both the embedding model and the decoding model are trained in an end-
to-end manner so that each model is optimized while being regularized by
the other one. In the following sections, we introduce each component of
the proposed method in more details.

2.1 Disease gene prioritization as a link prediction
problem

Recent studies (Natarajan and Dhillon, 2014; Zakeri et al., 2018) have
formulated the disease gene prioritization problem as a matrix completion
problem and applied the recently developed methods in recommender
systems, resulting in better performance than the previous state-of-the-
arts. Although we also consider the problem as a recommender system
problem, we treat the entire data structure as a heterogeneous network
(Fig. 1 and Section 2.2). Each node represents a disease or a gene,
and each edge represents one specific kind of interaction. In addition,
each disease and gene is supplemented with additional information from
different data sources (Section 2.3). Our goal is to predict the potential
links between disease nodes and gene nodes, whose link strength can be
used for prioritization. Compared with the matrix factorization methods,
our formulation can capture the nonlinear relationship between diseases
and genes. Compared to the traditional network-based methods, our
method is able to integrate the information from different sources in a
systematic and natural way.

The core component of our method is the graph convolutional
encoder (Section 2.4), which can learn the embeddings from the
nodes’ neighborhood, node-specific information, and the topology of the
heterogeneous network. The central problem for learning embeddings
from graph data is to propagate and transform information. As shown
in Fig. 2 (A), the entire graph starts from a heterogeneous network,

Fig. 1: Disease gene prioritization as a link prediction problem. The heterogeneous network
contains three components, the genetic interaction network, the disease similarity network,
and the disease-gene association network. The potential disease gene associations can be
considered as missing links in the disease-gene association network. Our goal is to predict
those links given the heterogeneous network and additional raw representations of the
nodes (diseases and genes).

with each node containing information from different sources. In the
graph convolution model, each node’s neighboring nodes define the
computational graph of its local neural network, i.e., its own neural
network architecture. Although the local computational graphs can
be different for different nodes, the same operations share the same
parameters and activation functions, which specify how the information
is shared and propagated across the computational graph. Since we
instantiate the graph convolution operation using a fully-connected neural
network (Fig. 2 (B)), the model can seamlessly integrate information from
different sources. The embeddings are fed into the link decoding model
(Section 2.5). Thus, the proposed method can achieve problem-specific
data integration systematically, whose parameters are learned from the
data in an end-to-end manner.

2.2 Network compiling
The network in our model (Fig. 1) is a heterogeneous network containing
three components: the gene network, the disease similarity network, and
the disease-gene network. The disease-gene network is built from the
OMIM database (November 26, 2017), with the associations being the
links. After preprocessing, this network contains 12331 genes, 3215
diseases, and 3988 disease-gene associations.

As for the gene network, we used HumanNet from Lee et al. (2011).
This large-scale functional gene network was constructed by considering
multiple sources of information, including human mRNA co-expression,
protein-protein interactions, protein complex, and comparative genomics
information. In total, it incorporated 21 genomics and proteomics datasets
from four species. Compared to the network built from single dataset,
such as protein-protein interaction networks, it has higher accuracy and
genome coverage (Lee et al., 2011). The usefulness of HumanNet in
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Fig. 2: Overview of the proposed method. (A) The input of our model contains two components, the heterogeneous network and the additional information for the nodes. As for the
heterogeneous network, we used HumanNet as the gene network, disease similarity network as the disease network, and the associations from OMIM as the disease-gene network. For
the additional information of diseases, we used Disease Ontology similarity and the TF-IDF calculated from OMIM. For the additional information of genes, we used association matrices
from other species and the gene expression microarray data. (B) Examples of one layer of the graph convolutional neural network update for learning node embeddings. For each node,
the model aggregates information from its neighbor nodes’ previous layer embeddings and then apply activation to obtain the current layer embedding of that node. Note that for different
nodes, the computational graphs can be different but the parameters are shared for the same operation in different computational graphs. (C) The link prediction model. We model the edge
prediction from the learned node embeddings with bilinear edge decoder. (D) The cross-entropy loss calculated from the ground truth and the output of the link prediction model for certain
edges (or non-edges) is used as the loss function to train both the node embedding model and the edge decoding model jointly in an end-to-end fashion.

disease gene prioritization has been proved by previous studies (Singh-
Blom et al., 2013; Natarajan and Dhillon, 2014). In summary, our gene
network is composed of 12331 genes and 733836 edges with positive
weights. More details about the network can be found in Lee et al. (2011).

We used the MimMiner from Van Driel et al. (2006) as the disease
similarity network. This network was built by using text mining analysis
on the OMIM database. For each disease, the anatomy and disease
sections of the medical subject headings were used to extract terms
from OMIM, whose frequencies were used as the feature vectors of
the disease. After further refinement, the feature vectors were used to
compute the pairwise similarities between the disease, which resulted in
the MimMiner network. Although in the construction process, it did not
involve gene information, the similarities were shown to be positively
correlated with a number of measures of gene function. This network has
also been used as a feature input in the previous disease gene prioritization
methods (Singh-Blom et al., 2013; Natarajan and Dhillon, 2014). After
setting the similarity threshold as 0.2, we obtained a disease similarity
network with 3215 diseases and 645945 edges.

2.3 Data sources for node raw representation
In contrast to the other network-based methods, our model can naturally
incorporate additional information about the nodes from different sources.
In our implementation, we incorporated the following data sources,
although our method is generic and can take any source of information
for diseases and genes.

As shown in Fig. 2 (A), we incorporated two kinds of additional
information for the disease nodes. The first data source is Disease
Ontology (DO) similarity. After collecting the ontology for the disease
nodes, we calculated a similarity matrix for those diseases using the
Resnik pairwise similarity (Resnik, 1995) with the best-match average
(BMA) strategy (Wang et al., 2007). For each disease, we took the
corresponding row of this matrix as an additional feature vector for this
node. The second data source is the clinical text from OMIM webpages.

We collected the Clinical Feature and Clinical Management sections from
the OMIM webpages for each disease, and we removed the most frequent
and most rare words. Then, we counted the frequency of each unique
word in the corpus related to each disease. To remove the bias of the
relatively frequent words, we applied the TF-IDF scheme to the term
frequency matrix and obtained the corresponding row as the feature vector
for a disease. Finally, the two vectors were concatenated as the additional
information for the disease.

We also used two kinds of features as the additional information
for the gene nodes. Following the strategy from Natarajan and Dhillon
(2014), we collected the microarray measurement of gene expression
level in different tissue samples from BioGPS and Connectivity Map.
Since some genes are missing in the probes, we obtained 4536 features
for 8755 genes. It is well-known that samples from the same cell
type of different individuals tend to have a similar expression pattern,
which results in redundant information in the obtained feature matrix.
To eliminate the redundancy and reduce the dimensionality, we applied
principle component analysis (PCA) on the features and used the first
100 eigenvectors as the feature representations from gene expression
microarray. The second type of additional information for genes is
derived from gene-phenotype associations of other species. Following the
previous studies (Singh-Blom et al., 2013; Natarajan and Dhillon, 2014),
we used the phenotypes from eight species. As a result, we obtained eight
matrices, whose rows represent different genes and columns represent the
phenotypes of different species. We concatenated those gene-phenotype
matrices together with the microarray matrix along the gene dimension,
resulting in the additional information of the genes.

2.4 Node embedding with graph convolution
In this section, we introduce how we obtain the embeddings using graph
convolutional neural networks, taking into consideration both the network
topology, nodes’ neighborhood, and the additional information of the
nodes. Formally, given a graph G = (V,E), where V represents the set
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of nodes and E represents the set of edges, with the adjacent matrix as A,
we denote xi ∈ R

mi as the additional information of the node i ∈ V. Note
that in our method, the value of mi, which represents the dimension of
the additional feature vectors can be different for different kinds of nodes,
i.e., gene nodes and disease nodes. The goal of embedding is to map each
node to a vector zi ∈ R

c, where c << mi, considering the information
contained in A and {xi}

|V|

i=1.
The central problem of learning embedding with graph convolutional

neural networks is to learn how to transform and propagate information
(the additional information and intermediate embeddings of each node)
across the entire network. In our method, the GCN module defines the
information propagation architecture (the local computational graph) for
each node using the node’s neighborhood in the graph G. In terms of
the parameterization of the local computational graph, which defines
how the information is propagated and shared, the parameters and
weights are shared across all the local computational graphs built from
G, with the assumption that within the same graph G, the way of
sharing and propagating information should be the same. As a result,
for a given node, each layer of graph convolutional neural networks
aggregates and transforms the information (feature representations) from
its neighbors and applies the same transformation to all part of the
network, which is illustrated in Fig. 2 (B). If there is only one layer of
graph convolution, the embedding will only aggregate information from
its first-order neighbors. Thus, stacking N layers of graph convolutional
layers can make the embedding effectively convolve information from
its N-order neighbors explicitly. Besides, when we stack more than one
graph convolutional layers, the information of each single node can start
broadcasting to the entire network implicitly, whose affect depends on the
network topological structure (size, connectivity etc.). By using multiple
convolutional layers, we are able to learn the embedding of nodes,
considering the network topology, local neighborhoods, and additional
information of the nodes.

Formally, in each layer, for each node, the information aggregation
and transformation model takes the following form:

hi,k =
∑

l

∑
j∈N l

i

ci, jWk
l z j,k + Wk

ti ,szi,k , (1)

zi,k+1 = φ(hi,k), (2)

where zi,k ∈ R
ck is the hidden representation of node i in the k-th

graph convolutional layer and ck is the dimensionality of that hidden
representation; hi,k represents the feature vector which has aggregated
the information from the k-th layer hidden representations of the node’s
neighbors; l represents the link type, i.e., genetic interaction, disease-
disease similarity, or disease-gene association; N l

i are the neighbors of i,
which are linked by the link type l; Wk

l is the weight parameter related
to the link type l, such as Wk

dg, Wk
gd , Wk

dd and Wk
gg in Fig. 2 (B); ci, j

is the normalization constant, inspired by Zitnik et al. (2018), which is
defined as ci, j = 1/

√
|Ni ||N j |; Wk

ti ,s is the weight parameter preserving the
information from the node itself, where ti indicates the type of the node; φ
is the non-linear activation function, which is usually chosen as rectified
linear unit (ReLU). Note that the above aggregation and transformation
formulas are related to the neighbors of a certain node, which means
that the computational graph architecture can be different for nodes with
different local neighborhood structure. We show examples of two very
different computational graphs for nodes d1 and d7 in Fig. 2 (B). On
the other hand, although the computational graphs can be different, the
parameters are only related to the link type, not related to the node
neighborhoods, which means that the parameterization is shared across
the entire graph.

In our method, we use summation as the information aggregation
method in the GCN model. With different information aggregation

methods, it can result in different GCN variants. However, no matter
which method we choose, the aggregation and transformation layer
converts the hidden representation of node i in layer k, zi,k , into the hidden
representation in the next layer as zi,k+1. We use the output of the last
graph convolutional layer, zi,N , as the final embedding for that node, zi.
Naturally, the input of the first convolutional layer is the original feature
vector of each node (Section 2.3). Formally, zi,0 = xi.

2.5 Edge prediction from embeddings
In this section, we introduce how to reconstruct edges in the network with
the embeddings learned from GCN. We use the bilinear decoder with the
following form as the the edge decoder:

P(di, g j) = σ(zT
diWdzg j), (3)

where zT
di ∈ R

c is the learned embedding of a disease node di; zg j ∈

Rc is the learned embedding of a gene node g j; Wd ∈ R
c∗c is the

trainable parameter matrix, which models the interaction between each
two dimensions of zT

di and zg j; σ is the sigmoid function which converts
the output value of the edge decoder to the range of (0, 1), as a probability
value. This edge decoder is illustrated in Fig. 2 (C). Note that, similar
to the graph convolutional neural network model, the parameters of the
bilinear decoder model are also shared across different gene-disease pairs,
which can effectively reduce the risk of overfitting.

Taking the GCN model and the edge decoder model together, we
have the following trainable parameters: (1). The link-type-specific and
layer-specific convolutional weight parameters Wk

l , which suggest how
to aggregate and transform information from the node’s neighbors. (2).
The node-type-specific and layer-specific weight parameters Wk

t,s, which
indicate how to preserve and transform nodes’ self-information from one
layer to the next. (3). The weight parameters of the bilinear edge decoder
model, Wd , which model the interaction between two dimensions of the
input embeddings of two nodes. As shown in Fig. 2 (B) and (C), the GCN
model and the edge decoder model can be combined together to form an
end-to-end model, which takes the raw representation of two nodes and
output interaction probability. Consequently, the entire model and all the
parameters can be trained in an end-to-end manner.

2.6 Model hyper-parameters
In this section, we introduce the hyper-parameters that we chose when
building and training the model.

First, we used the cross-entropy loss as the loss function to train the
entire model, which has the following form:

L(di, g j) = − log P(di, g j) − Egn∼P(g j) log(1 − P(di, gn)), (4)

where di and g j form an edge in the training data. That is, the ground
truth value Y(di, g j) = 1 in Fig. 2 (D). By using the cross-entropy loss,
we want the model to assign the probabilities for the observed training
edges as high as possible while assigning low probabilities for the random
edges. Following the previous studies (Trouillon et al., 2016; Zitnik et al.,
2018), we used negative sampling to achieve this, which is illustrated by
the last term in Eq. (4). For each existing edge (di, g j), which is a positive
sample, we sampled a random edge (di, gn) by randomly choosing the
second node gn, which follows the sampling distribution P. Considering
all the edges, we have the final cross-entropy loss of the model as:

L =
∑

(di,g j)∈Edg

L(di, g j), (5)

where Edg represents all the edges connecting diseases and genes. As
we discussed in the previous sections, we trained the model in an end-
to-end manner, where the loss function gradient is back-propagated to
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the parameters in both the GCN model and the edge decoding model.
This end-to-end training strategy is more likely to find problem-specific,
effective models and embeddings, which has been proved by previous
studies (Li et al., 2017; Dai et al., 2017; Umarov et al., 2019; Zou et al.,
2019).

In terms of implementation, we set the number of layers as 2, with
the dimension of the hidden representation as 64 and the final embedding
dimension as 32. We trained the model using Adam optimizer, with the
learning rate as 0.001. To reduce overfitting, we used the combination of
dropout on the hidden layer unites with the dropout rate as 0.1, and the
legendary weight decay method. We initialized the model’s parameters
using Xavier initializer. During training, we fed mini-batch of edges
to the model, with the batch size as 512. This can reduce the memory
requirement and serve as an additional regularizer that further alleviates
overfitting. In total, we trained the model for 300 epochs. With the help
of a Titan Xp card, we finished the training of a model in 10 hours.

2.7 Evaluation criteria
We used the following criteria to evaluate our method and the
competing methods: Area Under the Receiver Operating Characteristic
curve (AUROC), Area Under the Precision-Recall Curve (AUPRC),
Boltzmann-Enhanced Discrimination of ROC (BEDROC), Average
Precision at K (AP@K), and Recall at K (R@K) score. AUROC is
a commonly used criterion in machine learning, which computes the
area under the ROC curve. In the disease gene prioritization problem,
it can be interpreted as the probability of a true disease-associated gene is
ranked higher than a false one selected randomly in a uniform distribution.
Similar to AUROC, AUPRC computes the area under the precision-recall
curve. BEDROC, proposed to solve the “early recognition” problem, can
be interpreted as the probability of a disease-associated gene being ranked
higher than a gene selected randomly following a distribution in which
top-ranked genes have a higher probability to be chosen. The formal
definition of BEDROC can be referred to Truchon and Bayly (2007).
P@K computes the precision of the prediction if we consider the top
K predicted associations. Recall at K considers the recall score within
the top K predictions. These five criteria can provide a comprehensive
evaluation of the proposed method.

3 RESULTS
In this section, we show the performance of the proposed method and the
five state-of-the-art methods. We first briefly introduce the five competing
methods. Then we introduce the experimental settings in details. After
that, we show the performance of all the methods on recovering missing
associations, and on discovering associations for novel genes and/or
diseases that are not seen in the training. Finally, we demonstrate
the effectiveness of the proposed method by investigating the predicted
associations on breast cancer.

3.1 Compared methods
Five state-of-the-art methods for disease gene prioritization are included
in the comparison. The first one is Katz (Singh-Blom et al., 2013),
which is a typical network-based method. It computes the node similarity
based on the network topology. The similarity matrix is then used
to make predictions for disease gene associations. The second one is
Catapult (Singh-Blom et al., 2013), another network-based method. It
combines the supervised learning with social network analysis, and has
been shown to be the state-of-the-art network-based method (Singh-
Blom et al., 2013; Natarajan and Dhillon, 2014). This method deploys
a biased support vector machine (SVM) as the classifier while the
features are derived from random walks in the heterogeneous gene-
trait network. It outperformed the previous network-based methods,
such as PRINCE and RWRH, significantly. The third one is a very

Table 1. The overall performance of the five compared methods. Under each criterion, the
method with the best performance is in bold and the second best is underlined.

Method AUROC AUPRC AP@200 BEDROC

PGCN 0.877 0.896 0.976 0.987
GeneHound 0.805 0.793 0.831 0.908

IMC 0.780 0.809 0.928 0.965
GCAS 0.614 0.623 0.753 0.813

Catapult 0.597 0.657 0.783 0.884
Katz 0.557 0.596 0.595 0.790

new network-based method, the Graph Convolution-based Association
Scoring (GCAS) method (Rao et al., 2018). This method used GCN as a
pure network analysis tool which can perform information propagation on
the similarity and association networks. Our method differs from GCAS
in that we use GCN to integrate information from different sources and
learn embeddings specifically for this problem, which are particularly
suitable for the downstream edge prediction task. The fourth one is
the Inductive Matrix Completion (IMC) method (Natarajan and Dhillon,
2014), which introduced the matrix completion method into the disease
gene prioritization field for the first time. It constructs features from
genes and diseases from multiple sources, ranging from gene expression
array to disease similarity networks. It then learns low-rank latent vectors
for diseases and genes which can explain the observed disease-gene
associations, taking into consideration features using a linear model.
The learned latent vectors are then used for making further predictions.
The last one is the very recently developed GeneHound method (Zakeri
et al., 2018). It also utilizes the matrix completion method but combines
Bayesian approach with matrix completion, which takes the disease-
specific and gene-specific information as the prior knowledge. This
method has been shown to outperform the legendary Endeavour method
significantly (Zakeri et al., 2018).

3.2 Experimental settings
We built the dataset from the OMIM database (November 26, 2017). After
preprocessing, we constructed a dataset with 12331 genes, 3215 diseases,
and 3988 associations. Comprehensive experiments were designed to
evaluate the performance of the proposed method. Firstly, we assessed
the overall ability to recover the known disease-gene associations using
the standard cross-fold validation strategy. During the experiments, we
randomly hid 10% associations as the testing set and used the remaining
90% as the training set. This experiment mimics the situation in which
partial knowledge about a disease is known (i.e., some associated genes
are known) and we want to complete the knowledge by finding out other
associated genes. The results are shown in Section 3.3. However, this task
is neither the most practically important nor the most challenging one
for disease gene prioritization. In reality, researchers are more interested
in predicting associations for diseases and/or genes that are not known
before. To mimic such situations, we further designed three experiments.
The first one is to predict associations for singleton genes (Singh-Blom
et al., 2013), which means that the gene has only one associated disease
and is not included in the training set (Section 3.4). The second one is to
predict associations for new diseases. We excluded all the associations for
certain diseases from the training set and challenged different methods to
recover these associations (Section 3.5). In the third experiment, we tested
the performance of different methods on recovering novel associations,
which are defined as the ones that both the disease and the gene are absent
in the training set (Section 3.6). Finally, we showed a case study of our
predictions for breast cancer in Section 3.7.
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Fig. 3: Performance comparison of different methods. For drawing the ROC curves (A) and PRC curves (B), we randomly selected the same number of negative samples to the positive
samples from the network. As shown in the figure, the proposed method, PGCN, can outperform the competing methods significantly in terms of AUROC and AUPRC. (C) The performance
of different methods in terms of recall at K. This criterion suggests the probability of an actual association being retrieved when checking the top-K predictions. The proposed method,
PGCN, can outperform all the other compared methods regardless of the value of K.

Fig. 4: Performance in terms of recall at K of different methods on recovering associations for new genes and/or diseases. (A) Performance comparison of different methods on the singleton
genes association prediction. (B) Performance comparison of different methods on the new disease association prediction. (C) Performance comparison of different methods on the novel
association prediction.

3.3 Overall performance
We randomly hid 10% associations as the testing set and used the
remaining 90% edges as the training data to evaluate the overall
performance of different methods on recovering the hidden associations.
The performance of different methods is summarized in Table. 1. As
shown in the table, the two matrix completion methods, GeneHound
and IMC, can outperform the other three network-based methods, GCAS,
Catapult and Katz, significantly across different criteria. The main reason
is that they can take full advantage of the gene- and disease-specific
information while the network-based methods are biased towards the
network topology. On the other hand, the proposed method, PGCN, which
can utilize both the network topology information and the additional
information of the nodes in a systematic and natural way, can outperform
all the state-of-the-art methods significantly and consistently across
different criteria with a large margin. In terms of AUPRC, PGCN can
outperform the second best method by around 10%. We further show
the ROC curves and the PRC curves in Fig. 3 (A,B). It is clear that
PGCN significantly outperforms all the state-of-the-art methods under
all the false positive rates and all the recall values, which suggests
an overall much better method. In disease gene prioritization, Recall
at K is also an important indicator because the top-ranked genes are
candidates for further investigation. Fig. 3 (C) shows the recall of different
methods when different numbers of top predictions are considered.
Interestingly, GCAS can perform quite well when K is very small,
compared to GeneHound, IMC, Catapult and Katz. Yet PGCN is clearly
more sensitive than all the competing methods regardless of the number of
top predictions to be considered. All these consistent results demonstrate

that the proposed method can outperform the other methods in recovering
the hidden associations between diseases and genes.

3.4 Performance on singleton genes
Following the idea of Singh-Blom et al. (2013), we checked the
performance of different methods on predicting the associations of
singleton genes, which are defined as those genes with only one link in
the database. In our experiment, the only links for the singleton genes
were removed from training, which means that the methods needed to
predict the associations “from scratch”. We used recall at K to evaluate
different methods, which is a difficult measurement because each test gene
has one and only one true association. As shown in Fig. 4 (A), PGCN
consistently recovers the missing associations for singleton genes better
than other methods. We also noticed that the network information is very
important when K is small (between 1 and 10) because the improvement
of PGCN over the network-based method (e.g., Katz) is not large, which
is consistent with the previous findings (Natarajan and Dhillon, 2014).
However, as the number of top predictions being considered increases,
the disease- and gene-specific information plays more and more important
role, which leads to significantly better recall when K is large.

3.5 Performance on new diseases
Next, we evaluated the ability of different methods on predicting
associations for novel diseases for which no associated genes are known.
For a novel disease, all of its associations with genes were removed
during training and different methods were challenged to recover those
missing associations. This task is considerably less difficult in terms
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of recall than recovering the associations for singleton genes because
a disease can be associated with more than one genes. At the same
time, this task is practically important because it is directly related to
the molecular diagnosis for human diseases. As shown in Fig. 4 (B),
IMC can outperform all the other previous methods with a large margin.
The reason is that IMC is based on matrix completion techniques, which
can effectively incorporate the disease-specific information (Natarajan
and Dhillon, 2014). Our method, however, can not only incorporate
disease- and gene-specific information, but also the known disease-gene
associations in a unified framework. Furthermore, our method trains
the disease and gene embeddings and link prediction in an end-to-end
manner, and thus further significantly improves the performance over
IMC.

To further understand how our method works, we investigate a
disease, atrioventricular septal defect-4 (AVSD4), for which we removed
its only associated gene, GATA4, during training and PGCN successfully
recovered it with the highest score. The link between AVSD4 and GATA4
is built through another disease, ventricular septal defect-1 (VSD1),
which is known to be associated with GATA4. Our method detected the
similarity between the two diseases, AVSD4 and VSD1, according to
their embeddings learned by our method, which is illustrated in Fig. 6
(B). However, this similarity is very difficult to be detected because in the
disease similarity network, the two diseases have a wrong similarity score
of 0, which suggests that they are two completely irrelevant diseases.
Therefore, all the network-based methods failed to predict the association
between AVSD4 and GATA4. Our method, on the contrary, systematically
incorporates not only the network topology, but also the disease-specific
information. In this particular case, the disease-specific information plays
an important role in the disease embedding and thus PGCN was able to
detect the similarity between the two diseases in the embedding space,
which led to the correct prediction on the association between AVSD4
and GATA4.

3.6 Performance on novel associations
We then evaluated the prediction performance of different methods for
novel associations, which are defined to be the associations between a
disease and a gene, both of which have no association in the training set.
This is the most stringent and challenging requirement. In order for a
method to recover such associations, neither the disease end nor the gene
end of the association can be directly used. The method must be powerful
enough to effectively use the disease- and gene-specific information,
and propagate the information through other diseases, genes, and their
associations in the heterogeneous network. The results are shown in Fig.
4 (C). As expected, the recall values of all the methods have a clear drop
comparing to the two previous tasks. We found that the three network-
based methods did not perform well in this task as they were unable
to recall any true associations. We suspect that the main reason for this
is that the definition of novel associations makes network propagation
alone extremely difficult. To support this view, the two matrix completion
methods, which can take advantage of the specific information of genes
and diseases, performed much better than the network-based methods.
Our method consistently outperforms all the competing methods, and the
improvement increases with a larger K.

3.7 Case study
As a case study, we investigated the top 10 associations for breast cancer.
Among these 10 genes, other than the four ground-truth breast cancer-
related genes reported in the OMIM dataset, our model also predicted
three interesting genes: Axin2, TLR4, and PTPRJ, which were reported
to be related to breast cancer. For example, Axin2 was found to be
included in the Wnt/β-catenin/Axin2 pathway, which can regulate the
breast cancer invasion and metastasis (Li et al., 2016); TLR4 was found

Fig. 5: The importance of the disease- and gene-specific information. We show the
performance of the proposed method on the novel association prediction when eliminating
the feature vectors for different types of nodes. “PGCN” is the proposed method, which
trains the model with both the disease features and gene features. “PGCN (No Gene
Features)” trains the model without the features for the gene nodes. “PGCN (No Disease
Features)” trains the model without the features for the disease nodes. “PGCN (No
Features)” only uses the network topology information, without using any features for
disease or gene nodes.

to be overexpressed in the majority of the breast cancer samples and
also related to the metastasis of breast cancer (Volk-Draper et al., 2014);
and PTPRJ forms DEP-1/PTPRJ/CD148, which is receptor-like protein
tyrosine phosphatases (PTP), that was found to be mutated or deleted
in human breast cancer (Spring et al., 2015). These results suggest the
potential application of our method on discovering new genes related to
complex human diseases.

4 DISCUSSION
4.1 Importance of disease- and gene-specific

information
To expand the analysis for the importance of the disease- and gene-
specific information, we further investigated its contributions to the
prediction performance of our method. Focusing on the novel association
prediction task, we excluded the disease features, the gene features,
and both of them, respectively, and evaluated the performance of the
corresponding models. As shown in Fig. 5, both the disease features
and the gene features are very important for the proposed method. If we
exclude either one of them, the performance will degrade significantly.
If we exclude both of them, the model cannot recall anything when K
is in the range of (1, 19). On the other hand, disease features are more
important than the gene features as the model with the disease features
begins to recall some true associations when K = 7 while the model with
the gene features begins to recall some true associations when K = 13.
The reason may be that the gene network we used is HumanNet, which is
a very informative database that was built from multiple data sources.

4.2 Biological meaning of embeddings
To gain insights into how the final embeddings represent the gene and
the disease features, we mapped the 32-dimensional vector of each
node into a 2-dimensional space using t-SNE (Maaten and Hinton,
2008) for visualization (Fig. 6). From these 2-dimensional data, we
observed that many points are located closely to some other points and
they form clusters of a wide range of sizes in both the gene feature
space and the disease feature space. Since closely located data points
suggest that the corresponding features be biologically similar in our
embedding, we analyze the extent to which closely located data points
in the low dimensional space represent the biological association of the
corresponding features.

To this end, we first clustered the data points into 100 groups for the
gene node embedding and 50 groups for the disease node embedding
using hierarchical clustering. To analyze the functional association for
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Fig. 6: Visualization of the clustering of embeddings in 2D space using t-SNE.

gene features, we mapped genes in each cluster to biological pathways
that they are associated with using the KEGG pathway data (Kanehisa
and Goto, 2000) and evaluated their statistical significance. We found that
all of the 100 clusters have statistically significant levels of association
with biological function (p < 0.05; hypergeometric test). Notably, the
cluster which includes RPL3L over-represents the genes involved in the
formation of the ribosome (p < 10−82), while the one including H2AFX
has a disproportionately large number of genes involved in the DNA repair
response of systemic lupus erythematosus (p < 10−39).

For the analysis of the disease node embedding, we used the Human
Phenotype Ontology (HPO) dataset (Köhler et al., 2019) to associate each
disease with corresponding HPO phenotypic abnormality terms. Similar
to the gene-function association analysis, all of the 50 clusters are found to
have statistically significant number of diseases with association to some
sort of phenotypic abnormalities (p < 0.01). In particular, we found that
the cluster including Parkinson Disease, Late-onset (OMIM:168600) is
enriched in diseases that are associated with slow movements (p < 10−22),
while the cluster with Neuropathy, Hereditary Sensory And Autonomic,
Type Ii (OMIM:201300) over-represents genes associated with muscular
hypotonia (p < 10−10).

These results indicate the ability of our method to generate
embeddings that preserve the gene and the disease associations that are
critical to the disease gene prioritization task. They also highlight the
possibility to interpret the gene node and the disease node embeddings
in a biologically meaningful way, which is essential to gain biomedical
insights into novel disease-gene association.

5 CONCLUSION
In this paper, we proposed a novel, unified framework for disease
gene prioritization. Our method automatically learns the embedding
of diseases and genes by systematically incorporating the topology
of the heterogeneous network, the neighborhood of the diseases and
genes, and the disease- and gene-specific information. The embeddings
and the association prediction models are trained in an end-to-end

manner. Extensive experiments demonstrate the power of our method
on recovering missing associations, and on discovering associations
for novel genes and/or diseases that are not seen in the training. Our
framework is generic and can be readily applied to tackle other important
problems in computational biology, such as drug disease association
(Pushpakom et al., 2019) and homolog detection for protein structure
prediction (Cui et al., 2016).
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