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Abstract:

Cell differentiation in multicellular organisms requires cells to respond to complex

combinations  of  extracellular  cues,  such  as  morphogen  concentrations.  However,  most

models of phenotypic plasticity assume that the response is a relatively simple function of a

single  environmental  cue.  Accordingly,  a  general  theory  describing  how  cells  should

integrate multi-dimensional signals is lacking. 

In  this  work,  we  propose  a  novel  theoretical  framework  for  understanding  the

relationships  between  environmental  cues  (inputs)  and  phenotypic  responses  (outputs)

underlying  cell  plasticity.  We  describe  the  relationship  between  environment  and  cell

phenotype using logical functions, making the evolution of cell plasticity formally equivalent

to a simple categorisation learning task. This abstraction allows us to apply principles derived

from learning theory to understand the evolution of multi-dimensional plasticity.

Our results show that natural selection is capable of discovering adaptive forms of cell

plasticity  associated  with  arbitrarily  complex  logical  functions.  However,  developmental

dynamics  causes  simpler  functions  to  evolve  more  readily  than  complex  ones.  By using

conceptual  tools  derived  from  learning  theory  we  further  show  that  under  some

circumstances,  the  evolution  of  plasticity  enables  cells  to  display  appropriate  plastic

responses to environmental conditions that they have not experienced in their evolutionary

past.  This  is  possible  when  the  complexity  of  the  selective  environment  mirrors  the

developmental bias favouring the acquisition of simple plasticity functions – an example of

the necessary conditions for generalisation in learning systems. 

These  results  show  non-trivial  functional  parallelisms  between  learning  in  neural

networks and the action of natural selection on environmentally  sensitive gene regulatory

networks.  This  functional  parallelism offers  a  theoretical  framework for  the  evolution  of

plastic responses that integrate information from multiple cues, a phenomenon that underpins

the evolution of multicellularity and developmental robustness.
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Author summary:

In organisms composed of many cell types, the differentiation of cells relies on their

ability  to  respond  to  complex  extracellular  cues,  such  as  morphogen  concentrations,  a

phenomenon  known  as  cell  plasticity.  Although  cell  plasticity  plays  a  crucial  role  in

development and evolution, it is not clear how, and if, cell plasticity can enhance adaptation

to  a  novel  environment  and/or  facilitate  robust  developmental  processes.  We  argue  that

available  conceptual  tools  limit  our  understanding  since  they  only  describe  simple

relationships between the environmental cues (inputs) and the phenotypic responses (outputs)

– so called ‘reaction norms’. In this work, we use a new theoretical framework based on

logical functions and learning theory that allows us to characterize arbitrarily complex multi-

dimensional reaction norms. By doing this we reveal a strong and previously unnoticed bias

towards the acquisition of simple forms of cell  plasticity,  which increases their  ability  to

adapt  to  novel  environments.  Results  emerging  from  this  novel  approach  provide  new

insights on the evolution of multicellularity  and the inherent robustness of the process of

development.

Introduction:

 Organisms must sense and respond to their  environment  to develop, survive,  and

reproduce. Thus, understanding how organisms sense and respond to their surroundings has

been a major subject in evolutionary biology from Darwin’s times [1]-[3]. However, during

most  of  the  20th century  a  simple  and  convenient  schema  in  which  phenotypes  are

environmentally  insensitive  (solely  determined  by  genes)  was  adopted  in  the  study  of

evolution [3],[4]. Accordingly, our knowledge of how the sensitivity of the phenotypes to the

environment  emerges  from  the  developmental  dynamics,  usually  known  as  phenotypic

plasticity, is far from complete even in the simplest biologically relevant case: the living cell.

Since all cells within a multicellular organism are genetically identical, phenotypic plasticity

at the cell level (aka cell plasticity) is necessary for the process of cell differentiation, which

in turn is crucial to build up a complex organism composed of many cell types [5],[6]. In

addition,  cell  plasticity is also involved in the process of cell  de-differentiation,  a crucial

event for wound healing and regeneration [7].

In cell plasticity, the presence and intensity of different environmental factors (pH,

metabolites, morphogens…) determines which of a number of potential cell phenotypes will
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be  realised  [2].  From  a  theoretical  perspective,  a  deterministic  relationship  between

environmental factors (inputs) and these specific cell phenotypic states (outputs) observed in

a  plastic  response  can  be  described  as  a  one-to-one  mathematical  function  [8].  In  many

systems, this approach results in the so called reaction norms. While the reaction norm is a

useful heuristic, it typically represents the underlying developmental processes in a simple

monotonic or linear relationship between a single environmental variable and phenotype  (Fig

1A) [8],[9].

Fig 1.  Conceptual  depiction of  the model.  A. Models  of  phenotypic and cell  plasticity often depict  a  1-

dimensional reaction norm (red line), for a single continuous environmental cue. B. In contrast, we consider

different combinations of multiple discrete environmental factors (EFs, red and blue in the figure) determining a

binary cell state. In this case, a number of possible environment-phenotype interactions can be described by

4

102

103

104

105

106

107

108

110

111

112

113

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 28, 2019. ; https://doi.org/10.1101/532747doi: bioRxiv preprint 

https://doi.org/10.1101/532747
http://creativecommons.org/licenses/by/4.0/


means  of  logical  functions  derived  from  Boolean  algebra  (right).  C.  A  multi-dimensional  reaction  norm

(exemplified in the figure by the one described by the “XOR” logical function) is set as a target of a continuous

GRN-based model in which the expression level of some genes is affected by the EFs. The degree of matching

between the plastic response of the cells and the expected target multi-dimensional reaction norm determines the

fitness (see Methods). D. Plastic cells reproduce into the next generations with a probability proportional to their

fitness in a mutation-selection scenario.

In many types of phenotypic plasticity, including cell plasticity, phenotypic states are

determined by more than one environmental input [1],[2],[10]. For instance, differentiating

cells  use  a  large  number  of  signalling  cascades  and  other  mechanisms  (e.g.  mechano-

transduction, internal biochemical clocks, etc.) as environmental inputs to gather information

about when, where, and how to differentiate [7],[11]. At the cell level, the output can be

described either as the expression profile of many genes or as the expression level of just a

single (master) gene that controls the transcription of other downstream genes required for

the cell type [10]. 

In  order  to  describe  the  multi-dimensional  (i.e.,  many  inputs)  reaction  norms

associated with cell plasticity, we need to use mathematical functions that generate an output

(cell  type),  given  an  arbitrary  number  of  input  parameters  (environmental  factors  like

morphogens)  (Fig 1C).  The complete  set  of possible  functions  is  familiar  in  the field of

computer  sciences  and described by Boolean algebra  (e.g.  XOR, AND, NOR, etc.)  [12].

These  functions  allow  us  to  describe  particular  relationships  between  combinations  of

environmental  cues  (inputs)  and  the  phenotypic  responses  (outputs):  any  specific  multi-

dimensional reaction norm of binary inputs and outputs is unambiguously associated with a

unique  logical  function  (Fig  1B).  Furthermore,  this  abstraction  naturally  introduces  a

complexity measure for multidimensional reaction norms which, as we will show, offers new

insights  in  the  study  of  cell  plasticity.  Introducing  logical  functions  is  also  convenient

because it allows us to apply principles derived from computer science and learning theory to

address  some  important  questions  regarding  the  evolution  of  phenotypic  plasticity.  For

example,  how many signals  can a  GRN process  and how are these signals  combined to

generate  a  meaningful  phenotypic  response?  Are  all  types  of  cell  plasticity  functions

evolvable and are some more frequent than others? Ultimately these questions are concerned

with the structure of the environment-phenotype-maps (EPMs) of cells [13]-[15]. The first

aim of this work is to shed light on these questions and the nature of EPMs by characterizing

cell plasticity through this novel conceptual approach based on logical functions.
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In addition, our conceptual approach makes the evolution of cell plasticity formally

equivalent to a simple categorisation learning process: cell  differentiation requires cells to

classify different  combinations  of environmental  inputs (e.g.  morphogen gradients)  into a

small set of possible categories (cell states). Similar categorisation experiments have been

extensively studied in the context of neural networks (NN) [16]-[19]. These experiments have

shown that, during the so called “training phase”, NNs exposed to a number of input-outputs

can establish the logical rules that underlie the categorization process, being the rules stored

in the NN circuitry [12],[20]. Then, in a subsequent “test phase”, NNs apply the same rules to

novel, previously unseen inputs to generate an adequate output. This ability of any system to

gather information from previous experience and to use it to offer the right response (e.g.

phenotypic, behavioural, etc.) to a previously unseen challenge is the hallmark of learning

[21],[22]. 

Whilst it seems intuitive that neural networks (NN) are capable of learning, whether

the  action  of  natural  selection  (i.e.  random  variation  and  selection)  on  gene  regulatory

networks (GRNs) underlying cell plasticity and cell differentiation can exhibit comparable

learning capabilities  is  a  non-trivial  question.  Although during the  last  years  it  has  been

shown that learning principles operate across a plethora of biological phenomena [21]-[26], it

remains unknown if these principles apply to plastic cells performing categorisation learning

tasks. Furthermore, most studies of evolutionary learning rely on simple NN-like modelling

strategies, employing simplifying assumptions that are common in models of artificial neural

networks but not appropriate for natural gene networks [17],[21],[26].

In this paper, our models make more realistic assumptions regarding the properties of

natural  gene-networks  (see  Methods).  We also  incorporate  environmental  inputs  to  these

networks rather than having their inputs specified genetically, which is necessary to represent

the  evolution  of  plasticity.  By  doing  this  we  demonstrate  that  plastic  cells  can  store

information about their evolutionary past in their GRN circuitry the same way that neural

networks (NN) can store information in their network of neuronal connections [21],[22]. This

feature enables plastic single cells to acquire some information about specific environment-

phenotype relationships when evolving in heterogeneous environments, which are known to

be  commonplace  in  most  ecosystems  [20],[27].  However,  in  general  cells  might  not

experience every possible environment, so that some parts of the multi-dimensional reaction

norm remain hidden – not exposed to selection [28]. We reveal that in these cases plastic

cells can sometimes represent the whole reaction norm from incomplete information in the
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same  way  that  learning  systems  can  induce  a  complete  function  from  partial  data

(generalisation) [26]. 

Generating an  adaptive phenotypic response in an environment which have never

been  experienced  in  their  evolutionary  past  represents  a  significant  departure  from  the

conventional  ‘myopic’  view of  natural  selection,  but  is  easily  interpreted  in  the  light  of

learning theory [21],[22]. We propose that such learning principles may have a pivotal role in

the interpretation of cell-cell signalling of increasing complexity, in the phenotypic buffering

against  noisy  conditions  and  in  the  evolutionary  transition  from single-celled  free-living

organisms to complex multicellular organisms [5],[29],[30]. Overall, our work suggests that

the  equivalence  between  learning  neural  networks  and  evolving  gene  networks  holds  in

biologically realistic models and is thus more robust than previously demonstrated.

Results and discussion:

Experiment  1a:  Natural  selection  is  able  to  find  arbitrary  complex  forms  of  cell

plasticity:

Contrary to other approaches based on simple reaction-norms, in which all forms of

plasticity  are intrinsically equivalent,  the use of logical functions allows us to distinguish

between simple and complex forms of plasticity.  This is represented by low and high Ω,

respectively (see SI). Low Ω means that the phenotypic state is a simple function of one or

few environmental factors (e.g. a linear one-to-one input-output map), whereas high Ω means

the phenotypic state is determined by complex relationships between all inputs (e.g.  a non-

linear and non-additive function of the inputs). As such, Ω is not determined by the number

of environmental inputs, but by how complicated is the logic by which they are linked to the

cell  state  [12],[31].  Each  logical  function  is  summarised  in  a  so  called  truth  table,  a

mathematical  map which relates  each combination  of binary environmental  factors  (EFs)

with a given binary output. Thus, we have for each function a truth table of length 2EFs, which

is set as a target multidimensional reaction norm. 

Based on the recorded fitness over evolutionary time, our first experiment shows that

cells are able to acquire multi-dimensional reaction norms of arbitrary high complexity (Fig

2). Plastic cells are able to achieve either the optimum fitness (W=1) or a relatively high
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performance (W>0.9). However, results also suggest that there are strong dependencies on the

three parameters considered.

Fig 2. Plastic cells are able to evolve forms of plasticity of arbitrary complexity.  Left panels: Different

environmental inputs can be easily integrated in a phenotypic response by means of a simple forms of cell

plasticity (e.g. AND, NOT functions). Evolving cells can also evolve complex forms of complexity (e.g. XOR,

XNOR functions), but they take longer to do this. In general, evolving a specific form of cell plasticity is faster

when the number of environmental factors involved is low (Upper panels), and/or when the size of the GRN is

large  (Lower  panels).  Below  certain  thresholds  in  the  number  of  EFs and  in  the  GRN  size,  (which  are

complexity-dependent),  the  system fails  to  accurately  represent  the  function  (see  yellow lines  in  the  right

panels).  Each line shows the average and standard deviation over 30 replicates.  Ng=12 in upper panels and

EFs=3 in lower panels.
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For  instance,  the  amount  of  time  required  to  adapt  increases  rapidly  as  the

environmental dimensionality increases (See upper panels in Fig 2). Furthermore, there exists

a minimal GRN size required to generate a given multi-dimensional reaction norm. This is

likely because, contrary to neural networks (NNs), GRNs have strictly positive states (a gene

concentration  can  never  be  negative)  which  prevents  a  straightforward  digital-like

computation of the inputs (see Discussion). The results also suggest that this minimal size

depends on the complexity of the function required; the more complex the function the larger

the network required to achieve it. All else being equal, plastic cells take longer to evolve

complex multi-dimensional reaction norms than simpler ones.

This initial experiment suggests that, given enough time, biologically plausible GRNs

above a certain size are capable of producing any relationship between environmental inputs

and phenotypic states. In other words, with the  appropriate selective pressures  plastic cells

are able to represent arbitrarily complex functions including those with maximal Ω=√(EFs

·2EFs+1) (Fig  2D  and  SI).  Although  we  have  demonstrated  this  capability  for  just  four

environmental  factors,  the  observed  pattern  suggests  that  complex  functions  with  EFs>4

could also be attained provided large enough evolutionary timescales (Fig 2B).

Experiment 1b: An alternative mechanistic implementation of cell plasticity enhances

evolvability:

There are at least two logical ways in which an environmental signal can affect the

GRN dynamics: by affecting the gene expression (either by activating or repressing it), or by

modifying the strength of regulatory interactions. In this work, we have explored these two

possibilities,  which  are  referred  respectively  as  the  classical  and  the  tensorial

implementations  (see  Methods).  Recent  works  suggest  that  biochemical  mechanisms

consistent  with  the  tensorial  implementation  are  common  in  nature and  are  involved  in

biological  phenomena  like  proteins  with  intrinsically  disordered  domains  [32]  or  non-

deterministic GRNs [33]. Other examples include temperature, which causes huge phenotypic

effects by affecting the morphogen diffusion or the ligand-receptor kinematics, but without

altering  the  cellular  concentration  of  these  elements.  It  is  worth  noting  that  in  real

environments, factors that affect the strength of regulatory interactions coexist with factors

that affect regulatory mechanics (e.g. pheromone-like chemicals).

In  order  to  assess  if  the  mechanistic  manner  in  which  the  environment  informs

development can affect the evolution of cell plasticity, we reproduce the results of experiment
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1a but by modifying the strength of regulatory interactions. As Fig 3 indicates, the results

from Experiment 1a hold qualitatively true for both classic and tensorial implementations.

However, cells equipped with tensorial GRNs can evolve any form of plasticity much faster

than  cells  with  traditional  GRNs.  Results  also  show  that  the  greater  differences  in  the

adaptive rate between the classic and tensorial implementations occur for complex forms of

plasticity (Fig 3B). This can be explained by considering that in complex logical functions

the phenotypic  effect  of one environmental  factor  EF1 is  dependent  on the state  of  EF2

(higher  level  correlations).  This  dependency  is  naturally  captured  by  the  tensorial

implementation, where the EFs act as modulators of the effect of other EFs (and genes) rather

than as determinants of genetic states (Fig 3A). In addition, the dependence between the time

required for adaptation (i.e.,  reaching a fitness  of  W=0.95) and GRN size becomes more

linear under the tensorial implementation, thus relaxing the necessity of very large GRNs to

generate complex form of plasticity (Fig 3B, red lines).

 Overall,  the results summarised in Fig 3 suggest that whenever the environmental

factors affect the strength of gene-gene interactions, rather than the gene concentrations, the

ability of biological systems to evolve complex forms of plasticity improves. 
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Fig 3. Tensorial implementation of cell plasticity enhances evolvability. A) Contrary to “classical” GRNs in

which  the  network  topology remains  fixed  over  developmental  time,  Tensor-based  GRNs have  dynamical

topology: each gene-gene interaction strength is determined by the concentration of other genes (g1, g2, etc) and

environmental  factors  (EFs).  In both cases  the final  phenotype is recorded as the binary state of a gene of

interest  (goi).  B) GRNs with dynamical  topologies (dashed smoothed lines) exhibit higher evolvability than

classical GRNs (solid smoothed lines): lines show the average time required for reaching a fitness of W=0.95,

which decreases for both simple and complex forms of plasticity (although the time reduction is larger in the

later case, red lines and reddish shadow). C-D) As in the classical implementation, evolving a specific form of

cell  plasticity  is  faster  when the  size  of  the GRN is  large,  although this  relationship is  much more linear

(compare with Fig 2C-D) EFs=3 and 30 replicates for all panels.
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Experiment 2: Simple forms of cell plasticity are far more abundant than complex ones.

One  of  the  possible  interpretations  of  the  results  of  the  first  experiment  is  that

evolving  cell  plasticity  associated  with  complex  functions  is  more  difficult  because  the

number of GRNs performing these functions are scarce. That is, given any GRN generating a

particular multi-dimensional reaction norm, most of its mutational neighbourhood will most

likely produce either the same form of plasticity or a simpler one. In order to confirm this

hypothesis, we performed an unbiased scanning of the parameter space to check how the

different types of plasticity are distributed over the theoretical space of all possible GRNs and

how abundant each type is (see Methods). The results, summarized in Fig 4A, show that

indeed most of all the possible GRNs do not exhibit cell plasticity at all. From the subset of

GRNs that show plasticity, we observe that complex plastic response functions are one order

of  magnitude  less  frequent  than  simple  plastic  response  functions.  Thus,  the  relative

frequency of a given multi-dimensional reaction norm is inversely related to the complexity

of  the  logical  function  which  describes  it.  The  histogram in  the  Fig  4A shows that  the

frequency-complexity  relationship  approximates  a  logarithmic  function.  Notice  that  these

different frequencies do not arise from the relative frequency of each type of function in the

mathematical space of all possible logical functions (their probability functions are plainly

different, see dashed line in Fig 4A), but emerge as a derived property of GRN dynamics.
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Fig 4. Exploring the morphospace of cell plasticity. A. (Log) Relative frequency of different types of cell

plasticity according to their complexity  Ω in a vast GRN space. Black column: no plasticity (the phenotypic

state is purely determined by genes); purple column: phenotypic state directly determined by just one of the

EFs; orange column: phenotypic state determined by simple combinations of the  EFs (linearly decomposable

functions)  and  yellow column:  complex  forms of  cell  plasticity  associated  with non-linearly  decomposable

functions (XOR, XNOR; see SI).  Dashed line and dots represent  the relative distribution of each family of

logical functions in the mathematical space. We see that although the number of simple and complex functions

that  exist  is  approximately equal,  GRNs produce  simple functions much more often.  B. Complex forms of

plasticity (yellow dots) arise preferentially in densely connected networks with strong gene-gene interactions. C-

D. Complex forms of plasticity require minimum GRN sizes and disparate (  0<<| Bij|<1) values in the GRN

connections. In B-D panels, the % of non-zero connections and the average strengths of the GRNs correspond,

respectively,  to  the  parameters  L1 and  L2 used  for  regularisation  procedures  (see  equations  10  and  11  in

Methods). In general, less complex functions with Ω≤2 are evenly distributed in the parameter space, and are

not associated with specific GRN topologies. (EFs=2; ≈105 points).
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We also examined the sub-volumes of the parameter space where each type of multi-

dimensional reaction norms is more likely to be found. Figs. 4B-D show that, except for very

complex reaction norms (Ω=√8, yellow dots in the plots), all are randomly scattered across

the parameter space. The asymmetric sorting observed suggests that GRNs accounting for

complex multi-dimensional reaction norms must have a minimum number of elements (Fig

4C) and dense connectivity with strong and disparate gene-gene interactions (Fig 4A and Fig

4D). In nature, selective pressures, such as a metabolic cost of keeping densely connected

GRNs, may drive the system away from these regions enriched with complex forms of cell

plasticity, making them evolutionarily inaccessible even if they are beneficial [26].

Together with the results from experiment 1, this bias towards the use of simple forms

of  plasticity  seems  to  imply  that  plastic  cells  evolve  in  search  spaces  of  reduced

dimensionality: they are more likely insensitive to many of the inputs they are exposed to,

and preferentially establish simple correlations between the remaining ones. This scenario of

reduced search spaces has been proposed on other theoretical and experimental grounds [10],

[28],[34],[35].

Experiment 3: Simple forms of cell plasticity are evolutionary attractors.

We next test whether evolutionary transitions from simple to complex reaction norms

are as likely as transition in the opposite direction (isotropic, p(a→b)=p(b→a) ∀ Ωa>Ωb). The

results show that, in general, evolutionary transitions are not isotropic (Fig 5A): the number

of  generations  needed  to  evolve  simpler  reaction  norms  is  smaller  than  the  number  of

generations  needed to evolve  more complex reaction norms (p(a→b)>p(b→a)  ∀ Ωa>Ωb).

Thus,  although  experiment  2  shows  that  complex  forms  of  cell  plasticity  can  evolve,

experiment  3  shows  that  evolutionary  transitions  to  simpler  forms  of  cell  plasticity  are

generally favoured (i.e, they can happen in a smaller number of generations, all else equal).

In general, our data suggest that, given two different multi-dimensional reaction norms a and

b, the speed of transitioning between them is proportional to the differences between their

associate complexities (Ωa-Ωb). If both reaction norms belong to the same complexity class

(Ωa=Ωb),  the  speed  of  transitioning  between  them  is  inversely  proportional  to  their

complexity class (Fig 5A, looped arrows). More formally:  p(a→b) α Ωa  - Ωb  ∀ Ωa  ≠ Ωb and

p(a→b) α Ωa
-k

 ∀ Ωa = Ωb.
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Fig  5.  Evolvability  assays.  A.  Transitions  from  complex  forms  of  cell  plasticity  to  simpler  ones  are

evolutionary favoured. The width of each arrow is inversely proportional to the number of generations required

for the transition from a specific multi dimensional reaction norm to another one (the wider the arrow the faster

the evolutionary transition). The area of each circle is proportional to the average evolvability of each multi

dimensional reaction norm (see Methods). B. Predicting the relative frequency of each type of cell plasticity

from transition probabilities.  Numerical  simulations for the expected long-term distribution of  each type of

plasticity derived from the probability transitions shown in A (see equation (5) in Methods).  Convergence,

steady state values (0.8833, 0.0966 and 0.0201) are similar to those expected (dashed lines) according to the

random scanning of the GRN space (Experiment 2), suggesting that the differential evolvability (the different

probability transitions between different forms of cell plasticity) emerges from the drastic differences in the

relative frequency of each type of cell plasticity in the GRN space.

The  average  number  of  generations  required  to  go  to  any other  reaction  norm

(including those belonging to its own complexity class) is marginally increased for complex

multi-dimensional reaction norms compared to simple reaction norms (See relative sizes of

the  circles  in  Fig  5A).  Thus,  there  appears  to  be  a  consistent  evolutionary  bias  towards

evolving simpler multi-dimensional reaction norms irrespective of the initial reaction norm

considered.

We hypothesize that the differences in transition probabilities between forms of cell

plasticity emerges from the relative frequency of each type of cell plasticity in the GRN space

(see  Experiment  2).  We  tested  this  by  numerically  calculating  the  expected  long-term

distribution of each type of plasticity derived from the probability transitions shown in Fig

5A.  The  calculations  show  that,  when  plastic  cells  change  from  one  multi-dimensional
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reaction norm to another according to the probability of that transition (found in Experiment

3),  the  relative  frequency  of  each  type  of  cell  plasticity  converges  to  a  steady-state,

equilibrium  value  over  long  evolutionary  timescales  (Fig  5B).  These  values  are  almost

identical  to  those  yielded  by  the  random  scanning  of  the  GRN  space  (Experiment  2),

suggesting a causal connection between the probability transitions and the relative abundance

of each type of cell  plasticity  (notice that these values come from different  experimental

setups, so they could be different).

Together,  experiments  1  to  3  demonstrate  a  strong  and  previously  unappreciated

inductive bias towards establishing the simplest form of cell plasticity. These simple forms of

plasticity are exemplified by phenotypic responses which are triggered by simple (e.g. linear,

additive) combinations of the environmental cues.

Experiment 4a: Plastic cells perform adaptive generalisation of simple plastic responses

In this experiment, we test whether cells exhibiting different classes of cell plasticity

are able to use their past experience to better adapt to a new environmental challenge (that is,

if  they  exhibit  some  learning  capabilities  [22]).  We  recreate  classical  categorisation

experiments, widely used in learning theory [12],[26], by which the system has to exploit

regularities  observed  in  past  situations  to  offer  appropriate  responses  in  novel  cases

(generalisation). For plastic cells, generalisation means that cells are able to infer the whole

multi-dimensional reaction just by being exposed to a fraction of it (just some input-output

relationships). We know from experiment 1 that plastic cells can learn any reaction norm

when they are exposed to  all  of  its  points,  so we now check if  cells  can also learn and

reproduce any target reaction norm when there is missing information. In the approach we

follow  here,  a  given  multidimensional  reaction  norm  contains  2EFs  points,  which  are

summarised  in  a  truth  table  of  the  same length  (see  Methods  and Fig  1A).  To model  a

scenario with missing information, we set a training phase in which evolving cells can only

sense a random fraction of the complete truth table. The “training set size” (TS) denotes the

number  of  environments  (rows  of  the  truth  table)  that  are  available  for  cells  during  the

training phase (TS<2EFs).

As  Fig  6A-C  shows,  the  ability  of  plastic  cells  to  generalize  depends  on  the

complexity  of  the  target  multi-dimensional  reaction  norm.  When  cells  are  exposed  to  a

fraction of all  possible  environments,  they interpret  the environmental  correlations  in  the

simplest  possible  manner.  That  is,  when  some  information  is  missing,  cells  evolve  the
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simplest  forms  of  plasticity  compatible  with  the  input-output  relationships  that  they  had

experienced during the training phase. This finding is in agreement with the bias shown in

our experiments 1-3 (see points with Ω<4 in the left side of Fig 6C). This inductive bias

towards simplicity is advantageous when the target reaction norm has low complexity (Fig

6A): since plastic cells generalise a simple reaction norm in unseen environments, they have

greater chances to fit the adaptive (target) function. Thus, under some circumstances (low

complexity functions), the inductive bias exhibited by plastic cells allows them to perform

better than using random responses in novel environments (Fig 6A and S1 Fig,  blue line

above the green line). By random responses we mean that for every point of the reaction

norm for which the system has no previous information, the phenotypic response has equal

probability of being +1 or -1. 
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Fig  6.  Generalisation  experiments. A.  When  cells  evolve  simple  forms  of  plasticity,  they  are  able  to

generalise,  performing  better  than  chance  in  previously  unseen  environments  (red  line  represents  the

information provided (x=y), green line represents the expected performance at random (2EFs-TS)/2; and blue line

the degree of matching between the resulting phenotypes and the expected ones for a given function). Notice

that blue line runs consistently higher than the green line (random response). B. Similar experiments yield poor

performances when cells have to evolve complex forms of plasticity (blue line below the green one, see main

text).  C.  When  cells  have  incomplete  information  about  all  possible  environments  (left),  they  acquire

preferentially  simple  forms  of  cell  plasticity.  Acquiring  complex  forms  of  cell  plasticity  beyond  linearly-

decomposable functions (see SI) requires full information (blue line). D. Generalisation experiment under L1 and

L2 regularization. For this experiment, plastic cells are only exposed to half of the possible environments (TS=4),

that is the point where their inductive bias makes the result most different from randomness. We record how the

ability of cells to generalise (to approach the maximum fitness of W=8) changes as the cost of connections for

the GRN increases (see Methods). We do this for  L1 and L2 regularisation procedures (solid and dashed lines

respectively) which favour sparse and weak connections respectively.  We also show data for both complex

(Ω>6, red lines) and simple (Ω<4, blue lines) plastic responses. The plot shows clearly how including a cost of

connections improves drastically the performance of cells in generalisation experiments when cells are asked are

evolved towards simple forms of plasticity. For all panels EFs=3; n=30 replicates, standard deviation as boxes,

min and max values as error bars.

On the contrary, when the structure of the problem requires fitting complex (Ω>6)

multi-dimensional  reaction norms, cells  cannot accurately predict  the phenotypic response

required in the new environments (blue line in Figs 6A-B). 

In  both  simple  and complex  cases,  the  differences  between the  performed  plastic

response and the random response are  larger  for  TS=2EFs/2,  that  is  when the system can

access  just  half  of  the  available  information.  Obviously,  also  in  both  cases  the  adaptive

capabilities  of  learning  cells  improve  when  the  size  of  the  training  set  increases,  thus

providing more information to cells, up to the limit case in which TS= 2EFs, which was the

scenario explored in experiment 1. 

Notice that for these experiments, the target plasticity function for each replicate was

drawn from a subset of functions, i.e. those exhibiting the desired Ω, not from the whole

ensemble of all possible logical functions of EFs inputs. Therefore, the tendency of cells to

evolve simple reaction norms in this experiment cannot be attributed to their large statistical

availability, but rather to inductive biases resulting from GRN dynamics.

In  summary,  when  the  adaptive  phenotypic  response  is  a  simple  function  of  the

environmental  inputs,  cells  will  produce  adaptive  phenotypes  in  the  new  (previously

inexperienced)  environments  better  than  expected  by  random  completion  of  previously

unseen rows of the truth table (Fig 6A, S1 Fig). This feature does not derive from previous
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selective  pressures  alone  (i.e.  it  goes  beyond  rows  that  have  been  observed  by  natural

selection in the past), but can be viewed as resulting from an inherent bias of evolved GRNs.

That is, from the set of plasticity functions that are compatible with past selection, evolved

GRNs will ‘over sample’ simple plasticity functions compared to complex ones. 

Experiment 4b: Learning improves developmental stability in a multicellular context.

 In complex multicellular organisms, the phenotypic state of the individual cells is

determined by a complex combination of environmental cues and endogenous signals such as

morphogen  gradients  [7].  In  order  to  produce  non-trivial  and  spatially  organized

developmental patterns, differentiating cells need to respond appropriately to these complex

signals. In principle, it could be the case that every possible response (cell-state) has been the

explicit target of past natural selection. However, the previous experiment suggests that this

is not always necessary. If the target pattern results from simple morphogen combinations

and  natural  selection  has  occurred  over  enough  morphogen-phenotype  combinations,  the

evolved GRNs will fill-in remaining regions of the multi-dimensional reaction norm better

than by chance.  To illustrate  this  generalisation  capacity  in a  multicellular  differentiation

context, we set a 2D embryonic field of 1250 cells which can gain positional information

from  the  asymmetric  spatial  distribution  of  a  few  different  morphogens  (Fig  7).  The

morphogens are spatially distributed along simple gradients, but none of them alone contains

enough  information  to  produce  the  final  developmental  pattern.  The  pattern  emerges  by

integrating  the  morphogenetic  cues  according  to  a  relatively  simple  composite  logical

function (Fig 7A).
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Fig 7. Developmental implications of learning-based cell plasticity.  A) Simple spatial distribution of three

morphogens over a two-dimensional (50x25) field of cells (similar gradients are commonly found in the early

developmental stages of many organisms). In this example, these three environmental signals are integrated by

individual cells (according to relatively simple logical functions) to form a segmented developmental pattern.

The complete plasticity function is represented by a truth table of 32 rows specifying whether  the relevant

cellular output should be on or off for each possible combination of morphogens (see Methods). B) Individual

cells  are  evolved  under  selective  conditions  that  expose  them to  some rows  of  this  table  but  not  all  (see

Methods). Under this scenario of missing selective information, cells equipped with real  GRNs perform by

default a simple logical integration of the morphogen cues, which in this example results in a much more robust

and uncertainty-proof developmental process (upper row). When the training set contains all the information

necessary to completely define the plasticity function, natural selection finds a GRN that calculates this function

accurately (right). Of course, when past selection contains no useful information, the phenotype of the GRN is

random (left). In between we can see that the generalisation capability of the evolved GRN ‘gives back more

than selection puts in’- i.e. the phenotype produced (top row middle) is visibly more accurate than the training

data experienced in past selection (bottom row middle). This is quantified in Fig S1. In the bottom row, cells

acquire any random function (not just  the simpler  ones)  compatible with the rows experienced during past

selection, which prevents generalisation (see main text).

When individual cells are evolved to perform such a function (complete information)

during the training phase, they accurately recreate the complete segmented pattern during the

test phase. However, it can be the case that individual cells evolve in selective conditions that
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are missing information – i.e. where just a random subset of the multidimensional reaction

norm is selected for and the remainder has not been subject to selection (see Methods). In a

developmental context that means that cells receive just a subset of the morphogens they have

evolved  to  recognise  (different  cells  receive  different  “bits”  of  incomplete  positional

information).  In our experiment, since the logical structure of the multi-dimensional reaction

norm that generates the segmented pattern is simple, plastic cells can fit it from just a few

points. Essentially, multi-dimensional reactions norms governed by simple logical functions

belong  to  the  category  of  problems  that  cells  are  well  suited  to  solve  because  of  their

inductive bias towards simplicity  (S1 Fig).  Thus,  as Fig 7B shows, recognisable patterns

emerge even in very disturbed conditions. In the same figure (lower row) we can also see

how plastic cells that lack learning-based buffering fill-in missing information at random. In

this  case,  cells  can  acquire  any  of  the  remaining  logical  functions  compatible  with  the

experienced ones, not just the simpler ones (which happen to be the adaptive ones in this

example). This experiment shows that in the absence of any inductive bias, plastic cells are

generally unable to repair corrupted phenotypes (Fig 7B, S1 Fig).

Comparable noisy conditions are known to be commonplace in nature, and biological

systems have developed a variety of mechanisms to cope with them [36]. Our experiment

suggests that under these non-ideal conditions, learning may act as one of these buffering

mechanisms. However, unlike other phenomena that increase developmental robustness by

reducing the overall sensitivity of the system to the external conditions, learning can increase

developmental robustness while keeping the environmental sensitivity fully functional. This

apparent paradox is explained because the buffering process described here is concerned with

correlations between morphogens rather than by the number or absolute concentrations of

morphogens.  In  other  words,  this  mechanism  does  not  have  to  reduce  the  number  of

morphogens or the sensitivity of the system to these morphogens, it works by restricting the

number of ways in which these morphogens can be combined to generate phenotypic outputs.

Experiment  5:  Costly  connections  amplify  the  performance  in  generalisation

experiments.

In  this  experiment  we  explore  some  conditions  which  may  enhance  generalised

phenotypic responses. In the light of Experiment 2, there seems to be a dependency between

the complexity of the plastic phenotypic responses and the GRN topology (e.g.,  complex

multi-dimensional reaction norms are produced more often by plastic cells having densely
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connected GRNs). Thus, we examine an evolutionary scenario in which the generalisation

experiments must be performed by GRNs with a particular topology. Specifically, we force

GRNs to acquire a certain topology (e.g. a weak connectivity) while evolving in the training

phase of a generalisation experiment. We do this by implementing a connection cost in the

evolving GRNs (see Methods), so that the connectivity of the GRN contributes to the cell’s

fitness. Introducing such a cost is biologically meaningful since densely inter-wired GRNs

are known to be selected against for a number of reasons, including the intrinsic metabolic

cost  of  synthesizing  a  larger  number  of  organic  molecules,  the  lack  of  efficiency  in  the

substrate-ligand  interactions  between  gene  products  derived  from  thermodynamic

considerations, and because the GRN dynamics is more likely to exhibit chaotic behaviour

[26],[37].  Thus,  although  there  exist  some  evolutionary  advantages  in  having  redundant

elements in the GRN (e.g. increased robustness, [15],[36], the selection against too complex

GRNs is biologically consistent. In addition, introducing a connection cost (aka parsimony

pressure  or  regularisation)  is  a  widely  used  procedure  in  learning  theory  and  artificial

intelligence  that  is  known  to  alleviate  the  problem  of  over-fitting  [12],[21],[26],  thus

providing us an opportunity of testing the formal correspondence between learning principles

and cell plasticity. 

We implemented  two different  types  of costly  connections,  one (L1)  that  favours

sparse connectivity in the GRN and one (L2) that favours GRNs with weak connections. As

Fig 6D shows, both procedures have a qualitatively similar effect on the ability to generalise.

However, the effect depends strongly on the complexity of the multi-dimensional reaction

norm that  cells  have  to  evolve.  For  complex  forms  of  plasticity  (red  lines  in  Fig  6D),

introducing a cost of connections makes the generalisation response worse (approaching the

minimum  value  of  TS=2EFs/2=4,  where  the  system  output  contains  just  the  information

provided during the training stage). This happens because introducing a cost in the GRN

connections pushes the system towards regions of the GRN space enriched with weakly and

sparsely connected GRNs (where no complex forms of plasticity can arise), so the system

cannot fit the complex target (known as “underfitting” [26]). 

The  opposite  is  observed  when  the  plastic  cells  generalise  over  simple  forms  of

plasticity.  In that case (blue lines in Fig 6D), having sparse and weakly connected GRNs

increases the likelihood of cells to perform simple forms of plasticity, which increases their

performance  under  previously  unseen  environmental  conditions  (i.e.,  generalisation).

However, when the connection cost becomes too high (beyond an optimum λ of 0.5 for  L1

and 0.8 for L2), the enhanced performance disappears. That is probably related to the fact that
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even to perform the most basic computations,  GRN require  a minimally  dense topology:

extremely simplified GRNs do not perform any kind of computation at all.

Conclusion:

In this work we have introduced a novel theoretical approach for the study of cell

plasticity that exploits a formal mapping between cell plasticity and logical functions. Under

this approach, the different multi-dimensional reaction norms exhibited by plastic cells are

associated with specific logical (mathematical) functions derived from Boolean algebra. This

idealisation enables us to measure the complexity of the different forms of cell plasticity. 

By using this approach, we have shown that plastic cells are able to display arbitrary

complex  forms  of  plasticity  such  as  those  associated  by  hard-to-compute,  non-linearly

decomposable logical functions (Ω=√((EFs/2)·2EFs+1)). This class of logical functions is well

known in learning theory because they cannot be learned by linear models (such as the linear

perceptron  [12]).  To  learn  such  functions  requires  the  ability  to  represent  and  learn

correlations  between  the  inputs  or  to  compare  one  input  with  another  (e.g.  inputs  have

different values, XOR), a feature which is mandatory for associative learning [12],[21]. In

computer science the ability of artificial neural networks to represent and learn such functions

is  well  understood.  In contrast,  whether  biologically  realistic  GRNs with an unstructured

topology (e.g. without explicit hidden layers) and strictly positive variables ([gi]>0) can be

evolved to represent such functions has not been previously shown. The implementation of

learning theory approaches to study phenotypic evolution has been developed in prior work

[21],[22],[24],[26].  That  work,  however,  is  concerned  with  the  evolution  of  evolvability

(generating phenotypic variation, that may be adaptive, given new genetic mutations) rather

than  plasticity  (adaptive  phenotypic  responses  to  environmental  cues).  This  paper  thus

focuses on how evolving systems rely on learning principles to classify a series of elements

(e.g. combinations of morphogens) into a set of discrete categories (e.g. cell state).In learning

terms, the former corresponds to a generative model whereas the latter,  addressed in this

paper, corresponds to a discriminative model [12]. Our approach represents therefore a novel

conceptual tool in the study of cell plasticity. 

Experimental evidence from the field of synthetic biology shows that in vivo circuits

(e.g.  DNA-based logical  gates  or  genetically  engineered  metabolic  networks)  are  able  to

solve simple problems such as non-correlational AND-like functions (Ω=√(EFs ·2EFs+1)). For
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more complex functions, the complexity of the biological circuits rapidly escalates with the

problem complexity in a way that makes empirical approaches very challenging [38],[39]. In

those studies, the authors suggest that the lack of scalability is caused by the fact that real

GRNs have to reuse the same genetic modules. In the present work, we have demonstrated

that complex problems can be solved by biological systems if they are endowed with larger,

denser and more strongly connected circuits (Fig 2). A network with signed states (e.g. [21])

can compute the same function using fewer nodes than a network with unsigned states (i.e.,

[gi]>0).  This  may  explain  why  real  GRNs,  which  can  only  have  non-negative  gene

concentrations,  must  be  large  and  densely  connected  in  order  to  perform  non-trivial

computations  [12].  This  finding  could  be  useful  to  enable  engineered  cells  in  synthetic

biology to address more complex problems.

Other  computational  models  of plasticity  avoid the  complications  created  by non-

negative  states  by  following  different  strategies.  Some  introduce  abstract  state  variables

representing  ‘gene  expression  potentials’,  which  are  signed,  rather  than  gene-expression

levels,  which  are  non-negative  [21],[26].  Others  make  use  of  an output  layer  to  convert

unsigned  gene-expression  states  into  signed  phenotypic  traits  [40].  The  most  common

approach  is  to  directly  encode  the  reaction  norm  parameters  (e.g.  slope)  in  genetically

heritable  variables,  thus  bypassing  the  generative  dynamical  processes  responsible  of  the

inductive biases [8]. Our results show that a conventional GRN model with unsigned states is

sufficient to evolve arbitraily complex forms of adaptive plasticity.

Specifically,  we  demonstrated  the  potential  of  GRNs  to  generate  complex  multi-

dimensional  reaction  norms under  two biologically  plausible  scenarios:  one in  which  the

environmentally-sensitive  factors  are  gene expression  levels  (classical  GRNs) and one in

which  the  environmentally-sensitive  factors  are  the  strengths  of  gene-gene  interactions

(tensor-based GRN). We show that  the tensor-based implementation greatly  improves the

capacity of cells to evolve adaptive forms of plasticity, especially the more complex ones

(i.e.,  those  highly  non-linear  input-output  maps).  This  observation  suggests  that  more

complex forms of cell plasticity can be expected in response to particular factors, such as

temperature,  that  influence  expression  dynamics  through  modulation  of  gene-gene

interactions rather than individual gene-expression levels. 

In addition, our results reveal that complex forms of plasticity are difficult to evolve

because the hypervolumes of the GRN space containing them are very small and do not form

a connected region (Fig 5B). The networks capable of complex plasticity are accordingly rare

and require a dense topology of strong and heterogeneous connections. Likewise, the vast
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majority of new mutations in a given GRN drive the evolving cells into regions of equal or

less complex plasticity.  This applies to mutations that cause changes in GRN topology as

well as mutations that cause changes in gene-gene interaction strengths [14]. By means of

numerical  simulations,  we  quantitatively  predict  the  relative  frequency  of  each  type  of

plasticity from the probability of transitions between them (Fig 5B). This suggests that low

evolvability of complex reaction norms is a consequence of the scarcity in the GRN space of

the networks that generate complex reaction norms. A similar bias towards simple input-

output maps has been recently proposed for artificial neural networks [19], and algorithmic

theory suggests that it might be a general property of every computable functions [31]. Our

contribution is to demonstrate that this bias is intrinsic to cell plasticity, and that it emerges

from  reasonable  model  assumptions  of  gene-expression  mechanisms.  This  may  help  to

explain why many forms of plasticity tend to rely heavily on a low number of environmental

cues even when many cues potentially are informative.

This bias towards simple forms of plasticity is consistent with studies on genotype-

phenotype-maps (GPMs) which show that more complex phenotypes are more scattered in

the  parameter  space,  thus  being  far  less  frequent  than  simple  ones  [13],[41],[42].  These

qualitatively similar properties of GPMs and environment-phenotype-maps (EPMs) are likely

due to the fact that they arise from the same underlying dynamical system: the GRN [14],

[35]. 

Although further work is required in order to systematically explore how complex

GPMs and EPMs emerge spontaneously from GRN dynamics (and more complex multi-level

developmental systems), our work provides a theoretical foundation for what to expect when

plastic  cells  are  exposed  to  novel  multi-factorial  environments.  Knowing  that  cells

preferentially  acquire  phenotypic  states  determined  by  the  simplest  combinations  of  the

external factors may be useful for cell cultures exposed to new multi-nutrient growth media

or for cancer research where tumor cells are treated with new multi-drug cocktails [16].

In  the  context  of  cell  plasticity,  learning  principles  are  relevant  in  three

complementary ways.  One is simply that by preferentially using simple logical  functions,

plastic  (differentiating)  cells  do  not  equally  consider  all  the  available  inputs  (signalling

molecules).  Rather,  cells  ignore  most  inputs  so  that  their  phenotype  depends  on  simple

combinations of the remaining ones. This effectively decreases the size of the search space,

making plastic cells evolve within a signalling environment that has an actual dimensionality

much lower than the apparent one. In learning terminology, this is an inductive bias. Such

biases favouring simple functions increase the chances of evolving an optimal combination of
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signals in a finite amount of time if the relationship between environmental cues and optimal

phenotypes is, in fact, simple. For example, in the case of free-living single cells, if this bias

is useful, it may enable cells to better track seasonal changes by using just a fraction of the

information provided by the environment [27]. 

The second reason why learning principles  are relevant  is  more subtle.  Under  the

scenario  we  propose  here,  the  differentiating  cells  preferentially  establish  simple  logical

relationships  between  the  environmental  factors  they  have  been  exposed  to  (a  form  of

inductive bias). This inductive bias towards simple functions means that plastic cells have an

intrinsic,  GRN-based  mechanism  for  solving  simple  problems  (although  we  have

demonstrated that this bias is not limiting given the appropriate selective pressures). Thus,

whenever the unforeseen challenge is a simple problem, the intrinsic bias towards simple

plastic  responses enables  cells  to  show an improved performance compared to  a  random

response (Fig 6A, Fig 7B, S1 Fig).  This bias can be even more pronounced if  the GRN

connections are costly, a feature which is known to be common in real cells (Fig 6D). The

difference to standard notions of Darwinian evolution is not trivial. In classical Darwinian

evolution, plastic cells placed in a novel environment have no information to guess which

will be the right (fitter) phenotype in that context [43]. In the absence of any inductive bias

which causes cells to prefer one type of plasticity function over another, the cells will blindly

proceed by trial and error until the right cell state is eventually found, which may hinder or

delay adaptation over evolutionary time [23].

The  third  reason  why  learning  theory  is  relevant  applies  within  a  multicellular

context:  once plastic  cells  have evolved the cell  differentiation  function (which cell  state

corresponds  to  each  combination  of  morphogens),  learning  can  buffer  the  process  of

development against noisy or corrupted signalling pathways (Fig 7B). Plastic cells achieve

this  by establishing only basic correlations between a few morphogens, which makes them

consistently differentiate in the same phenotypic state (cell type) even when new signalling

pathways  arise  by  mutation.  This  inductive  bias  of  the  GRNs  may  increase  phenotypic

robustness  against  environmental  or  genetic  perturbations,  along with  other  more  known

properties  of  biological  GRNs  like  redundancy  or  modularity  [7],[40].  Importantly,  the

learning-based robustness that we report here does not require a lack of sensitivity to the

environmental inputs, but can arise from a logical simplification of the possible input-output

relationships.

From  a  macroevolutionary  perspective,  it  must  be  noted  that  the  inductive  bias

towards simple forms of plasticity  is  present  without  being specifically  selected  for [44].
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Rather, this bias towards simple plasticity is an inherent property of GRN dynamics which

was already present in single-cell organisms well before the evolutionary transition towards

multicellularity [5],[6],[44]. During this transition, which has happened at least 40 times [29],

[30], the functional integration of the new level of complexity crucially depends on the ability

of the lower-level  entities  to  correctly  interpret  and respond to a vastly  rich set  of inter-

cellular signals [29]. Coming from free-living states, the multi-cellular state might have been

very  challenging  [7].  However,  as  we  have  demonstrated  here,  the  ability  of  cells  to

generalise from simple forms of plasticity may have facilitated the ability to adapt to more

complex signalling environments. Testing how inherent inductive biases caused by cellular

properties may have interacted with other factors in the self-organization of differentiated cell

aggregates constitutes an exciting prospect for future research [45]. 

A possible  criticism of  our  study is  that  plastic  cells  can  only  take  advantage  of

adaptive generalisation if the plasticity function is simple (Fig 6A, S1 Fig). However, this

does not undermine the generality of this phenomenon for two reasons. First, biologically, the

signalling  context  inherent  to  multicellularity  was  not  a  pre-existing  ecological  niche  to

which cells adapted, but rather an environment that cells co-created themselves during the

evolutionary transition [29],[30]. From our findings, which show that single cells exhibit a

bias favouring simple plasticity functions, it seems plausible that such simplicity pervaded

the signalling context of the newly created multicellular environment. In other words, cells

have  evolved  developmental  patterning  which  requires  only  simple  combinations  of

morphogens because this  matches  the simple  plasticity  they can exhibit.  It  is  within this

constructed space of limited dimensionality  where plastic cells  can take advantage of the

learning principles; that is, cells have created a problem that they were already able to solve.

Second, logically, a bias that favours simple solutions fits well with generic properties of the

natural  world.  This  “universal  logic”,  which  results  from probability  theory  and is  often

referred as the Occam’s razor, states that all else being equal the simplest solution tends to be

the  correct  one.  The  opposite  bias  (i.e.,  one  favouring  complex  or  less  parsimonious

solutions) would not produce effective learning in most cases. 

Another criticism may be that real cells might have evolved mechanisms to overcome

this bias towards simple forms of plasticity, for instance, by modifying the GRN connectivity.

However,  this  would  require  an  adaptive  pressure  towards  denser  GRNs,  which  ceteris

paribus seems unlikely given metabolic costs of regulation [26]. A more plausible scenario,

given GRN connections that are costly, results in an even more pronounced bias towards

simple forms of plasticity (Fig 6D), so that this bias seems to be unavoidable.
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Ultimately,  the  ability  of  plastic  cells  to  mimic  logical  functions  and  to  perform

proper  learning  with  generalisation  is  likely  to  arise  from the  structural,  dynamical,  and

functional isomorphisms between GRNs and NNs: they both partition the space of possible

inputs into a series of states or attractors [13],[37],[42], both are adaptable via incremental

improvement principles [15],[41],[46] and both exhibit similar inductive biases [14],[31]. In

addition,  both  exhibit  increased  performance  under  similar  adaptive  pressures  [26].  For

example, we have shown that some procedures commonly used to improve the performance

of artificial NNs (such as the L1 and L2 regularisation) can also enhance the ability of plastic

cells to acquire specific reaction norms from incomplete information (Fig 6D).  

All  these  commonalities  between GRNs and NNs allow us  to  transfer  knowledge

derived from learning theory to illuminate the domain of cell  plasticity.  This approach is

ultimately possible because, put in simple terms, gene networks evolve by similar principles

to those by which cognitive systems learn.

Methods:

The core model:

The  developmental  model  is  a  GRN-based  implementation  with  non-symmetric

continuous  (non-Boolean)  unsigned  state  variables  and  explicit  environmental  factors.

Basically, the model consists of Ng genes or transcription factors that regulates expression of

other genes. The state of the system in a given time is determined by the G vector, containing

all the concentration profiles of all the Ng genes and gene products. Genes and gene products

have  continuous  concentrations  gi≥0,  and  interact  with  other  genes  or  gene  products  by

binding  to  cis-regulatory  sequences  on  gene  promoters,  conforming  a  gene  regulatory

network (GRN). The regulatory interactions of this GRN are encoded in a B matrix of size Ng

x Ng. All genes and gene products are degraded with a decay term μ=0.1.

Environmental factors (EFs) are implemented as exogenous cues affecting the levels

of gene expression by activating or repressing them. Each i of the EFs environmental factors

(EFs<=Ng) affect a single gene with an intensity of Ei=-1 or Ei=+1 (see Equation 2 below).

Environmental factors are not degraded over developmental of evolutionary time (Fig 1). The

GRN generates a suitable phenotype by integrating information about both the genetic state

and the environment by an iterative process over a number of Devt developmental time steps.
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The single-trait  phenotype is recorded as the gene expression of a gene of interest  (goi),

which is different from the environmentally sensitive genes affected by the EFs. 

Although the model is highly simplified and it does not explicitly include space, it

captures  the most  typical  mechanisms by which real  genes  regulate  one another.  Similar

models have yielded valuable insights on the evolution of plasticity [40],[47], the evolution

of modularity [48], developmental memory and associative learning [21], the emergence of

rugged adaptive landscapes [37], the evolution of biological hierarchy [49], or the role of

noise in cell differentiation [36] (Fig 1).

The gene-gene interactions within the GRN follow a non-linear, saturating Michaelis-

Menten  dynamics,  which  is  a  special  type  of  Hill  function  widely  used  for  modelling

biochemical binding processes [50]. Other classes of non-linear,  monotonically increasing

functions  have  been  explored  in  previous  works  giving  consistent  results  [51].  In  the  B

matrix, each interaction strength Bik represent the effect of gene j in the transcription of gene

i,  acting  either  as  a  repressor  (when  -1≤Bij<0)  or  as  an  enhancer  (when  0<Bij≤1).

Developmental dynamics is attained by changes in gene concentration over developmental

time. Thus, the concentration of the gene  i in the cell (gi) changes over time obeying the

following differential equation:

∂ g i

∂t
=

R (hi )

K M+R (hi )
− μ g i for ∀ i∈ [1,2Efs ] and ∀ j∈ [1, N g ]                                                          (1)

 Where hi=∑
j=1

N g

Bij g j+E j, given that E j ≠0⇔ j≤ EFs                                                               (2)

In the first term of the equation (1), R (hi) is the Ramp function (R(x)=x,  x>=0 and∀

0 otherwise),  which prevents eventually negative concentrations in gene products resulting

from inhibiting  interactions,  and  KM is  the Michaelis-Menten coefficient.  Without  loss of

generality, we set  KM=1 (other choices are known not to affect the results, [41],[51]). The

second term of the equation 1 describes the degradation process that affects every gene in the

system. Equation 1 was numerically integrated by means of the Euler method (δt=10-2) over a

maximum developmental time of devt=106  iterations (arbitrary time units) or until an steady

state is reached. This happens when all the normalized gene concentrations remain the same

within a threshold of 0.01 over an interval of 1000 developmental time units (i.e., when |Gdevt//

max(g(i)devt)}= {Gdevt+1000/max(g(i)devt+1000)}|≤0.01). Manually directed simulations showed that

when the system does not reach a steady state within this maximum developmental time, it is

because it is undergoing either cyclic or chaotic behaviour, such that it never will saturate.
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Although the equation 1 has no explicit noisy term, some noise is introduced in the

initial conditions in order to break the initial symmetry of the system. Specifically, in devt=0,

all gene concentrations are set to gi=0.1+ξ, being ξ a small number randomly drawn from a

uniform distribution ξ~U(-10U(-10-2,10-2). Previous works suggest that small modifications in the

equations (e.g. the inclusion of a noisy term, the choice of a specific Hill-function, etc.) do

not substantially alter the dynamics of these models, thus implying that the developmental

dynamics actually relies in the GRN topology itself [41],[51].

In  an  extended  version  of  our  basic  model,  environmental  factors  do  not  affect

particular  genes,  but  the  strength  by  which  genes  interact  between  them  (Fig  3A).  We

implement this by using higher-order matrices called tensors, so this version of the model

will be referred hereafter as the tensorial implementation. In here, the GRN topology itself is

not fixed but dynamic over developmental time, and consequently the hi term of the Equation

(2) is now described as:

hi=∑
j=1

N g

g j∑
k=1

N g

Bijk gk +Ek, given that Ek ≠ 0⇔k ≤ EFs                                                                (3)

In the tensorial version, the Bijk matrix has an extra dimension “k”, which determines

which  genes contribute  to  the establishment  of  the interaction  strength between the gene

products  i and  j.  In this tensorial  implementation,  each environmental factors (EFs<=Ng)

contributes  to  determine the interaction  strength between different  gene products with an

intensity  of  Ek=-1  or  Ek=+1.  All  the  remaining  elements  in  the  tensorial  version  are

implemented the same way as in the basic model. The phenotype characterisation and the

different experimental setups described in the ensuing paragraphs apply to both the basic and

tensorial implementation (Fig 3A).

In many biological examples, specific gene expression levels are known to trigger

biochemical, developmental or physiological responses in a binary manner. Above a certain

threshold in  gene concentration  (when the  gene is  active),  the response is  triggered,  and

below the threshold (inactive gene), it is not. Motivated by this fact, the phenotype of a cell in

our model is conceptualized as the binary expression profile of the gene of interest  (goi):

g’goi=1  ↔ ggoi ≥δδt=10-2  and g’goi=-1  ↔ ggoi ≤0.1.  This  allows  us  to  treat  the  phenotypic

outcome as a boolean output. 
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Experiment 1. Representations:

In our first experiment,  we simply evolve different GRNs towards different multi-

dimensional  reaction  norms (that  is,  to match specific  input-output  maps or truth tables),

including those described by complex logical functions (Fig 1) [47]. Whilst some authors

have  implemented  this  as  a  single  population  which  faces  sequentially  all  possible

environments over a number of generations (each environment being a specific input-output

row of the whole truth table [15],[25],[26], we split in each generation the entire population

of plastic cells into a set of minimal (single-cell) isogenic sub-populations, with each sub-

population  being  exposed  to  a  specific  environment  (i.e.  a  specific  combination  of  the

environmental factors). This procedure is formally equivalent to the first one but allow us to

save computational resources [12] and to ensure that all environments equally contribute to

the acquisitions of specific forms of cell plasticity.

Since  an  environmental  factor  can  only  take  binary  values  (-1,+1),  there  are  2EFs

different environments resulting from a combination of the EF environmental factors. Thus,

the  multi-dimensional  reaction  norm  linking  the  (binary)  environmental  inputs  with  the

(binary) phenotypic outputs can be represented as a truth table of length 2EFs. The phenotypic

output of the truth table is set as the target function P (Fig 1), 

In each generation, the target function  P is compared to the resulting phenotype in

each environment. The sum of all the matches between the phenotype and the target P, scaled

by the size of phenotypic vector, determines  the fitness W of a given GRN. The fitness  W

determines the likelihood of a GRN to contribute to the next generation:

W =

∑
i=1

2Efs

|Pi −goi ' i|

2Efs

                                                                                                                    (4)

Evolutionary protocol:

In each generation, the alleles encoding for the GRN undergo point mutations: in a

given generation, each element Bij changes its value to Bij+νν with a probability p=1/Ng, being

ν~UU(-0.1,0.1), which ensures that mutational effects are independent of the GRN size. We do

not  mutate  the  G vector,  which is  initialized  to  the  same initial  value  as  in  t=0 in  each

generation (we keep it constant because we are interested in the environmental-phenotype

properties of the system, rather than in those properties derived from the more widely studied
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genotype-phenotype-maps sensu [13]). Each mutational event uniquely determines a mutant

phenotype, whose probability of being fixed is proportional to the selective advantage of that

mutation.  Thus, we confront again all the clone sub-populations bearing the mutant allele

with all possible environments, recording the mutant’s fitness Wm. If Wm ≥δ W, then the new

mutation is fixed.

We use this  hill-climbing evolutionary  algorithm because our  aim is  to  provide a

phenomenological  model  of  the  evolution  of  structured  phenotypic  plasticity,  rather  than

quantifying realistic evolutionary rates or other important population or genetic parameters

(e.g.  magnitude  of  selection  coefficients,  mutation  probabilities,  population  structure,

epistatic effects) [20]. In doing so, we assume that the selection coefficient is sufficiently

large that beneficial mutations get deterministically fixed and deleterious mutations do not.

Although we acknowledge that more stochastic evolutionary scenarios may have qualitatively

different dynamic properties,  previous work suggest that both approaches yield consistent

results [52]. 

Experiment 2. Exploration of the morphospace of cell plasticity

In this  experiment  we performed an unbiased scanning of  the parameter  space  to

investigate how the different types of plasticity are spread over the theoretical space of all

possible GRNs and how abundant each multi-dimensional reaction norm is. To do this, we

generated a large number (≈105) of random GRNs with a size of (3<ng<24), so that two of

their genes were environmentally sensitive to Ef1 and Ef2 and a third, different gene was set as

goi.  In  order  to  obtain  representative  networks  for  different  values  of  the  parameters

considered (Average strength of connection and percentage of non-zero connections, which

are proxies for the L1 and L2 regularisations parameters respectively, see costly connections

below) the values of the  Bij matrix for a given GRN were given, with p=U~U(-10(0,1), non-zero

values randomly extracted from a normal distribution N~U(-10(U~U(-10(-1,1),σ) with σ=0.1. That way) with σ) with σ=0.1. That way=0.1. That way

we avoid the convergence of the average absolute strength (L1) to a value of 0.5, derived from

the central limit theorem.

Experiment 3: Evolvability assays:

We further assess if there exist some bias in the evolutionary transitions between the

different forms of cell plasticity. Specifically, we focused on forms of plasticity associated
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with logical functions of different complexity Ω, that is, we checked if (p(a→b)=p(b→a) ∀

Ωa>Ωb). We first trained a number of GRNs (n=30) to produce a specific multi-dimensional

reaction  norm with an associated  complexity  of  Ωa.  When the  GRN reaches  a  W=1,  the

simulation is stopped. Then we clone the trained network and force each clone to evolve

again towards a new form of plasticity, now characterized by a complexity Ωb. We recorded

the inverse of the number of generations required to attain again a  W=1 as a proxy of the

likelihood of the transition a→b, which can be interpreted as the system’s evolvability.

We checked if  the  results  of  these  evolvability  assays  could  be  explained  by the

differences in the relative frequency of each type of cell plasticity in the GRN space (see

Experiment 2). We calculated the expected long-term distribution of each type of plasticity

derived  from  the  probability  transitions  by  iterating  the  differential  equation  (5),  and

compared the steady-state values in t→∞ with those resulting from the experiment 2.

∂ Ωi

∂t
= ∑

j=1

Ωclasses

p (Ω j →Ωi ) ⋅Ω j                                                                                                     (5)

Where Ωi is the relative frequency of the type of complexity  i (amongst the Ωclasses)

and p(Ωj→Ωi) is the transition probability between the Ωj and the Ωi classes.

Experiment 4. Generalisation:

In experiment 1, natural selection can find arbitrary forms of cell plasticity, but this

required cells to be exposed to all possible combinations of environmental factors (complete

information). In this experiment 4a, we instead expose plastic cells to a subset of all possible

environments (incomplete information) and test under which circumstances they are able to

generalize a suitable phenotypic response for the remaining ones. We refer to this subset of

environments as the training set (Ts<EFs). 

We evolve the system in a training phase until the maximum possible fitness under

that specific  Ts size (so that cells produce the required phenotypic states for each of the Ts

environments). For each replicate,  the composition of the training set is randomly chosen

from the set of 2EFs possible environments.

In the second (test)  phase of  the experiment,  we expose the trained GRNs to the

remaining  2EFs-Ts environments,  which  are  utterly  novel  to  the  cells.  The  fitness  W is

calculated now over all the 2EFs environments. If the cells are able to generalize from their

past evolutionary experience, the performance of the plastic cells in these new environments

will be better than at random: W≥(2EFs-Ts)/2 (Figs 6A-B, and S1 Fig, green lines).
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We  further  perform  another  generalisation  experiment  (Experiment  4b)  using  an

explicit  spatial  2D field of 1250 cells  (25x50 sub-hexagonal grid) instead of a space-less

implementation (Fig 7). In this case, the target developmental pattern was chosen amongst a

large  set  of  random  patterns  resulting  from  the  integration  of  three  morphogens  (EFs)

according to random thresholds. The pattern, resembling an arthropodian early embryo, was

specifically chosen to be generated from simple logical functions and visually recognizable as

a  biological  structure.  The spatial  distributions  (xy coordinates)  of  the  morphogens  were

drawn  from  simple  and  biologically  realistic  gradients:  a  Turing-like  stripped  pattern

([Ef1]xy=sen(x·k)),  an  isotropic  radial  gradient  from  a  punctual  signalling  centre

([Ef2]xy=(x2+y2)1/2) and a lateral diffusion from the antero-posterior midline ([Ef3]xy=y1/2 ) 

The  combination  of  these  morphogens  generates  the target  developmental  pattern

according to the composite logical function  AND(OR(AND(1,2),AND(2,3)),1) (Ω<<√(EFs

·2EFs+ν1)). This function is associated with a truth table of length n=32 (an arbitrary threshold

was applied to the continuous morphogen gradients in order to reduce the length of the truth

table).  For the training phase, each individual cell was exposed to a random subset of this

table (TS<32). For the test phase, every cell is exposed to the whole information (TS=32). We

contrast these results with another scenario in which the missing information in the test phase

is generated randomly (Fig 7B, S1 Fig).

 

Experiment 5. Costly connections:

In computer science, there are several procedures aimed to improve the performance

of learning and generalisation experiments. Our aim in this experiment is to assess if they are

also applicable in the context of cell plasticity. Amongst these procedures, a widespread one

consist basically in limiting the complexity that the network can attain. It can be easily done

by making the GRN connections costly, with a direct effect on fitness:

W t=W p − λ ⋅CC                                                                                                                       (6)

Where Wp is the partial fitness scored as in Equation (4) and λ is the relative weight

of  the  cost  of  connections  (CC)  in  determining  the  total  fitness  Wt.  In  turn,  CC can  be

implemented  in  two  ways,  called  respectively  L1 and  L2 regularisation.  In  the  L1

regularisation,  sparse connectivity is favoured by applying a direct selective pressure in the

number gene-gene interactions, which decreases the number of connections in the GRN [26].

L1 is implemented as the sum of absolute magnitudes of all regulatory interactions:
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CC (L1 )=
∑
i=1

ng

∑
j=1

ng

|W ij|

ng
2

                                                                                                                (7)

In the L2 regularisation,  weak connectivity is favoured by applying a direct selective

pressure in the strength of gene-gene interactions, which results in regulatory interactions of

small magnitude [26]. L2 is implemented as a the sum of the squares of the magnitudes of all

regulatory interactions:

CC (L2 )=
∑
i=1

ng

∑
j=1

ng

W ij
2

ng
2

                                                                                                                  (8)
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