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Summary

 The internal transcribed spacer (ITS) is used in DNA metabarcoding of fungi. One

disadvantage of its high variability may be a failure to classify OTUs when no similar

reference sequence exists. We tested whether the 5.8S region, often sequenced with

ITS2 but discarded before analysis, could provide OUT classifications when ITS fails.

 We used in silico evaluation to compare classification success of 5.8S and ITS from

the UNITE database when reference sequences of the same species, genus, or family

were removed. We then developed an automated pipeline for a combined 5.8S - ITS2

analysis and applied it to mixed environmental samples containing many lineages that

are underrepresented in databases.

 ITS was clearly 

superior for species-level classifications with a complete reference database, but 5.8S

outperformed ITS at higher level  classifications  with an incomplete  database.  Our

combined  5.8S-ITS2  pipeline  classified  3x  more  fungal  OTUs  compared  to  ITS2

alone, particularly within Chytridiomycota (10x) and Rozellamycota (3x).

 Missing reference sequences led to the failure of ITS to classify many fungal OTUs at

all, and to a significant underestimation of environmental fungal diversity. Using 5.8S

to complement ITS classification will likely provide better estimates of diversity in

lineages for which database coverage is poor.

Key words:   5.8S, Chytridiomycota, fungi, ITS, metabarcoding, Rozellomycota

Introduction

The Fungi  comprise  an enormous diversity  of  species  and life  styles. Estimations  of  the

number of species range from 2.2 to 3.8 million  (Hawksworth & Lücking, 2017) of which

only  a  small  fraction  (<145,000,  http://www.speciesfungorum.org/Names/Names.asp,

accessed  January  2019)  have  been  formally  described.  The  evolutionary  relationships

between major fungal lineages are far from resolved an there is still no general agreement on

the number of phyla,  particularly for the basal clades.  Hibbett  et al.  (2007) named seven

phyla.  Blackwell  (2011) gave the number of phyla as  “about  10” .  Following the recent

definition of Rozellomycota (or Cryptomycota) (Lara et al., 2010; Jones et al., 2011; Corsaro
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et al., 2014), Tedersoo et al. (2017b) mentions 12 phyla and indicates that there may be more

phyla.  The  latest  taxonomy  defines  16  basal  phyla  in  addition  to  the  Ascomycota  and

Basidiomycota bringing the total to 18 (Wijayawardene et al., 2018). The community-curated

reference database UNITE (Kõljalg et al., 2013) currently (version 7.2, 2017-12-01) also lists

18 phyla, including the preliminary named phyla GS01 and GS19.

Schoch et al.  (Schoch et al., 2012) proposed the internal transcribed spacer (ITS) region of

the eukaryotic rRNA operon as a universal fungal DNA barcode. The ITS region is ca. 300-

1,200 bp and is located between the 18S (SSU) and 28S (LSU) rRNA genes. It contains the

two highly variable spacers, ITS1 and ITS2, separated by the less variable 5.8S gene (Nilsson

et al., 2008). The full ITS region is included in the UNITE database (Kõljalg et al., 2013). 

Advances in sequencing technologies have enabled a shift to DNA metabarcoding surveys of

environmental samples, whereby sample throughput is much higher than previously possible

and whole communities can be studied without the need for isolation and culture of single

species or isolation of genotypes through cloning of single DNA fragments  (Nilsson et al.,

2018).  Because  the  maximum  length  of  continuously  read  sequence  (~550  bp  with

overlapping  paired-end  design)  using  the  most  commonly  used  Illumina  sequencer  for

metabarcoding (MiSeq), it  is not feasible to sequence the whole ITS region. Most studies

focus on either the ITS1 or ITS2 (Tedersoo et al., 2014; Miller  et al., 2016; Wurzbacher et

al., 2017) as a result.

The ability of Illumina based DNA metabarcoding to identify fungal taxa in mixed samples

varies among studies. An in silico test with 8967 ITS sequences from a range of fungal phyla

(Porras-Alfaro  et al., 2014) reported that > 90% of test data (ITS1 91%; ITS2 93%) were

identified to the correct genus. In a mock community of 24 Dikarya species, both ITS1 and

ITS2 sequences of different species could be clustered into one operational taxonomic unit

(OTU)  each  and  classified  correctly  (Tedersoo  et  al.,  2015).  In  environmental  samples

classification of ITS sequences has proven more challenging in many studies. Rime et al.

(2015) reported  that  5% of  the ITS2 OTUs from soil  samples  could not  be classified  to

phylum (i.e. only to kingdom fungi). Wurzbacher et al.  (2017) found that 25% of fungal

OTUs in permafrost thaw ponds could not be assigned to phylum with ITS2. In a study of

fungi  in  decaying wood Yang et  al.  (2016) found that  19 -  25% of  OTUs could not be

classified below kingdom level, and a study from lake sediments reported 72% of fungi were

unclassified for the ITS1 region and 49% of unclassified fungi for the ITS2  (Wahl  et al.,

2018). These results all highlight the fact that the incomplete state of reference databases for
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many fungal taxa may hinder ITS classification,  although it is not clear which taxonomic

levels are affected and how this affects classification success.

A  potential  reason  for  the  failure  of  ITS to  classify  fungal  OTUs  from  environmental

samples, even to higher taxonomic levels, is the variability of the ITS sequence itself. While

high variability  among closely related taxa makes the ITS an excellent  DNA barcode,  its

variability  also  hinders  classification  of  evolutionarily  more  distant  taxa.  This is  because

large  sequence  divergence  can  make  it  difficult  to  establish  homology  and  impairs  an

alignment to identify a sister taxon. This may be especially problematic in less well studied

habitats such as freshwater, where a wide variety of early diverging fungal lineages occur

(Grossart  et al.,  2016; Rojas-Jimenez  et al.,  2017) and for which sequences from closely

related species are often not available in reference databases. 

Interestingly, many fungal DNA metabarcoding studies amplify the ITS2 region using  the

primer pair  ITS3/ITS4 (White et al., 1990), which includes a ~130 bp long fragment of the

5.8S rRNA gene that is normally discarded during the amplicon data processing steps  (e.g.

Lindahl et al., 2013; Bálint et al., 2014). The 5.8S rRNA gene has a much lower substitution

rate compared to ITS1 or ITS2 sequence (Nilsson et al., 2008) and is thus usually neglected

as a potential barcode, but has been used for phylogenetic classification (Roose-Amsaleg et

al.,  2004;  Neubert  et  al.,  2006).  The fact  that  the 5.8S gene is  included  in the  full  ITS

reference database UNITE, allows for direct taxonomic comparison with the ITS1 and ITS2. 

Here  we  tested  whether  the  more conserved  5.8S  region  could  provide  higher  level

classification of fungi in cases where ITS2 could not, using  in silico analysis of sequences

present in the UNITE database. We classified query sequences at different taxonomic ranks

using the 5.8S, ITS1 and ITS2 and examined the extent to which the classification success

depended on  database completeness.  Specifically,  we excluded all  other sequences from

individuals of either the same species, genus, or family. We observed that ITS1 and ITS2 are

clearly superior for species-level classifications when the reference database is complete, but

that  5.8S  outperforms  both  markers  at  higher  level  taxonomic  classifications  with  an

incomplete  database.  Based on this  result,  we developed  and implemented  an  automated

pipeline to analyze amplicons that contain both 5.8S and ITS2 rRNA gene regions, typical of

many fungal DNA metabarcoding studies. A test on sequence data from sediment and water

samples  from  20  freshwater  lakes  showed  that  the  5.8S  sequence  added  phylum  level

classifications for most (74%) of the 64% of our ITS2 OTUs that were unclassified with ITS2

alone.  The  current  version  of  the  pipeline  can  be  found  at  www.github.com/f-
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heeger/two_marker_metabarcoding.

Material and Methods

Testing the effects of an incomplete reference database

For the in silico evaluation of how database completeness affects classification with different

rRNA markers, we created a dataset whereby the classification of each query sequence was

known, and where at  least  one other  sequence from (a) the same  species,  (b) a different

species  in  the  same genus,  and (c)  a  different  genus  within  the  same family,  were  also

available. This allowed us to test whether classifications at a given rank were correct, even

when all other sequences for the species, genus, or family were not present (i.e. removed

from our reference database). An additional criterion was that complete sequences of ITS1,

ITS2, and 5.8S had to be available to allow for comparison between the markers. We created

such a dataset in the following way: Fungal ITS1, 5.8S and ITS2 sequences were extracted

from sequences in the UNITE database (version 7.2, 2017-12-01) using ITSx with default

parameters  (version  1.0.11,  Bengtsson-Palme  et  al.,  2013).  Sequences  that  satisfied  the

following three criteria were selected: i) all three markers could be detected by ITSx, ii) a

species-level classification was available in UNITE, and iii) at least one other sequence was

available from the same species, from the same genus (but different species), and from the

same family (but different genus). There were 5038 sequences that satisfied these criteria and

from these we chose a random subset of 100 sequences for our evaluation.

Marker sequences (ITS1, ITS2, 5.8S) were classified independently with the  lowest common

ancestor (LCA) classification approach  based on database search results similar to the one

employed  in  MEGAN  (Huson  et  al.,  2007).  First  a  database  search  of  each sequence  is

performed against  the UNITE database.  For each sequence  hits  with an e-value  below a

minimum value (default: 10-7) are considered. Any hit with an identity or query coverage

below a certain threshold (default:  80% and 85% respectively) or a bitscore lower than a

certain percentage (default:  95%) of the best score for that sequence is excluded. For the

remaining hits the lowest common ancestor in the taxonomic tree that underlies UNITE is

determined  in  the  following  way:  For  each  level  in  the  taxonomic  tree,  starting  from

kingdom, classifications of all hits are compared. If the classification of a certain percentage

(default: 90%) or more of the hits at this taxonomic level are the same, it will be accepted as

the classification on this level for the query sequence. Otherwise the lowest common ancestor

is found and the query will only be classified to the last level, where a majority was achieved.

5

100

105

110

115

120

125

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/532358doi: bioRxiv preprint 

http://www.github.com/f-heeger/two_marker_metabarcoding
http://www.github.com/f-heeger/two_marker_metabarcoding
https://doi.org/10.1101/532358


During this process any classifications of “undetermined” or “unclassified” are ignored.

ITS2 sequences were additionally analyzed with the RDP  (Wang  et al., 2007) classifier to

make sure that the LCA approach we implemented here gives results comparable to widely

applied tools.  We employed the classifier trained for use in the PIPITS pipeline  (Gweon et

al., 2015) on ITS sequences from the current version (7.2, 2017-12-01) of UNITE.

For 5.8S and ITS2, the classification was run using a range of parameter values for minimum

identity, minimum coverage, top bit score fraction cutoff, and LCA majority stringency. This

was  done  to  investigate  the  parameter  stability  of  the  approach.  The  effect  of  missing

database  coverage  was  tested  by  first  classifying  query  sequences  using  the  complete

reference database, and then repeating the process three times, removing all sequences from

the same species, genus, and family in subsequent iterations. To assess whether classifying

the 5.8S and ITS2 together was an effective method, we classified the combined 5.8S and

ITS2 fragment with the LCA approach and compared the resulting classifications with those

in the UNITE database.

5.8S reference data set

As a reference dataset for classification of 5.8S sequences, we used the 5.8S sequences that

were extracted from UNITE with ITSx (above) and complemented them with non-fungal

5.8S sequences from the 5.8S rRNA family (RF00002) of the Rfam database (Kalvari et al.,

2018). Identical sequences were dereplicated to one representative with vsearch (Rognes et

al., 2016). For each representative sequence, a taxonomic classification was determined by

generating a LCA from the classifications of all sequences it represents. For Rfam sequences

classified as fungi, any classification at lower rank was ignored and priority was given to the

taxonomy information from the UNITE database.

Description of the pipeline

The pipeline was implemented as a workflow with snakemake  (Köster & Rahmann, 2012)

with four main stages: 1) initial read processing, 2) 5.8S classification, 3) ITS2 classification

and 4) final classification (Fig. 1).

(1) Initial read processing starts by producing quality plots with FastQC (version 0.11.2, 

Andrews). The presence of the forward or reverse primer in the first 25 bp of the respective 

read is checked with flexbar (version v2.5_beta, Roehr et al., 2017). Quality trimming with 

Trimmomatic (version 0.35, Bolger et al., 2014) consists of a sliding window trimming 
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(default window size: 8 and a minimum Phred score: 20) and removal of trailing bases with a 

low (default: <20) Phred quality, followed by the removal of sequences that are too short 

(default: < 200) or have a low average Phred quality (default: <30) after trimming.

Forward and reverse reads of each pair are then merged with Pear (version 0.9.6, Zhang et

al., 2014). By default the minimum overlap for merging is set to 10. Pairs that cannot be

merged  or  are  too  short  (default:  <  150)  or  too long (default:  >  550)  after  merging  are

discarded.  Merged sequences  are dereplicated with vsearch.  Potential  chimeras  (including

sequences classified as “suspicious”) are removed with vsearch in de novo chimera detection

mode with default parameters. The 5.8S and ITS2 sequences are extracted with ITSx with

default parameters, except that partial 5.8S sequences are accepted. The 5.8S and the ITS2

sequences are independently classified in stage 2 and 3 respectively.

(2)  5.8S  classification  starts  with  removal  of  the  forward  primer  and  sequences  with

ambiguous bases are discarded using cutadapt (version 1.9.1, Martin, 2011). Sequences are

dereplicated with vsearch and then classified by a similarity search against our combined

5.8S reference dataset (above) with lambda (version 0.9.3, Hauswedell et al., 2014) followed

by a LCA classification as described for the in silico test (above).

(3) ITS2 classification starts with dereplication of ITS2 sequences with vsearch. Clustering

into OTUs is done with swarm2 (version 2.1.6, Mahé et al., 2015). OTUs are classified by

similarity search and LCA in the same way as 5.8S sequences are classified (above).

(4) The final classification combines the classifications from stage 2 and 3. For each read

present in an ITS2 OTU cluster, all 5.8S sequences and their classifications are collected. The

5.8S  classifications  are  combined  with  the  same  LCA  approach  explained  above.  The

resulting classification is compared to the ITS2 classification. If 5.8S and ITS2 classification

are concordant, but the ITS2 is classified to a lower taxonomic rank, the ITS2 classification is

accepted.  Sequences  that  are  unclassified  with  ITS2  will  automatically  take  the  5.8S

classifications. All conflicting classifications can either be marked (default) or resolved by

the user by giving priority to one of the markers.

Test with reads from freshwater lake samples

We tested the pipeline on an unpublished data set (Bourne, E.C. et al. unpublished) of water

and sediment samples, taken in October and November 2014 from the littoral  zone of 20

freshwater lakes in North-East Germany. In six lakes, additional sediment and water samples
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were  taken  from  the  pelagic  zone.  Amplification  was  performed  using  ITS3mix1  and

ITS3mix2 forward primers (Tedersoo et al., 2015) that were modified by adding a degenerate

base (W) at the third position, and the standard reverse primer ITS4 (White et al., 1990). This

primer set amplified a 350-500 bp amplicon consisting of the full ITS2 and ca. 130 bp of the

5'-end of  the 5.8S gene.  Amplicons were sequenced with overlapping 300 bp paired-end

reads on an Illumina MiSeq (v3 chemistry).

Results

Analysis of the classification of query sequences with an increasingly incomplete reference

database showed a clear difference among markers (Fig. 2).  When the query species  was

present in the reference database, ITS1 and ITS2 both correctly classified 90% of queries to

species,  whereas 5.8S classified 3% of queries to species and 56% of sequences to order

(Fig 2).  The  removal  of  all  sequences from  the  same  species,  genus,  or  family  had  an

increasingly detrimental effect on the classification success of both ITS sequences (Fig. 2).

Removing only the query species (i.e. other species in the genus still present in the database)

caused a distinct drop in successful classification of ITS1 and ITS2 at the kingdom (from

100% to 83% and 88% respectively), phylum (from 100% to 83% and 88% respectively), and

class (from 100% to 83% and 87% respectively) ranks (Fig. 2). In contrast, the kingdom and

phylum rank classifications of 5.8S sequences were not notably affected by the removal of

reference sequences, with classification at the class rank only dropping from 83% to 81% and

classification to kingdom and phylum being completely unaffected (Fig. 2).

The LCA classification was performed with different parameters for ITS2 and 5.8S to test

parameter stability. The stringency parameter had minimal influence on ITS2 classifications

(Fig. S1). Lowering the parameters of minimum identity (Fig. S2) and minimum coverage

(Fig. S3) increased the number of classifications, but also increased the numbers of wrong

classifications. Lower values for the top bitscore fraction parameter caused more wrong ITS2

classifications without increasing the number of correct classifications (Fig. S4). Minimum

identity and minimum coverage had little influence on 5.8S classifications (Fig. S5 and S6),

although a very high value (100%) resulted in more wrong classifications. The top bitscore

fraction parameter gave more correct 5.8S classifications for values ≤ 5%, but at the cost of

an increased number of wrong classifications (Fig. S7). Finally a low value (≤ 85%) for the

stringency parameter resulted in more wrong 5.8S classifications, while a very high value
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(100%) led to a decrease in correct assignments (Fig. S8).

Comparison  with  RDP  classifications  (Fig.  S9)  showed  that  the  LCA  approach  gives

comparable results to the RDP classifier (trained on the UNITE database) for our data. The

comparison between independent classification of ITS2 and 5.8S with the classification of a

combined  fragment  of  both  regions  revealed  that  a  combined  fragment  improved

classification at kingdom and phylum ranks, but not to the same extent as an independent

classification of 5.8S and ITS2 with a subsequent combination of the result (Fig. S10).

The environmental data set from 20 freshwater lakes (water and sediment samples) consisted

of 13.6 million read pairs. Our analysis pipeline generated 17,514 non-singleton OTUs. The

5.8S marker classified nearly three times as many OTUs compared to ITS2, including a 28-

fold  increase  in  the  number  of  Chytridiomycota  OTUs  and  a  6-fold  increase  in

Rozellomycota TOUs (Tab. 1). Using ITS2, 30% of all OTUs were classified as Fungi, 1%

were classified as belonging to a different kingdom, and 69% were unclassified (Fig 3). In

contrast, using 5.8S, 64% were classified as Fungi, 12% were classified as belonging to a

different  kingdom,  and  24%  were  unclassified  (Fig. 3).  Using  the  two  markers  in

combination, results were very similar to those using 5.8S alone (Tab. 1), but with more low

level (family to species) classifications (Fig. 3). 

There  was  a  classification  conflict  for  only  one  OTU.  The  5.8S  classification  was

Arthropoda, whereas the ITS2 classification was Ascomycota.  This was caused by a miss-

classification of SH200261.07FU in the UNITE database (R.H. Nilsson pers. comm.), that

has been subsequently corrected in UNITE.

Discussion

We  developed  and  implemented  a  modular  pipeline  for  the  processing  of  fungal  DNA

metabarcoding data that uses the taxonomic information from the 5.8S gene to complement

the  more  widely  used  ITS2  region.  These  markers  are  adjacent  to  one  another  in  the

eukaryotic  rRNA  operon  and  >100  bp  of  5.8S  are  typically  sequenced  using  the  most

frequently employed ITS2 primer sets (White  et al., 1990; Tedersoo et al., 2015), but then

discarded  prior  to  analysis.  Using both  markers  in  combination  allowed  us  to  classify  a

substantially  greater  number  of  OTUs  than  with  ITS2  alone,  in  particular  for  less  well

studied, basal fungal lineages.

Our in silico analysis of the UNITE database expanded on earlier results (Porras-Alfaro et al.,
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2014) that ITS1 and ITS2 are very good marker sequences when the database contains the

exact  same sequence or at  least  a sequence from the same species.  In our test  cases,  no

sequences were assigned to the wrong species and very few were unclassified.  However,

when only removing all sequences of the same species from our reference dataset, the ability

to classify the genus dropped to 71% and 70% for ITS1 and ITS2 respectively, despite there

being representatives of the genus in the reference dataset. Even for higher taxonomic ranks

(phylum, class) the removal of the species caused classification problems. Simulating novel

genera or families  by removing the respective sequences from the database increased the

effect even more. This is most likely the reason that many fungal OTUs remain unclassified

in environmental studies that focus on poorly studied environments like freshwater (Grossart

et al., 2016; Rojas-Jimenez et al., 2017). We found that new species, genera or families that

do not have any reference sequences available are often unidentified at even at the kingdom

rank, leading to fungal diversity being severely underestimated.

In our environmental data set from lake water and sediments, there were large differences in

OTU classifications, depending on whether we used ITS2 or 5.8S. The proportion of OTUs

that  could  be  identified  as  fungi  was  twice  as  high  using  the  5.8S.,  with  30-fold  more

Rozellomycota  (also known as Cryptomycota)  and nearly  10-fold more Chytridiomycota.

Chytridiomycota are not well represented in the UNITE database (Frenken et al., 2017) and

our in silico analysis showed that even if our environmental OTUs were represented by other

members of the  same genus or family,  the ITS2 classification can fail completely.  As a

result, using ITS2 alone would have led to an estimate of Chytridoimycota of 3%, while the

5.8S classifications indicate that the actual proportion is an order of magnitude higher (32%).

Similarly,  the percentage of Rozellomycota would increase from 0.1% to 3% (Fig. 3). An

estimation  of  the  proportion  of  fungal  phyla  based  on the  ITS2 alone  would  have  been

strongly biased towards Ascomycota and Basidiomycota, which are better represented in the

reference database.

Although the ITS2 barcode allows for accurate  identification when near-perfect reference

data are available, it may be unable to find a high enough similarity to any sequence when no

closely related species is represented in the database. In such cases, the 5.8S sequence can

help to classify OTUs to at least a higher taxonomic rank. In our environmental data, the 5.8S

was especially helpful in splitting the results into fungal and non-fungal sequences when it

comes to early diverging lineages or lineages  that belong to the Top 50 unknown fungal

lineages (Nilsson et al., 2016). Nonetheless, our results clearly indicate that the 5.8S would
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be of limited use as a DNA barcode on its own, or to delineate OTUs, but it should rather be

seen as providing complementary information. 

Our implementation of LCA-based classification performed comparably to  the commonly

used RDP classifier on our test dataset and was not very sensitive to parameter choice. This

indicates that our implementation is working as well as commonly used approaches and can

be used to  study the advantage  of using multiple  markers as well  as the influence  of an

incomplete  database.  Unlike  using  a  single  “best”  (e.g.  lowest  e-value)  blast  hit  for

identification which is problematic due to stochastic ranking of top hits  (Shah et al., 2018)

and can easily lead to wrong classifications if the query species is missing from the database,

our approach uses a certain proportion of top blast hits to try and quantify the uncertainty of

our classifications by choosing a higher taxonomic rank. Nevertheless we found a substantial

amount of wrong assignments in the in silico analysis, when the database was not complete

(Fig. 2).

Third generation  sequencing technologies  currently available  allow for the sequencing of

longer amplicons. These include studies of the full-length 16S for bacteria  (Mosher  et al.,

2014; Schloss et al., 2016; Singer et al., 2016), the full ITS region (Schlaeppi  et al., 2016;

Tedersoo  et  al.,  2017a) and  most  of  the  rRNA  operon  (Heeger  et  al.,  2018).  Longer

amplicons  with  multiple  gene  regions  could  be  analyzed  using  the  approach  we  have

developed here. Although longer amplicons can increase identification success (Tedersoo et

al., 2017a), they typically result in lower sequencing depth because of the higher cost per

base and can therefore increase the risk of missing rare taxa (Kennedy et al., 2018). Primer

pairs to target longer amplicons have also not yet been optimized to prevent primer and long-

range amplification bias (Heeger et al., 2018). We suggest that explicitly including the partial

5.8S gene into the analysis of shorter amplicons (as used in second-generation sequencing

technologies such as applied here) can dramatically improve the high level classification of

new species and poorly studied clades without increasing cost or reducing read depth.

Acknowledgements

We thank R. Henrik Nilsson and Kessy Abarenkov for help with an earlier version of the

manuscript,  Susan  Mbedi  and  Kirsten  Richter  for  help  with  sequencing,  and  Hannah

Ebbinghaus for help with PCRs.  Research was partially funded by the  Leibniz Association

Pakt/SAW project “MycoLink” (SAW-2014-IGB-1).

11

290

295

300

305

310

315

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/532358doi: bioRxiv preprint 

https://doi.org/10.1101/532358


Author contribution

F.H., E.C.B., C.W., C.J.M. and M.T.M. conceived and designed the overall study. F.H. and

C.J.M. designed the analysis pipeline. F.H. implemented the analysis pipeline and carried out

analysis. F.H., C.W., C.J.M. and M.T.M. wrote the manuscript and all authors contributed to

the final manuscript. M.T.M. and C.J.M. contributed equally to this work.

References

Andrews S. FastQC A Quality Control tool for High Throughput Sequence Data. 
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Bálint M, Schmidt P-A, Sharma R, Thines M, Schmitt I. 2014. An Illumina 
metabarcoding pipeline for fungi. Ecology and Evolution 4: 2642–2653.

Bengtsson-Palme J, Ryberg Martin, Hartmann Martin, Branco Sara, Wang Zheng, 
Godhe Anna, Wit Pierre, Sánchez‐García Marisol, Ebersberger Ingo, Sousa Filipe, et 
al. 2013. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS 
sequences of fungi and other eukaryotes for analysis of environmental sequencing data. 
Methods in Ecology and Evolution 4: 914–919.

Blackwell M. 2011. The Fungi: 1, 2, 3 … 5.1 million species? American Journal of Botany 
98: 426–438.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina 
sequence data. Bioinformatics 30: 2114–2120.

Corsaro D, Walochnik J, Venditti D, Steinmann J, Müller K-D, Michel R. 2014. 
Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. 
Parasitology Research 113: 1909–1918.

Frenken T, Alacid Elisabet, Berger Stella A., Bourne Elizabeth C., Gerphagnon 
Mélanie, Grossart Hans‐Peter, Gsell Alena S., Ibelings Bas W., Kagami Maiko, 
Küpper Frithjof C., et al. 2017. Integrating chytrid fungal parasites into plankton ecology: 
research gaps and needs. Environmental Microbiology 19: 3802–3822.

Grossart H-P, Wurzbacher C, James TY, Kagami M. 2016. Discovery of dark matter 
fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic
fungi. Fungal Ecology 19: 28–38.

Gweon HS, Oliver Anna, Taylor Joanne, Booth Tim, Gibbs Melanie, Read Daniel S., 
Griffiths Robert I., Schonrogge Karsten, Bunce Michael. 2015. PIPITS: an automated 
pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina 
sequencing platform. Methods in Ecology and Evolution 6: 973–980.

Hauswedell H, Singer J, Reinert K. 2014. Lambda: the local aligner for massive biological 
data. Bioinformatics (Oxford, England) 30: i349-355.

12

320

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/532358doi: bioRxiv preprint 

https://doi.org/10.1101/532358


Hawksworth DL, Lücking R. 2017. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. 
Microbiology Spectrum 5.

Heeger F, Bourne EC, Baschien C, Yurkov A, Bunk B, Spröer C, Overmann J, Mazzoni
CJ, Monaghan MT. 2018. Long-read DNA metabarcoding of ribosomal RNA in the 
analysis of fungi from aquatic environments. Molecular Ecology Resources 0.

Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf 
S, James T, Kirk PM, Lücking R, et al. 2007. A higher-level phylogenetic classification of 
the Fungi. Mycological Research 111: 509–547.

Huson DH, Auch AF, Qi J, Schuster SC. 2007. MEGAN analysis of metagenomic data. 
Genome Research 17: 377–386.

Jones MDM, Richards TA, Hawksworth DL, Bass D. 2011. Validation and justification of 
the phylum name Cryptomycota phyl. nov. IMA fungus 2: 173–175.

Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, Bateman
A, Finn RD, Petrov AI. 2018. Rfam 13.0: shifting to a genome-centric resource for non-
coding RNA families. Nucleic Acids Research 46: D335–D342.

Kennedy PG, Cline LC, Song Z. 2018. Probing promise versus performance in longer read 
fungal metabarcoding. New Phytologist 217: 973–976.

Kõljalg U, Nilsson R. Henrik, Abarenkov Kessy, Tedersoo Leho, Taylor Andy F. S., 
Bahram Mohammad, Bates Scott T., Bruns Thomas D., Bengtsson‐Palme Johan, 
Callaghan Tony M., et al. 2013. Towards a unified paradigm for sequence‐based 
identification of fungi. Molecular Ecology 22: 5271–5277.

Köster J, Rahmann S. 2012. Snakemake—a scalable bioinformatics workflow engine. 
Bioinformatics 28: 2520–2522.

Lara E, Moreira D, López-García P. 2010. The Environmental Clade LKM11 and Rozella 
Form the Deepest Branching Clade of Fungi. Protist 161: 116–121.

Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, 
Pennanen T, Rosendahl S, Stenlid J, et al. 2013. Fungal community analysis by high-
throughput sequencing of amplified markers--a user’s guide. The New Phytologist 199: 288–
299.

Mahé F, Rognes T, Quince C, Vargas C de, Dunthorn M. 2015. Swarm v2: highly-
scalable and high-resolution amplicon clustering. PeerJ 3: e1420.

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing 
reads. EMBnet.journal 17: 10–12.

Miller KE, Hopkins K, Inward DJG, Vogler AP. 2016. Metabarcoding of fungal 
communities associated with bark beetles. Ecology and Evolution 6: 1590–1600.

Mosher JJ, Bowman B, Bernberg EL, Shevchenko O, Kan J, Korlach J, Kaplan LA. 
2014. Improved performance of the PacBio SMRT technology for 16S rDNA sequencing. 
Journal of Microbiological Methods 104: 59–60.

13

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/532358doi: bioRxiv preprint 

https://doi.org/10.1101/532358


Neubert K, Mendgen K, Brinkmann H, Wirsel SGR. 2006. Only a Few Fungal Species 
Dominate Highly Diverse Mycofloras Associated with the Common Reed. Applied and 
Environmental Microbiology 72: 1118–1128.

Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. 2018. 
Mycobiome diversity: high-throughput sequencing and identification of fungi. Nature 
Reviews Microbiology: 1.

Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson K-H. 2008. Intraspecific 
ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases 
and Its Implications for Molecular Species Identification. Evolutionary Bioinformatics 
Online 4: 193–201.

Nilsson RH, Wurzbacher C, Bahram M, Coimbra VRM, Larsson E, Tedersoo L, 
Eriksson J, Duarte C, Svantesson S, Sánchez-García M, et al. 2016. Top 50 most wanted 
fungi. MycoKeys 12: 29–40.

Porras-Alfaro A, Liu K-L, Kuske CR, Xie G. 2014. From genus to phylum: large-subunit 
and internal transcribed spacer rRNA operon regions show similar classification accuracies 
influenced by database composition. Applied and Environmental Microbiology 80: 829–840.

Rime T, Hartmann Martin, Brunner Ivano, Widmer Franco, Zeyer Josef, Frey Beat. 
2015. Vertical distribution of the soil microbiota along a successional gradient in a glacier 
forefield. Molecular Ecology 24: 1091–1108.

Roehr JT, Dieterich C, Reinert K. 2017. Flexbar 3.0 – SIMD and multicore parallelization. 
Bioinformatics 33: 2941–2942.

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open 
source tool for metagenomics. PeerJ 4: e2584.

Rojas-Jimenez K, Wurzbacher C, Bourne EC, Chiuchiolo A, Priscu JC, Grossart H-P. 
2017. Early diverging lineages within Cryptomycota and Chytridiomycota dominate the 
fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Scientific 
Reports 7.

Roose-Amsaleg C, Brygoo Yves, Harry Myriam. 2004. Ascomycete diversity in soil‐
feeding termite nests and soils from a tropical rainforest. Environmental Microbiology 6: 
462–469.

Schlaeppi K, Bender SF, Mascher F, Russo G, Patrignani A, Camenzind T, Hempel S, 
Rillig MC, van der Heijden MGA. 2016. High-resolution community profiling of 
arbuscular mycorrhizal fungi. The New Phytologist 212: 780–791.

Schloss PD, Jenior ML, Koumpouras CC, Westcott SL, Highlander SK. 2016. 
Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. 
PeerJ 4: e1869.

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, 
Consortium FB. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a 
universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 
109: 6241–6246.

14

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/532358doi: bioRxiv preprint 

https://doi.org/10.1101/532358


Shah N, Nute MG, Warnow T, Pop M. 2018. Misunderstood parameter of NCBI BLAST 
impacts the correctness of bioinformatics workflows. Bioinformatics: bty833.

Singer E, Bushnell B, Coleman-Derr D, Bowman B, Bowers RM, Levy A, Gies EA, 
Cheng J-F, Copeland A, Klenk H-P, et al. 2016. High-resolution phylogenetic microbial 
community profiling. The ISME Journal 10: 2020–2032.

Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson 
H, Hildebrand F, et al. 2015. Shotgun metagenomes and multiple primer pair-barcode 
combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10: 
1–43.

Tedersoo L, Ave T-K, Anslan Sten. 2017a. PacBio metabarcoding of Fungi and other 
eukaryotes: errors, biases and perspectives. New Phytologist 217: 1370–1385.

Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, 
Vasco-Palacios AM, Thu PQ, Suija A, et al. 2014. Global diversity and geography of soil 
fungi. Science 346: 1256688.

Tedersoo L, Bahram M, Puusepp R, Nilsson RH, James TY. 2017b. Novel soil-inhabiting
clades fill gaps in the fungal tree of life. Microbiome 5: 42.

Wahl HE, Raudabaugh DB, Bach EM, Bone TS, Luttenton MR, Cichewicz RH, Miller 
AN. 2018. What lies beneath? Fungal diversity at the bottom of Lake Michigan and Lake 
Superior. Journal of Great Lakes Research 44: 263–270.

Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid 
assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental
Microbiology 73: 5261–5267.

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal 
ribosomal RNA genes for phylogenetics. In: PCR Protocols. San Diego: Academic Press, 
315–322.

Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, 
Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, et al. 2018. Notes for genera: basal 
clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, 
Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, 
Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, 
Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and 
Zoopagomycota). Fungal Diversity 92: 43–129.

Wurzbacher C, Nilsson RH, Rautio M, Peura S. 2017. Poorly known microbial taxa 
dominate the microbiome of permafrost thaw ponds. The ISME Journal 11: 1938–1941.

Yang C, Schaefer DA, Liu W, Popescu VD, Yang C, Wang X, Wu C, Yu DW. 2016. 
Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural 
forest. Scientific Reports 6: 31066.

Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate Illumina 
Paired-End reAd mergeR. Bioinformatics 30: 614–620.

15

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/532358doi: bioRxiv preprint 

https://doi.org/10.1101/532358


Figures
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Figure 1: Overview of the steps in the 

automated pipeline for parallel 

classification with ITS2 and 5.8S. 

External tools and approaches used 

are given in parentheses.
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Figure 2: Results from the classification of the in silico test set (100 sequences). LCA 

classification was performed with different markers (panels from left to right) and with 

different completeness of the reference database (panels from top to bottom). Numbers of 

correct (blue), wrong (red) and unassigned (grey) classifications are given compared to the 

original classification in UNITE.
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Figure 3: Classification of OTUs from lake water and sediments when using ITS2 (top left) 

or 5.8S (top right) and combined classification with our pipeline (bottom left). Concentric 

circles from the inside out represent levels of taxonomic classification from kingdom to 

species. Hatched areas contain more specific classifications that are not shown. Segments 

are colored by kingdoms and for fungi by phyla and classes.
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Tables

Table 1. Water and sediment OTU classification (17514 OTUs, based on ITS2 clustering)

using ITS2 and 5.8S markers individually and in combination.

Unclassified Fungi Ascomycota Basidiomycota Chytridiomycota Rozellomycota Other Fungal 

Phyla

Non-

Fungi

ITS2 12071 5262 2983 1946 111 60 68 181

5.8S 4123 11263 3649 2439 3030 339 215 2128

ITS2 + 5.8S 4107 11262 3651 2441 3031 339 215 2145
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Supporting Information

Fig. S1 Classification accuracy with ITS2 at different taxonomic levels 

with different values for the stringency parameter.

Fig. S2 Classification accuracy with ITS2 at different taxonomic levels 

with different values for the minimum identity parameter.

Fig. S3 Classification accuracy with ITS2 at different taxonomic levels 

with different values for the minimum coverage parameter.

Fig. S4 Classification accuracy with ITS2 at different taxonomic levels 

with different values for the top-percent parameter.

Fig. S5 Classification accuracy with 5.8S at different taxonomic levels 

with different values for the identity parameter.

Fig. S6 Classification accuracy with 5.8S at different taxonomic levels 

with different values for the minimum coverage parameter.

Fig. S7 Classification accuracy with 5.8S at different taxonomic levels 

with different values for the top-percent parameter.

Fig. S8 Classification accuracy with 5.8S at different taxonomic levels 

with different values for the stringency parameter.

Fig. S9 Classification accuracy with ITS2 with the LCA approach used in 

this article, the RDP classifier trained on the UNITE database (RDP_U), and

the RDP classifier trained on the Warcup dataset (RDP_W).

Fig. S10 Classification accuracy with the combined sequence of 5.8S and 

ITS2 (left), with 5.8S alone (middle), and with ITS2 alone (right) at 

different taxonomic levels and with different levels of database 

completeness.
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