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Abstract 
Transcriptome profiling followed by differential gene expression analysis often leads to           
unclear lists of genes which are hard to analyse and interpret. Functional genomic tools              
are powerful approaches for downstream analysis, as they summarize the large and            
noisy gene expression space in a smaller number of biological meaningful features. In             
particular, methods that estimate the activity of processes by mapping transcripts level            
to process members are popular. However, footprints of either a pathway or            
transcription factor (TF) on gene expression show superior performance over          
mapping-based gene sets. These footprints are largely developed for human and their            
usability in the broadly-used model organism Mus musculus is uncertain. Evolutionary           
conservation of the gene regulatory system suggests that footprints of human pathways            
and TFs can functionally characterize mice data. In this paper we analyze this             
hypothesis. We perform a comprehensive benchmark study exploiting two         
state-of-the-art footprint methods, DoRothEA and an extended version of PROGENy.          
These methods infer TF and pathway activity, respectively. Our results show that both             
can recover mouse perturbations, confirming our hypothesis that footprints are          
conserved between mice and humans. Subsequently, we illustrate the usability of           
PROGENy and DoRothEA by recovering pathway/TF-disease associations from newly         
generated disease sets. Additionally, we provide pathway and TF activity scores for a             
large collection of human and mouse perturbation and disease experiments (2,374). We            
believe that this resource, available for interactive exploration and download          
(https://saezlab.shinyapps.io/footprint_scores/), can have broad applications including      
the study of diseases and therapeutics. 
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1. Introduction 
The typical framework of functional genomic studies comprises the analysis of           
expression changes of groups of genes. These groups are referred to as gene sets and               
typically consist of genes sharing common functions (e.g. Gene Ontology analysis) or            
genes encoding for pathway members (Subramanian et al. , 2005) . The latter are used             
for classical pathways analysis studies, which assume that the transcript level proxies            
protein and thus the pathway activity. The framework of estimating transcription factor            
(TF) activity based on the expression of its own gene follows the same principle (Fig.               
1A). However, mapping the transcript level to proteins neglects the effects of            
post-transcriptional and post-translational modifications, even though they are essential         
for the function of many proteins (Mann and Jensen, 2003).  
 
To overcome this limitation, alternative approaches have been developed which are           
based on newly derived gene sets containing gene signatures obtained from genetic or             
chemical perturbations of pathways or TFs. These signatures are the footprint on gene             
expression of the corresponding pathway or a TF (Fig. 1A). Recent studies indicate that              
footprints outperform mapping gene sets (Schubert et al. , 2018; Cantini et al. , 2018) .             
Since most of these footprints are generated for the application in humans, their             
usability in model organisms is uncertain. This question is of importance since the study              
of human diseases is limited by the availability of patient data and ethical concerns, and               
are often complemented with experimental work in model organisms, in particular mice            
( Mus Musculus; The Mouse in Biomedical Research, 2007) .  
Disease alterations of gene expression in human can be estimated from mouse            
transcriptomic data (Normand et al. , 2018; Brubaker et al. , 2019) . Furthermore, previous            
studies suggest that pathway and TF footprints are evolutionarily conserved between           
mice and humans: pathway footprints derived from mouse B cells can provide valuable             
insights into human cancer (Tenenbaum et al. , 2008) , and inferred prostate-specific           
gene regulatory networks of mice and humans overlap in over 70 % (Aytes et al. , 2014) .                
This suggests that human functional genomic tools, which consider footprints as gene            
sets, could be applied on mice data. However, as of today there is no comprehensive               
study to prove this.  
 
To validate whether pathway and TF footprints are evolutionarily conserved between           
mice and humans we performed a comprehensive benchmark study. We exploited two            
state of the art functional genomic approaches covering both aspects of gene regulatory             
networks: signaling pathways and transcriptional regulation. The first approach is          
PROGENy, a tool to estimate activity of original 11 signaling pathways from gene             
expression data (Schubert et al. , 2018) . It is based on consensus transcriptomic            
perturbation signatures we refer to as footprints of signaling pathways on gene            
expression. In this work we extended PROGENy with novel footprints of the signaling             
pathways Androgen, Estrogen and WNT. The second approach is DoRothEA, a           
resource matching TFs with their targets (Garcia-Alonso et al. , 2018) , which allows us to              
estimate TF activity from gene expression data in humans by enriched regulon analysis             
(Alvarez et al. , 2016) . We consider the targets of a TF also as footprints of a TF on gene                   
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expression. We validated that both PROGENy and DoRothEA can recover mice           
perturbations, supporting our hypothesis about the conserved nature of pathway and TF            
footprints. To demonstrate the usability of PROGENy and DoRothEA we estimated           
pathway and TF activities for a large collection of mice and humans disease, chemical              
and genetic perturbation experiments. Based on the activities of the disease           
experiments we were able to recover known pathway/TF disease associations. For this,            
we constructed 738 novel disease sets matching 186 diseases with 467 disease            
experiments.  

2. Results 

2.1 Benchmark pipeline 
We established a benchmark pipeline to discover whether both PROGENy and           
DoRothEA human footprint methods could be applied to functionally characterize mice           
data (Fig. 1B). Perturbation gene expression studies provide the opportunity to           
benchmark both tools: we can compare the predicted pathway and TF activities with the              
“ground truth”, denoted as the original perturbed target. The database CREEDS           
(CRowd Extracted Expression of Differential Signatures) provides manually curated         
single drug and single gene perturbation experiments in humans and mice (Wang et al. ,              
2016). Additionally, we manually curated single drug perturbation experiments (see          
Methods). We included both perturbation directions, either activation/overexpression or         
inhibition/knockdown.  
 
For the PROGENy validation we exploited both single drug and single gene perturbation             
studies. Experiments are considered to be relevant for our study if the perturbation             
target is a member or a gene encoding for a member of a PROGENy signaling pathway                
(drug/gene-PROGENy-pathway associations are provided in Supplementary Table S1).        
We identified 347 experiments (123 single gene and 224 single drug perturbation; Fig.             
1C). These experiments cover 11 and 13 out of 14 possible pathways for human and               
mouse, respectively. These 14 pathways include Androgen, Estrogen and WNT besides           
the 11 in the original PROGENy publication (see Methods; Schubert et al. , 2018) . For              
DoRothEA we extracted only those single gene perturbations experiments where the           
target gene encodes for a TF from the human TF census from TFClass (Wingender et               
al., 2018) . In total we collected 302 single gene perturbation experiments covering 144             
mouse TFs (Fig. 1C). 
 
To evaluate if PROGENy is applicable on mice data we compared the performance of              
the original human-PROGENy against the newly derived mouse-PROGENy. Regarding         
DoRothEA, we compared newly derived mouse-DoRothEA versus dedicated mouse         
regulons from the TRRUST database (Han et al. , 2018) . To assess the model prediction              
power we utilized the Receiver Operating Characteristic (ROC) and Precision-Recall          
(PR) curves (see Methods).  
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Fig. 1. (A) Visualization of the classical “mapping” framework, where transcript level is             
mapped to protein level in contrast to the footprint based methods PROGENy and             
DoRothEA. (B) Benchmark pipeline starting with the extraction of mouse and human            
single gene and single drug perturbation experiments from the CREEDs database.           
PROGENy and DoRothEA scores are computed for each experiment separately based           
on their differential expression signature. For the PROGENy benchmark we compared           
human-PROGENy vs mouse-PROGENy. For DoRothEA benchmark we compared        
mouse-DoRothEA vs dedicated mouse regulons from TRRUST. We evaluate the          
performance of both approaches using ROC and PR-metrics. (C) Overview of both            
benchmark datasets, including the perturbation type, organism and perturbation effect.          
Numbers indicate the amount of experiments in each group. 
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2.2 Benchmarking PROGENy 
To compare mouse-PROGENy and human-PROGENy unbiasedly we included only         
pathways perturbed in both benchmark datasets. Moreover, we evaluated PROGENy’s          
global performance across all pathways. Both models performed clearly better than           
random (AUROC of 0.71 with 95% confidence interval of 0.662 - 0.757 and AUROC of               
0.659 with 95% confidence interval of 0.613 - 0.705 for human and mouse-PROGENy             
respectively) (Fig. 2A; ROC-curves for each pathway in Supplementary Fig. S1).           
AUROC was not significantly different between mouse and human (DeLong-test,          
p=0.130). As our benchmark dataset is imbalanced (10 % true positives) we also             
computed AUROC’s upon downsampling true negatives (see Methods; Supplementary         
Fig. S2A and B). With precision-recall analysis we obtained consistent results:           
human-PROGENy performed comparably to mouse-PROGENy (AUPRC of 0.254 and         
0.245, respectively; Fig. 2B; PR-curves for each pathway are provided in           
Supplementary Fig. S3). In addition, both performed better than a random model which             
would result in an AUPRC of 0.1. In summary, mouse-PROGENy performed           
comparably to human-PROGENy and better than a random model regardless of the            
metric used. Thus, we conclude that PROGENy can recover pathway perturbations in            
mice. 

 
Fig. 2. ROC-curve (A) and PR-curve (B) analysis comparing human-PROGENy vs.           
mouse-PROGENy.  Dashed lines indicate the performance of a random model. 

2.3 Benchmarking DoRothEA 
To evaluate if DoRothEA’s regulon also holds true in mice, we next compared the              
performance of mouse-DoRothEA to the performance of dedicated mouse regulons          
from the TRRUST database (Han et al. , 2018) . Human-DoRothEA was reconstructed by            
integrating different resources spanning from literature-curated databases to predictions         

6 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/532739doi: bioRxiv preprint 

https://paperpile.com/c/m36XYv/a06QY
https://paperpile.com/c/m36XYv/a06QY
https://paperpile.com/c/m36XYv/a06QY
https://doi.org/10.1101/532739
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

of TF-target interactions (Garcia-Alonso et al. , 2018) . Thereby, each TF is accompanied            
with a summary confidence level from A (high confidence) to E (low confidence) based              
on the amount of supporting TF’s regulatory evidences. Our novel mouse-DoRothEA           
regulon comprises in total 1,151 TFs, targeting 17,734 targets with 403,982 unique            
interactions (see Methods; Supplementary Fig. S4A). In contrast TRRUST covers 828           
TFs with an overlap of 559 TFs to mouse-DoRothEA (Supplementary Fig. S5A).            
Comparing similarity of overlapping regulons between TRRUST and mouse-DoRothEA         
revealed for most regulons substantial differences (Supplementary Fig. S5B). To          
benchmark the performance of mouse-DoRothEA and TRRUST unbiasedly, we         
included only TFs which are available in both resources. The intersection of            
mouse-DoRothEA and TRRUST regulons covered 33-76 TFs of our benchmark data           
set dependent on the confidence level (Supplementary Fig. S4B). Moreover, we           
evaluated DoRothEA’s global performance across all TFs since there were not enough            
public data set available to evaluate the performance at the TF level. In ROC space               
mouse-DoRothEA outperformed TRRUST at any confidence level combination except         
for solely A, where it is slightly worse (Fig. 3A). However, in PR space we found that                 
that TRRUST has an advantage throughout all confidence level combinations (Fig. 3B).            
All model subtypes performed better than a corresponding random model. In both            
approaches we saw a peak at combined confidence level of A and B. Therefore we               
decided to consider only TFs accompanied with the confidence levels A and B in the               
following analysis. 
 
While both regulons performed better than random, mouse-DoRothEA (AUROC: 0.712,          
95 % confidence interval: 0.649 - 0.775) performed slightly better than TRRUST            
(AUROC: 0.69, 95 % confidence interval: 0.618 - 0.762) (Fig. 3C), but without significant              
difference (DeLong-test, p = 0.534). As our DoRothEA benchmark dataset is even more             
imbalanced (2.63 % true positives) we computed again AUROC’s upon downsampling           
true negatives (see Methods; Supplementary Fig. S4C and D). Mouse-DoRothEA          
performed slightly worth than TRRUST (AUPRC of 0.114 and 0.132 for           
mouse-DoRothEA and TRRUST, respectively; Fig. 3D). However, both performed better          
than a random model with a corresponding AUPRC of 0.026. Considering the above             
stated results, we conclude that mouse-DoRothEA performs comparably to TRRUST          
and can thus recover transcriptional regulation in mice. 
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Fig. 3. Result of ROC-curve (A) and PR-curve (B) analysis summarized in AUROC and              
AUPRC respectively for different confidence level cutoffs. ROC-curve (C) and PR-curve           
(D) analysis comparing mouse-DoRothEA filtered for TFs with confidence level A or B             
vs. mouse-TRRUST.  Dashed lines indicate the performance of a random model. 

2.4 Pathway/TF-disease associations 
Once shown that PROGENy and DoRothEA can be applied also on mice data, we              
investigated whether we can recover known associations between pathway/TF and          
human diseases based on transcriptomic disease signatures of both mice and humans.            
We downloaded 469 disease signatures from the CREEDs database (Wang et al. ,            
2016) and computed for each experiment pathway and TF activity levels. To find             
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associations we developed individual disease sets based on a disease ontology           
network from EBI’s Ontology Lookup Service (Jupp et al. , 2015) . Each node in this              
network represents a distinct disease set. If a descendant of a node matched a              
CREEDs signature disease, the corresponding CREEDs experiment is considered as a           
member of the disease set (Fig. 4A). In total we tested 734 distinct disease sets               
(Supplementary Material S1). Using these disease sets we found 430 significant (Gene            
set Enrichment Analysis (Subramanian et al. , 2005) ; FDR <= 0.1 & |NES| >= 1; see               
Methods) pathway-disease associations and 3435 significant (FDR <= 0.1 |NES| >= 1)            
TF-disease associations covering 155 and 271 disease sets, respectively (Fig. 4B).  
 
The results were in general dominated by upregulated activity of two TFs, ETS2 (89              
associations) and E2F1 (92 associations; Fig. 4B). Both are well-known oncogenes           
driving tumorigenesis (Johnson, 2000; Fry and Inoue, 2018). Accordingly, most of their            
associations were related to different forms of cancer. Similarly, we found the activity of              
the tumor suppressor TP53 to be downregulated in cancer (11 associations). Pathway            
specific associations were dominated by the pathway PI3K (47 associations). Almost           
half of them were associations with different forms of cancer as well. Our approach              
revealed for the majority of all cancer associations an elevated activity of PI3K as PI3K               
controls important hallmarks of cancer such as cell cycle, survival and metabolism            
literature (Fruman and Rommel, 2014). Also we found VEGF strongly upregulated in            
pancreatic cancer. Overexpressed VEGF (Vascular endothelial growth factor) is         
involved in angiogenesis and is considered as diagnostic marker for pancreatic cancer            
[33]. Those examples emphasize the importance of signaling pathways and          
transcriptional regulation in the context of cancer diseases.  
 
However, next to cancer related disease we also recovered strong associations with            
other disease types, e.g. upregulated Hypoxia activity in rheumatoid arthritis          
(Quiñonez-Flores et al. , 2016) . Also NFKB1 and the JAK-STAT showed an elevated            
activity in immune and therefore leukocyte related diseases, such as inflammation of the             
lung, bowel, mucous membrane or skin (Tak and Firestein, 2001; Banerjee et al. , 2017) .  
 
In the context of chronic liver disease we recovered the role of PPARA. It’s expression               
is reduced in hepatic stellate cells during liver fibrosis (M. Zardi et al. , 2013) . This               
finding is in agreement with our study as we found down regulated PPARA activity              
associated with the set ‘liver disease’. Moreover, reduced PPARA activity was also            
significantly depleted within the disease sets ‘hepatocellular carcinoma’ and ‘liver          
carcinoma’. Additionally we found that downregulated activity of FOXA1 was associated           
with the set ‘liver disease’. FOXA1 inhibits the accumulation of hepatic triglyceride and             
counteracts thus the progression of nonalcoholic fatty liver disease (Moya et al., 2012) . 
Altogether, we showed that PROGENy and DoRothEA are capable to recover known            
signaling pathway/TF disease association based on mice and humans data. 
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Fig. 4. (A) Framework of gene set enrichment framework adapted for disease set             
enrichment. The disease sets are created based on a disease ontology network. Each             
node in the network represents a disease set. CREEDs diseases which are            
descendants of a node are considered as corresponding disease set members. To            
perform the enrichment PROGENy and DoRothEA activity levels are ranked separately           
and checked whether a disease set is enriched either at the top or at the bottom of the                  
ranked list. (B, C) Volcano plots showing separately for pathways and TFs the outcome              
of disease set enrichment. Selected associations are labelled. 
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3. Discussion 
The evolutionarily conserved gene regulatory system between mouse and human          
suggests that the footprints of a pathway or TF on gene expression are evolutionarily              
conserved as well. This hypothesis has a direct impact on footprint methods developed             
for human application, such as PROGENy and DoRothEA. Both rely on gene sets             
comprising footprints and given that our assumption is true, they can be applied on mice               
data, which are an important resource for the study of human diseases. We addressed              
this question by establishing a benchmark pipeline to validate if DoRothEA and an             
extended version of PROGENy (added footprints for Androgen, Estrogen and WNT) can            
be applied to functionally characterize mice data (Fig. 1B).  
 
We found that mouse-PROGENy is globally effective in inferring pathway activity on            
mouse data. However, the pathway-wise benchmark showed that the prediction power           
varies across pathways (Supplementary Fig. S1 and Fig. S3). Especially for JAK-STAT,            
we saw a highly significant difference between mice and humans in ROC space.             
Interestingly, we observed the inverse case for the pathway NFkB. Here,           
mouse-PROGENy outperformed human-PROGENy significantly (DeLong-test, p =       
0.035), while NFkB still performed well in human (Schubert et al. , 2018) . This difference              
emphasizes the importance of the quality of the benchmark data. The benchmark data             
in (Schubert et al. , 2018) was curated very carefully by reviewing each perturbation             
experiment separately. Our analysis is based on a broad collection of curated            
experiments via crowdsourcing. By their own nature, crowdsourcing projects cannot be           
fully controlled, and misanotations can occur, which could contribute to the low            
performance we found for some pathways. 
Regarding mouse-DoRothEA we found it’s performance comparable to dedicated         
mouse regulons from TRRUST. However, we recommend the use of mouse-DoRothEA           
instead of TRRUST as it provides a better coverage at similar performance. Regulons             
with confidence level A and B have been shown to perform the best for both resources.                
Including confidence level C almost doubled the TF coverage from 38 to 60 TFs              
(Supplementary Fig. S4B) but caused a performance drop. By including TFs labelled            
with confidence level C, we introduce regulons in our benchmark data that have not              
been thoroughly studied (Garcia-Alonso et al. , 2018) . Hence, the drop of the            
performance is expected. 
Our above stated findings about the performance of PROGENy and DoRothEA support            
our initial hypothesis that footprints are evolutionarily conserved between mouse and           
human. However, we showed this fact only indirectly. Comparative transcriptomic          
analysis of single drug and single gene perturbation experiments in mice and humans             
would be required to show this fact in a direct manner. Thus we conclude that it is                 
reasonable to think that the footprints of a pathway or TF are evolutionarily conserved,              
at least at the level of our current footprint methods which rely on lists of genes.  
 
Once shown that PROGENy and DoRothEA can be applied also on mice data, we              
computed TF and pathway activities for a large collection of chemical and genetic             
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perturbation and disease experiments. The results are provided as an interactive web            
application to browse corresponding pathway and TF activities        
(https://saezlab.shinyapps.io/footprint_scores). We envision that this resource can have        
broad applications including the study of diseases and therapeutics. Moreover, we           
demonstrated the usability of PROGENy and DoRothEA by recovering known          
pathway/TF disease associations using the aforementioned disease experiments. We         
found in total 3,865 significant associations where most were related to different forms             
of cancer diseases, but we also recovered well-known associations of other disease            
types, such as liver disease (Fig. 4B). 
Finally we believe that our finding of the conserved nature of footprints is especially              
interesting for further development of footprint methods. Integrating data from mice and            
humans will provide a much stronger data background for future model construction.            
Lastly, we speculate that the conserved nature of footprints will not hold to be              
exclusively true for mouse and human but will also extend to other mammals often used               
as model organisms. 
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5. Source code & data availability 
All source code is deposited at https://github.com/saezlab/ConservedFootprints.       
Pathway and TF activities of perturbation and disease experiments can be browsed in a              
user friendly web application available at https://saezlab.shinyapps.io/footprint_scores. 
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