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Abstract

Quantifying the differences in gene expression and cellular composition between single-cell RNA-sequencing
(scRNA-seq) data sets presents an analytical challenge due to biological and technical noise. To facilitate analysis
of multiple scRNA-seq experiments, we developed MELD: Manifold Enhancement of Latent Dimensions. MELD
leverages tools from graph signal processing to learn the underlying, or latent, dimension within the data corre-
sponding to the differences between data sets. We call this dimension the Enhanced Experimental Signal (EES).
MELD learns the EES by filtering the categorical experimental label in the graph frequency domain to recover a
smooth signal with continuous values. We also present a novel clustering algorithm combing the graph Fourier
transform with the EES to identify cells that are transcriptionally similar and exhibit uniform response to a pertur-
bation via an adapted vertex frequency clustering. Together, these methods can be used to identify signature genes
that vary strongly between conditions, characterize clusters of cells with similar responses to the experiment, and
quantify the degree to which each cluster is affected by a given perturbation. We demonstrate the advantages of
MELD analysis using a combination of biological and synthetic data sets. MELD is implemented in Python and
code is available at https://github.com/KrishnaswamyLab/MELD.

1 Introduction

As single-cell RNA-sequencing (scRNA-seq) has become
more accessible, design of single cell experiments has be-
come increasingly complex. Moving beyond profiling of
cellular heterogeneity under a single condition, researchers
are beginning to use scRNA-seq to compare cellular states
across multiple experimental conditions. These experiments
are powerful scientific tools because each assay generates
thousands of independent measurements of gene expression
per condition. However, quantifying the differences between
single cell data sets presents an analytical challenge. There
is often a large overlap between single-cell profiles across
conditions due to subtle effect size, incomplete experimen-
tal penetrance, and the presence of shared cell types across

conditions. Furthermore, single cell data sets are prone to
biological and technical noise due to transcriptional hetero-
geneity and inefficient capture of mRNA in single cells. As
a result, the signal of an experimental perturbation is small
with respect to the biological and technical variation in an
experiment.

Although several methods exist for merging single-cell
data sets1,2, identifying cell types3, and quantifying differ-
ential expression between experimental conditions4–6, to the
best of our knowledge there is only one method, ClusterMap,
specifically designed to quantify differences across single-
cell data sets7. Most published analyses of multiple scRNA-
seq samples, including ClusterMap, follow the same basic
steps4,7–13. First, data sets are merged applying either batch
normalization12,13 or a simple concatenation of data matri-
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ces4,7–11. Next, clusters are identified by grouping either sets
of cells or modules of genes. Finally, within each cluster, the
cells from each condition are are used to calculate various
measures. Commonly, the reported statistics are fold-change
of cluster proportion across conditions and differential ex-
pression of genes or gene modules within each cluster. Al-
though the recently described ClusterMap algorithm reverses
the merging and clustering steps7, the overwhelming trend is
a reliance on clustering prior to comparison.

Clustering prior to sample comparison results in a key
limitation: existing clustering algorithms for scRNA-seq are
based on global expression variation within a data set and are
blind to the effect of a perturbation on each cell. Because the
granularity of a cluster (i.e. the number of cells in the cluster)
is somewhat arbitrary, this means the resolution of the initial
clustering may not correspond to the resolution of the pertur-
bation response. For example, a cluster may combine multi-
ple cell subtypes each of which exhibit varying responses to
the experimental perturbation.

Instead, to quantify the differences between experimental
conditions, it would be helpful to find groups of cells that
are prototypical of experimental or control conditions in the
single-cell population, even if they form small or rare groups.
Thus, we effectively want a quantification (i.e. a score) of
how prototypical each cell is of the control or experimental
condition. Such a score would identify the cells and popu-
lations that are the most or least affected by an experimental
perturbation. We term this score the Enhanced Experimental
Signal (EES).

One way to derive such a score would be probabilistic. We
could, for example, build a probabilistic model of the experi-
mental perturbation, and then examine each cell and quantify
the likelihood that it came from the experimental or control
condition. However, cells exist in a continuum of states and
a probabilistic approach would require modelling a high di-
mensional complex continuous probability distribution over
the cellular state space. Such an approach would require
making strong parametric assumptions and would be com-
putationally intractable.

To avoid this, we sought a nonparametric approach be-
ginning by modelling the cellular state space using graphs.
Graphs have been applied in scRNA-seq analysis for visu-
alization14,15, imputation16,17, and clustering18,19. Here we
propose to use methods from graph signal processing (GSP)
that, despite their proven strength in other domains, have not
often been used in biomedical data analysis20.

The key advantage of GSP is the access to a set of tools for
processing graph signals, which are functions defined over
the nodes in a graph. These tools are extended from classical
signal processing and give access to many functions such as
those used for filtering or frequency analysis. In our case,
we want to infer an EES that characterizes how prototypical
a given cell is of each experimental condition. For example,
in a simple experiment with one experimental condition and
one control condition, we would like the EES to be +1 or -1
for cells that are most likely to arise in the experimental or
control condition, respectively, and 0 for cells equally likely
to arise in either condition.

To derive this score, we start with the condition from which
each cell is sampled and use this to define a Raw Experimen-
tal Signal (RES). In our simple two-sample example, the RES
would be defined as -1 for cells from the control condition
and +1 for cells in the experimental condition. However, due
to the technical and biological challenges listed above, the
RES is not a perfect measure of likelihood that a cell would
be observed in one condition or another. We would like to
derive a similar likelihood for transcriptionally similar cells,
but cells that are adjacent on the cell similarity graph may
have different RES values. The RES provides useful infor-
mation about the experiment, but we would like to remove
noise from the signal.

To derive a score of prototypicality from this raw signal,
we developed MELD (Manifold Enhancement of Latent Di-
mensions). MELD low-pass filters or smooths the RES on the
cell state graph and converts the categorical RES into contin-
uous values which, for our simple case, vary smoothly be-
tween -1 and 1. These values represent the ideal EES we
described above.

We show in the following sections that this framework of
treating the experimental label as a graph signal and then fil-
tering this signal has many useful properties for analysis of
experimental conditions in scRNA-seq. First, it can be used
as a measure of transcriptional response to a perturbation on
a cell-by-cell basis. Second, it can be used to identify gene
signatures of a perturbation by examining gene trends with
the EES. Finally, we leverage this framework to develop a
clustering algorithm that identifies populations of cells that
are transcriptionally similar and exhibit uniform response to
a perturbation. To demonstrate these advantages, we apply
MELD to a variety of biological data sets, including T-cell
receptor stimulation, mutations in the developing zebrafish
embryo, undirected differentiation of human embryonic stem
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cells, and a newly generated data set of interferon-gamma
stimulation in human pancreatic islets. In each case, we
demonstrate the ability of MELD to identify trends across ex-
perimental conditions, and identify instances where MELD
improves over standard analytic techniques.

2 Results

2.1 Overview of MELD algorithm

The goal of the MELD algorithm is to use a manifold model
of cellular states across experimental conditions to learn an
Enhanced Experimental Signal (EES) that quantifies how
prototypical each cell is of each experimental condition. This
can be loosely thought of as the likelihood a given cell state
was observed in each experiment. This is a challenging
problem as scRNA-seq measurements produce data sets with
roughly 20,000-30,000 gene measurements in tens of thou-
sands of cells. However, the space of biologically possible
cellular states is much smaller than the space of all possible
combinations of gene expression. Hence, the set of possible
gene expression states represent a small section of the am-
bient space. To learn this cellular space from the single cell
gene expression profiles, we use the manifold assumption21

to construct a simplified data model: a graph that preserves
the salient features of the original data set. We then deduce
the EES in a controlled way over this graph.

The MELD algorithm computes the EES using the follow-
ing steps:

1. A graph is constructed over the single cell data set where
the nodes are cells and edges exist between cells that
have similar transcriptional profiles.

2. The experimental label of each cell, which indicates the
sample origin of the cell, is modeled over the cell sim-
ilarity graph as a discrete signal that we call the Raw
Experimental Signal (RES).

3. MELD filters biological and technical noise from the
RES to infer the EES, which reflects how prototypical
each cell is of each condition.

4. The EES is used to identify cell populations that are pro-
totypical of each condition and to infer gene trends of
the experimental perturbation.

The first step of the MELD algorithm is to create a cell sim-
ilarity graph. There are many ways to construct such a graph;
MELD is agnostic to the specific construction used. By de-
fault, MELD constructs a graph with edge weights between
cells calculated as similarity*using a variant of the radial ba-
sis kernel called the α-decay kernel, first proposed by Moon
et al. 15 . This can be interpreted as a smooth k-Nearest Neigh-
bors (kNN) kernel. However, in cases where batch normal-
ization is required, we first apply a variant of Mutual Nearest
Neighbors (MNN) to merge the data sets1.

Next, MELD uses the input experimental label to create
the RES on the graph. For simple two-sample experimental
cases, cells from the control condition are assigned a value
of -1 and cells from the experimental signal are assigned +1
(Fig. 1a). For more complex cases, such as in a time course
or a series of drug titrations, the raw signal can be defined
ordinally as the stage or timepoint of collection or dosage of
a drug. Alternatively, the RES can be defined as a multi-
dimensional signal e.g. when representing treatment with
multiple different drugs.

Although the RES contains useful information, it is also
noisy because of variability in the experimental treatment,
biological heterogenity, and inefficent mRNA capture from
single cells. Cells with matching transcriptional profiles (i.e.
neighbors in a cell similarity graph) are assumed to be in the
same cellular state and thus are assummed to be affected sim-
ilarly to the experimental perturbation (stimulation for exam-
ple). However, neighboring cells often have different RES
values. Thus, one type of noise in the RES is rapid fluctu-
ation in values between cells that are proximal on the graph
(Fig. 1a). This is also referred to as high frequency noise.

The analysis of a signal’s frequency composition relies
on the Fourier transform, a fundamental tool of signal pro-
cessing. In classical signal processing, which focuses on
regularly-structured data like audio or video, the Fourier
Transform decomposes signals into a weighted sum of sines
and cosines of varying periodicity. These sums are called
Fourier bases, and they are useful because such bases can be
used to reversibly decompose many functions. Once decom-
posed, it is possible to analyze and manipulate the frequency
composition of signals. However, in contrast to the classical
setting where signals are defined over a regularly structured
space, such as time, the RES is defined over an graph, which

*Here, similarity is a mathematical measure that can be thought of as
the inverse of a distance metric. Hence, as the distance between two cells
increases, their similarity decreases.
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Figure 1: Overview of the MELD algorithm. (a) MELD quantifies the
effect of an experimental perturbation by denoising the Raw Experimental
Signal (RES) on the cell state graph to learn the Enhanced Experimental
Signal (EES). (b) The Windowed Graph Fourier Transform and EES val-
ues at four example points shows distinct patterns between a transitional
(blue) and unaffected (red) cell. This information is used for Vertex Fre-
quency Clustering. (c) Ordering cells by the EES reveals gene expression
changes of the experimental condition. (d) Examining the distribution of
EES scores in vertex-frequency clusters identifies cell populations most
affected by a perturbation.

can be irregular. This irregularity means that the classical
Fourier transform cannot be used to analyze the RES or any
other graph signals. To analyze the frequency content of sig-
nals defined over irregular data, such as the RES, we turn to
the graph Fourier transform.

The graph Fourier transform is constructed via direct anal-
ogy to the classical Fourier transform20. On a cell similarity
graph, the graph Fourier transform may be used to analyze
the frequency content of the RES in terms of a weighted sum
of the eigenvectors of the graph Laplacian, L. These vec-
tors, referred to as the graph Fourier basis, encode global

trends in variation analogously to the periodic sine and co-
sine functions in the classical Fourier transform. We thus
refer to an eigenvector as a graph frequency or harmonic,
and the relative fluctuation or frequency of each eigenvec-
tor is described by its corresponding eigenvalue. In the graph
Fourier transform of the RES, the weight (or Fourier coeffi-
cient) associated with each frequency describes the contribu-
tion of that eigenvector to the overall RES behavior. For ex-
ample, rapid fluctuations across neighboring cells in the RES
are represented by large magnitude Fourier coefficients for
high frequency eigenvectors. These concepts are explained
more thoroughly in Section 4.2, but the key notion here is
that the graph Fourier transform provides information about
the frequency composition of graph signals, such as the RES.

One assumption for recovering an EES is that it must be
smooth (Fig. 1b). As before, this assumption regards high
frequency Fourier coefficients as noise. Low frequency com-
ponents are assumed to be the underlying signal trends (i.e.
gradual changes from a node to its neighbors)22. Under
this assumption, a low-pass filter, which removes high fre-
quency components from a signal according to some cutoff
frequency, is used to recover a latent signal. Here, we use la-
tent to describe the underlying biological process(es) chang-
ing across experimental conditions. For example, in an exper-
iment where T cells are treated with anti-CD3/CD28 beads,
the latent signal corresponds to the level of activation of each
cell.

One such low-pass filter that has seen success in the
machine learning literature is Laplacian regularization23–31.
This strategy, is expressed as the optimization

y = argmin
z
‖x− z‖22︸ ︷︷ ︸

a

+βzTLz︸ ︷︷ ︸
b

, (1)

Here, the regularization acts as a low-pass filter for input
graph signals x. The optimization over the variable z is
broken into two parts: (a) reconstruction, calculated as the
euclidean distance between x and z; and (b) a Laplacian
quadratic form that calculates the smoothness of z using the
graph Laplacian L. The quadratic form of the Laplacian is
the canonical measure of signal smoothness on a graph. This
property is made explicit by its equivalence with the total
variation

βzTLz = β
∑
i,j

Wij(z(i)− z(j))2. (2)

The relation (2) illustrates the interpretation of the filter
defined over the vertices, or nodes, of the graph, called the
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vertex domain. This is an alternative representation to the
signal defined over eigenvectors of the Laplacian, called the
spectral domain. In the vertex domain, signal values at cell
i and cell j are compared and weighted by the strength of
the corresponding cells’ connection on the graph (given by
the weight matrix entry Wij). To minimize this quantity, one
must make y(i) − y(j) small for points that are connected
(i.e. Wij > 0).

The Laplacian quadratic form emits a second interpretation
as the norm of the graph gradient,

βzTLz = β‖∇Gz‖22 . (3)

This interpretation reveals that the Laplacian regularization
(1) is merely a minimization of the graph gradient, which
is a first order derivative from point to point. For a given
cell i, ∇G yields a value for each of its neighbors that corre-
sponds to the difference between cell i and its adjacent cells.
The squared norm of this, ‖∇Gz‖22, seeks to minimize the
total energy in the derivative. Thus, when the derivative is
small, i.e. changes between cells are small, then this term is
small. These interpretations of the Laplacian regularization
give vertex intuitions for the frequency behavior of (1).

However, low-pass filters are not a panacea. Indeed, low
frequency noise (such as background noise) is common and
will be exacerbated by low-pass filtering. In Fig. S2a, we
illustrate such an example by blindly separating a medium
frequency signal from a low frequency signal. Such a tech-
nique could be used to analyze both signals in a denoised
setting if they originate from experimental design. On the
other hand, basal processes like cell cycle can lead to low-
frequency noise32, thus this technique could be used to iso-
late a medium frequency signal from both high and low fre-
quency corruption. In MELD we propose a new class of
graph filters that is adaptable to graph and signal noise con-
text, given by the following equation:

y = argmin
z
‖x− z‖22 + zTL∗z (4)

where L∗ = [βL − αI]ρ .

To interpret this optimization, note that x corresponds to an
input RES, y is an EES, L is a graph Laplacian, I is the iden-
tity matrix, and each of α, β, and ρ are parameters that con-
trol the spectral translation, reconstruction penalty, and filter
order. These problems are typically solved by starting with
ŷ = x. In contrast to previous works using Laplacian filters,
these parameters allow analysis of signals that are contami-
nated by noise across the frequency spectrum. We address

each of these in more detail in Section 4.3, where we ana-
lyze parameter choices in the spectral domain (see Fig. S2).
Finally, we note that for the low-pass filter given by α = 0
and ρ = 1, L∗ = [βL − αI]ρ = βL. Thus, the canonical
Laplacian regularization (1) is a subfilter of the MELD opti-
mization (4).

Regardless of parameter selection for Equation 4, MELD
proceeds by supplying the RES as x to obtain the EES y. The
optimization in equation (4) may be solved in many ways;
if many RES are to be examined, MELD solves the problem
in terms of a matrix inversion which makes subsequent fil-
ters easy to apply. On the other hand, if only one signal is
to be examined, MELD considers the corresponding spectral
representation (see 4.2.2), and uses a Chebyshev polynomial
approximation to quickly obtain the EES. With the EES, it
is now possible to address a common problems in single-cell
analysis, such as quantifying the effect on an experimental
perturbation on gene expression.

2.2 The EES improves inference of perturbation
effects on gene expression

Commonly, a researcher wants to know how gene expres-
sion changes between two experimental conditions or wants
to identify a gene expression signature of a given process.
When using the RES (i.e. directly comparing gene expres-
sion between samples), the data is organized categorically.
This limits analysis to calculating summary statistics such as
mean or variance of gene expression within each category.
Furthermore, it is impossible to identify non-linear or non-
monotonic changes in gene expression between two samples.
One major advantage of applying MELD for analysis of ex-
perimental perturbations in scRNA-seq is that the EES is a
quantitative vector that varies continuously and interpolates
between the two discrete conditions. The cells that are most
prototypical of each condition have the most extreme EES
values and cells equally likely to be observed in either con-
dition occupy the middle of the spectrum. The continuous
nature of the EES makes it possible to order cells by EES
values and identify continuous changes in gene expression
between the most extreme cell states (Fig. 1c).

The EES effectively increases the resolution of the exper-
imental data and enables the recovery of complex non-linear
and non-monotonic trends in gene expression with the ex-
perimental condition. Even if only two conditions (such as
an experiment and control) are measured, MELD can infer
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which cells exhibit a weak or intermediate response to an ex-
periment. This increased resolution provides the power to
regress complex non-linear trends in expression relative to
the EES. We demonstrate this on simulated data using only
two samples (Fig. S3). In this simulated experiment we gen-
erate high-dimensional data emulating a biological transition
between two terminal cell states through an intermediate tran-
sitional population. One of the genes in this simulation has
peak expression in the intermediate cell state, but low ex-
pression in the terminal states. We show that directly com-
paring expression of this gene between samples using the
RES would find no difference between samples. However
the MELD-inferred EES reveals the true pattern of gene ex-
pression (Fig. S3h).

Beyond examining trends of single genes, one often wants
to know which genes are the most strongly affected by an
experimental perturbation. These strongly affected genes are
often called the gene signature of an experiment. However,
due to technical and biological noise in the experiment, sim-
ply calculating fold-change in expression between conditions
often fails to recover capture meaningful changes in gene ex-
pression. A key advantage of the EES is that it provides a
continuous measure of the experimental signal, which makes
it possible to identify gene signatures by ranking genes by
their statistical association with the EES (Fig. 1c). We pre-
viously developed kNN-DREMI (k-Nearest Neighbors con-
ditional Density Resampled Estimate of Mutual Informa-
tion)33,34 to quantify such trends in scRNA-seq. To charac-
terize signatures of an experiment, we can calculate the kNN-
DREMI on all genes against the EES and rank them by their
scores. For example, in Section 2.4, we use this approach to
identify the gene signature of T cell activation and show that
this signature is enriched for genes known to play a role in
activation. It is also possible to quantify changes in expres-
sion by calculating fold-change only between the cells that
are most prototypical of each condition. In Section 2.5, we
take this approach to calculate fold-change in expression be-
tween cells with the top and bottom 20% of EES values and
reveal specific responses within zebrafish cell types to Cas9
mutagenesis of chordin. We anticipate that using the EES
to quantify gene signatures of an experiment will be a major
use-case for MELD.

2.3 Vertex-frequency clustering identifies patterns
of heterogeneity in high dimensional data

Another common goal for analysis of experimental scRNA-
seq data is to identify subpopulations of cells that are respon-
sive to the experimental treatment. Existing methods clus-
ter cells by transcriptome alone and then attempt to quantify
the degree to which these clusters are differentially repre-
sented in the two conditions. However, this is problematic
because the granularity, or sizes, of these clusters may not
correspond to the sizes of the cell populations that respond
similarly to experimental treatment. Conveniently, GSP of-
fers an approach to identifying clusters in scRNA-seq data
sets that are transcriptionally similar and respond similarly to
an experimental perturbation.

A naive approach to identify such clusters would be to
simply concatenate the EES to the gene expression data as
an additional feature and cluster on these combined features.
However, we show that this would not correctly identify
subpopulations with respect to their experimental response.
Supplemental Figure S4 provides a simulated case for this,
generated using a Gaussian mixture model which separates
two cell types along Dim 2 based on their responsiveness
to a treatment on Dim 1. Traditional analysis may identify
two clusters (based on the binary RES); alternatively, clus-
tering based on k-means (Fig. S4a) and spectral clustering
(Fig. S4b) revealed 4 clusters, and Louvain (Fig. S4c) re-
turned 5 clusters. Each of these clusterings identify the pure
populations resulting from the reservoirs of prototypical cells
in condition 1 and condition 2 (which progress along Dim 1),
but each fails to treat the non responsive population appropri-
ately, breaking it into two or three pieces.

This inability to separate unaffected and transitioning cells
has two fundamental causes. First, if one considers the cell
similarity graph alone, the transitioning population of our
simulation appears as a smearing of the two pure circles; k-
means and methods that assume circular structure will thus
partition the transition as parts of the reservoirs. Second, if
one considers the EES, the purely mixed population has a
similar value (0) as the transitioning population. Because of
this, the two populations get clustered together.

However, we conjecture that in this example there are 4
meaningful clusters: two each given by the pure cells from
condition 1 and 2, one that is a partition of the purely mixed
cells (along Dim 2), and the final cluster is the transitioning
population between the two pure reservoirs. While this is
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merely an illustrative example, our biological analysis will
show that analogous situations occur in real experiments.

As no contemporary method is suitable for finding this
transitioning structure, we developed a method that uses the
graph Fourier domain to cluster cells based on their latent ge-
ometry as well as their behavior under the EES (S4d). In par-
ticular, we cluster using local frequency profiles of the RES
around each cell. This paradigm is motivated by the utility
of analyzing cells based on different classes of heterogene-
ity. This method, which we call vertex-frequency clustering,
is an adaptation of the signal-biased spectral clustering pro-
posed by Shuman et al. 35 .

Briefly, the method considers sums of many scales of spec-
trograms generated from the RES. Each spectrogram is ob-
tained by translating a window function that considers neigh-
bors of a specific scale support at each vertex, then taking
the resulting Fourier transform of that windowed signal. The
result of this operation is a vertex-frequency analysis matrix
that is N -cells by N -frequencies. Each scale is then acti-
vated using a nonlinear transformation and summed with its
previous activated scales. Finally, the summation is concate-
nated with the EES vector, and k-means is used to cluster the
cells based on their multiscale vertex-frequency characteris-
tics. Vertex-frequency clustering separates the value in the
EES from its spectral characteristics and allows one to con-
sider both the local spectra as well as the signal value. By
considering both vertex and frequency information, one may
distinguish between populations which are purely heteroge-
neous and populations which are in transition.

The algorithm briefly proposed above is discussed in fur-
ther detail in methods Section 4.4. In particular, we detail
a fast implementation using the recently proposed fast graph
Fourier transform36 and the diffusion operator. In the fol-
lowing sections, we demonstrate MELD filtering and vertex-
frequency clustering on biological data.

2.4 MELD identifies a biologically relevant signa-
ture of T cell activation

To demonstrate the ability of MELD to identify a biologi-
cally relevant EES, we applied the algorithm to 5740 Jurkat
T cells cultured for 10 days with and without anti-CD3/anti-
CD28 antibodies published by Datlinger et al. 11 (Fig. 2a).
The goal of the experiment was to characterize the transcrip-
tional signature of T cell Receptor (TCR) activation. We se-
lected this data because it relatively simple: the experiment

profiles a single cell type, yet exhibits a heterogeneous con-
tinuum of experimental responses. We visualized the data us-
ing PHATE, a visualization and dimensionality reduction tool
we developed for single-cell RNA-seq data (Fig. 2b)15. We
observed a large degree of overlap in cell states between the
experimental and control conditions, as noted in the original
study11. This noise is both technical and biological. Approx-
imately 76% of the cells were transfected with gRNAs target-
ing proteins in the TCR pathway, leading to some cells in the
stimulated condition lacking key effectors of activation. The
expectation for these cells is to appear transcriptionally unac-
tivated despite originating from the stimulated experimental
condition. In other words, although the RES for these cells
is +1 (originating from the stimulated condition), the EES of
these cells is expected to be closer to -1 (prototypical of the
unstimulated condition).

To obtain a signature of T cell activation, Datlinger et al. 11

devised an ad hoc iterative clustering approach whereby cells
were first clustered by the gRNA observed in that cell and
then further clustered by the gene targeted. In each clus-
ter, the median gene expression was calculated and the first
principle component was used as the dimension of activation.
The 165 genes with the highest component loadings were de-
fined as signature genes and used to judge the level of acti-
vation in each cell. We reasoned that MELD would be able
to identify an EES of TCR activation at single cell resolution
without relying on clustering or access to information about
the gRNA observed in each cell.

Applying MELD to the data, we observe a continuous
spectrum of scores across the data set (Fig. 2b). As expected,
the regions enriched for cells from the stimulated condition
have higher EES values representing highly activated cells,
and the converse is true for regions enriched for unstimulated
cells. To ensure that the EES represents a biologically rele-
vant dimension of activation, we looked for genes with a high
mutual information with the EES using kNN-DREMI16. To
facilitate comparison with the results of Datlinger et al. 11 , we
used EnrichR37 to perform gene set enrichment analysis on
the 165 genes with the top kNN-DREMI scores (Fig. 2c,e).
We found comparable enrichment for gene sets related to
T cell activation, T cell differentiation, and TCR response
(Fig. 2d) and identify an overlap of 53 genes between the
MELD-inferred and published signatures. We find that in the
GO sets of T cell activation, T cell differentiation, and T cell
receptor signalling, the MELD signatures includes as many
or more genes for each GO term. Furthermore, our signa-
ture includes genes known to be affected by TCR stimulation
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Figure 2: MELD recovers signature of TCR activation. (a) Jurkat T-cells were stimulated with α-CD3/CD28 coated beads for 10 days before collection
for scRNA-seq. (b) Examining a PHATE plot, there is a large degree of overlap in cell state between experimental conditions. However, after MELD
it is clear which cells states are prototypical of each experimental condition. (c) Relationship between gene expression and TCR activation state is
revealed when cells are ordered by the EES instead of grouped by experimental condition. (d) Signature genes identified by top 1% of kNN-DREMI
scores are enriched for annotations related to TCR activation. (e) Z-scored expression of select signature genes ordered by the EES reveals patterns
of up- and downregulation. Notice a subset of genes exhibit non-monotonic expression patterns, such as USP14 and NSRP1. Identifying such trends
would be impossible without MELD.

but not present in the Datlinger et al. 11 signature list, such as
down regulation of RAG1 and RAG238. These results show
that MELD is capable of identifying a biologically relevant
dimension of T cell activation at the resolution of single cells.

2.5 Characterizing genetic loss-of-function muta-
tions in the developing zebrafish

To demonstrate the utility of GSP in the analysis of com-
plex data sets composed of multiple cell types, we applied
MELD to a recently published chordin loss-of-function ex-
periment in zebrafish using CRISPR/Cas9 (Fig. 3)12. In this
system, loss of chordin function results in a ventralization
phenotype characterized by expansion of the ventral meso-
dermal tissues at the expense of the dorsally-derived neural
tissues39–41. In Wagner et al. 12 , zebrafish embryos were in-
jected at the 1-cell stage with Cas9 and gRNAs targeting ei-
ther chordin (chd), a BMP-antagonist required for develop-
mental patterning, or tyrosinase (tyr), a control gene required
for pigmentation but not expected to affect cell composition
at these stages. Embryos were collected for scRNA-seq at

14-16 hours-post-fertilization (hpf). Similar to the T cell data
set above, we expect incomplete penetrance of the perturba-
tion in this data set because not all cells in the experimental
condition will share the same mutation.

To characterize the effect of chordin mutagenesis, Wag-
ner et al. 12 projected cells from each sample onto 28 clusters
obtained from a reference wild-type data set. Within each
cluster, the fold-change of cells from the tyr-injected to chd-
injected condition was calculated and MAST4 was used to
calculate differentially expressed genes. A drawback of this
approach is the restriction of analysis of the experimental ef-
fect to clusters, instead of single cells. This means that there
is no way to detect divergent responses across subpopulations
within clusters. Here, we demonstrate the ability of MELD to
detect such occurrences and show how VF clustering detects
groups of cells with similar responses to an experimental per-
turbation.

First, we used MELD to derive an EES of response to
chordin loss-of-function. Here, cells with high EES val-
ues correspond to cells prototypical of the chd samples and
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low EES values correspond to cells prototypical of the tyr
samples (Fig. 3a). To identify the effect of mutagenesis on
various cell populations, we first examined the distribution
of EES scores across the 28 cell state clusters generated by
Wagner et al. 12 for this data set (Fig. 3b). As expected, we
found that Mesoderm – Lateral Plate (MLP), Tailbud – Pre-
somitic Mesoderm (TPM), Hatching Gland (HG), and Meso-
derm – Blood Island (MBI) had the highest average EES val-
ues, matching the observed expansion of the mesoderm and
blood tissues in the embryos injected with chd gRNAs12. The
cells with the lowest EES values were the Optic Primordium
(OP), Differentiating Neurons (DN), Neural – Diencephalon
(NDI), and Notochord (NTC). This is interpreted as finding
these tissues in a tyr embryo, but not in a chd embryo, match-
ing observed deficiencies of these tissues in the absence of
chordin39–41. These results confirm that MELD is able to
identify the effect of experimental perturbations across many
cell types.

2.6 VF clustering identifies subpopulations in the
Tailbud - Presomitic Mesoderm cluster

An advantage of using MELD is the ability to examine the
distribution of scores within a cluster to understand the range
of responses. In analyzing the chordin loss-of-function ex-
periment, we observed that the Tailbud – Presomitic Meso-
derm (TPM) cluster exhibited the largest range of EES val-
ues. This large range suggests that there are cells in this clus-
ter with many different responses to chd mutatgenesis. To
investigate this effect further, we generated a PHATE plot of
the cluster (Fig. 3c). In this visualization, we observed many
different branches of cell states each with varying ranges of
MELD scores. We used vertex-frequency clustering to iden-
tify clusters of cells that are transcriptionally similar and ex-
hibit a homogeneous response to perturbation (Fig. 3d).

We identified four subclusters within the PSM cluster. Us-
ing established markers13, we identified these clusters as im-
mature adaxial cells, mature adaxial cells, the presomitic
mesoderm, and forming somites (Fig. 3c, S5). Examining the

†Abbreviations: MLP: Lateral plate, TPM: Tailbud - Presomitic meso-
derm, HG: Hatching gland, MBI: Blood island, EPP: Epidermal - pfn1,
MEN: Endothelial, PRD: Periderm, EPA: Epidermal anterior, EPO: Otic
placode, LLP: Lateral line, EPF: Epidermal - foxi3a, GL: Germline, NRB:
Rohon beard, NFP: Floorplate, MHF: Heart field, MPA: Pharyngeal arch,
NCC: Neural crest - crestin, END: Endoderm, TSC: Tailbud - spinal cord,
NC: Neural crest, NTE: Telencephalon, MPD: Pronephric duct, NHB:
Hindbrain, NMB: Midbrain, NTC: Notocord, NDI: Diencephalon, DN:
Neurons, OP: Optic

Figure 3: Characterizing chordin Cas9 mutagenesis with MELD. (a)
PHATE shows a high degree of overlap of sample labels across cell types.
Applying MELD to the mutagenesis vector reveals regions of cell states
enriched in the chd or tyr conditions. (b) Using published cluster assign-
ments†, we show that the EES quantifies the effect of the experimental per-
turbation on each cell, providing more information than calculating fold-
change in the number of cells between conditions in each cluster (grey
dot), as was done in the published analysis. Color of each point corre-
sponds to the sample labels in panel (a). Generally, average EES value
aligns with the fold-change metric. However, we can identify clusters,
such as the TPM or TSC, with large ranges of EES values indicating non-
uniform response to the perturbation. (c) Visualizing the TPM cluster us-
ing PHATE, we observe several cell states with mostly non-overlapping
EES values. (d) Vertex Frequency Clustering identifies four cell types in
the TPM. (e) We see the range of EES values in the TPM cluster is due
to subpopulations with divergent responses to the chd perturbation. (f)
Changes in gene expression within subclusters is lost when only consider-
ing the full cluster, as was done in the published analysis.

distribution of EES scores within each cell type, we conclude
that the large range of EES values within the TPM cluster is
due to largely non-overlapping distributions of scores within
each of these subpopulations (Fig. 3e). The mature and im-
mature adaxial cells, which are muscle precursors, have low
EES values. This indicates depletion of these cells in the chd
condition which matches observed depletion of myotomal
cells in chordin mutants39. Conversely, the presomitic meso-
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derm and forming somites have high EES values, indicat-
ing that these cells are prototypically enriched in a chordin
mutant. Indeed, expansion of these presomitic tissues is ob-
served in siblings of the chd embryos12.

Another advantage of vertex-frequency clustering is that
we can now calculate differential expression of genes within
these populations of cells that we infer have homogeneous
responses to a perturbation. Examining the distribution of
genes within each of the identified subclusters, we find differ-
ent trends in expression within each group (Fig. 3f). For ex-
ample, Myod1, a marker of adaxial cells, is lowly expressed
in the presomitic mesoderm and in the somites, but highly ex-
pressed in the adaxial cells. Attempting to compare the differ-
ence in expression of this gene in the entire cluster would be
obfuscated by differences in abundance of each cell subpop-
ulation between samples. We find a similar trend with Tbx6,
a marker of the presomitic mesoderm, which is not expressed
in adaxial cells and mature somites (Fig. 3f). Note that if we
had merely compared the fold-change in abundance in the
chd vs tyr conditions, as was done in the published analy-
sis, we would have completely missed this effect and instead
only observed that there is a 2-fold change in abundance of
this cluster between samples. These results demonstrate the
advantage of using MELD and vertex frequency clustering to
quantify the effect of genetic loss-of-function perturbations
in a complex system with many cell types.

2.7 MELD identifies a dimension corresponding to
latent developmental time

Next, we applied MELD to enhance the experimental sig-
nals of time course data. Because it is not currently possible
to measure the whole transcriptome of single cells continu-
ously through development, several strategies exist to deter-
mine putative orderings of cells from snapshots of gene ex-
pression. This ordering is often called pseudotime. However,
most existing methods learn pseudotime by identifying a tra-
jectory through the data, then ordering cells along the trajec-
tory43–47. Indeed, MELD does not attempt to learn a trajec-
tory or set of trajectories through the data. MELD is agnostic
to the number of beginning or end points or branches or even
the existence of trajectory structures in the data. Instead, the
goal of learning the EES in time courses is simply to infer an
ordering of cells by latent developmental time. These order-
ings are useful for understanding how gene expression or cell
type composition changes over time.

Figure 4: MELD captures latent developmental time. (a) PHATE visu-
alization of a 27-day time course of human stem cells grown as embryoid
bodies (EBs) colored by time of sample collection (left) or the EES (right).
(b) Ordering cells by the EES reveals temporal trends in gene expression
that are not apparent in the raw gene expression or after MAGIC 16. (c)
Examining expression of marker genes for various stem and progenitor
populations, we observe a concordance between the EES values and ex-
perimental days (i.e. expression of POU5F1 in cells with EES values of
0-10 matches observed expression of this gene from 0-10 days of EB cul-
ture 42.)

To determine the efficacy of MELD to identify a biologi-
cally accurate temporal ordering of cells, we applied MELD
to 16,825 cells captured over a 27-day time course of human
embryonic stem cell differentiation as embryoid bodies (EBs,
Fig. 4)15. Here, the EES corresponds to the latent develop-
mental time scaled between 0 and 27, the time period of the
experiment in days. To test if these EES time values rep-
resent a biologically relevant ordering of cells, we imputed
gene expression using MAGIC16 and examined the trends of
marker genes with the EES (Fig. 4b). We found that the or-
dering of gene expression during EB differentiation for in-
dividual genes matches previously reported expression pat-
terns. In fact, we find that the EES values matches real time
for expression of many genes. For example, we observed
POU5F1/OCT4 expression in cells with EES values between
0 and 12 days matching reported expression of this gene in
human EBs for at least 10 days (Fig. 4b)42. Additionally, the
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expression of NC markers like SOX10 and FOXD3 has been
described in EBs starting at 10 days, matching observed up-
regulation of these genes in cells with EES values between
10 and 2242. Furthermore, using the EES we observed the
patterning of the mesendoderm and subsequent cardiac pro-
genitors with mesendoderm markers such as FOXA2 expres-
sion between EES days 6-18 in a subset of cells (data not
shown) followed by peak expression of caridac progenitor
marker HAND2 between EES days 18-20 (Fig. 4c). These
results demonstrate the utility of MELD for the inference of
latent developmental time.

2.8 Identifying the effect of IFNγ stimulation on
pancreatic islet cells

Next we used MELD to characterize previously unknown bi-
ology in a newly generated data set of pancreatic islet cells
grown in culture for 24 hours with and without interferon-
gamma (IFNγ). We chose this system because of its rele-
vance to auto-immune diseases of the pancreas such as Type
I Diabetes mellitus (T1D). The pathogenesis of T1D is gener-
ally understood to be caused by T cell mediated destruction of
beta cells in the pancreatic islets48 and previous reports sug-
gest that islet-infiltrating T cells secrete IFNγ during the on-
set of T1D49. It has also been described that IFNγ-expressing
T cells mediate rejection of pancreatic islet allografts50. Pre-
vious studies have characterized the effect of these cytokines
on pancreatic beta-cells using bulk RNA-sequencing51, but
no studies have addressed this system at single cell resolu-
tion.

To better understand the effect of immune cytokines on
islet cells, we cultured islet cells from three donors for 24
hours with and without IFNγ and collected cells for scRNA-
seq. After filtering, we retained 5,708 cells for further analy-
sis. Examining the expression of marker genes for major cell
types of the pancreas, we observed a noticeable batch effect
associated with the donor, driven by the maximum expres-
sion of glucagon, insulin, and somatostatin in alpha, beta, and
delta cells respectively (Fig. S6a). To correct for this differ-
ence while preserving the relevant differences between sam-
ples, we applied the MNN kernel described in Section 4.1.1
to merge cells from each donor. Examining PHATE plots af-
ter batch correction, we observed three distinct populations of
cells corresponding to alpha, beta, and delta cells (Fig. 5a).

To quantify the effect of IFNγ treatment across these cell
types, we first applied MELD to the RES of IFNγ treatment

Figure 5: MELD characterizes the response to IFNγ in pancreatic islet
cells. (a) PHATE visualization of pancreatic islet cells cultured for 24
hours with or without IFNγ. Vertex-frequency clustering identifies nine
clusters corresponding to alpha, beta, and delta cells. (b) Examining the
EES in each cluster, we observe that beta cells have a wider range of re-
sponses than alpha or delta cells. (c) We identify the signature of IFNγ
stimulation by calculating kNN-DREMI scores of each gene with the EES.
We find a high degree of overlap of the top 1% of genes by kNN-DREMI
score between alpha and beta cells. (d) Examining the four beta cell clus-
ters more closely, we observe two populations with intermediate EES val-
ues. These populations are differentiated by the structure of the RES in
each cluster (outset). In the non-responsive cluster, the RES has very high
frequency unlike the low frequency pattern in the transitional Responsive
- mid cluster. (e) We find that the non-responsive cluster has low expres-
sion of IFNγ-regulated genes such as STAT1 despite containing roughly
equal numbers of unstimulated (n=123) and stimulated cells (n=146). This
cluster is marked by approximately 2.5-fold higher expression of insulin.

to calculate the EES of IFNγ stimulation(Fig. 5a). We then
applied vertex-frequency clustering to identify nine subpop-
ulations of cells. Using established marker genes of islet
cells52, we determined that these clusters correspond to al-
pha, beta, and delta cells (Fig. 5a,b, Fig. S6b). First, we
sought to characterize the gene expression signature of IFNγ
treatment across these cell types. Using kNN-DREMI16 to
identify genes with a strong association with the EES, we
observe strong activation of genes in the JAK-STAT pathway
including STAT1 and IRF153 and in the IFN-mediated antivi-
ral response including MX1, OAS3, ISG20, and RSAD254–56

(Fig. 5c). The activation of both of these pathways has been
previously reported in beta cells in response to IFNγ 57,58.
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Furthermore, we observe a high degree of overlap in the IFNγ
response between alpha and beta cells, but less between delta
cells and either alpha or beta cells. Examining the genes
with the top 1% of kNN-DREMI scores (n=196), we find 62
shared genes in the signatures of alpha and beta cells, but
only 22 shared by alpha, beta, and delta cells. To confirm the
validity of our gene signatures, we use EnrichR37 to perform
gene set enrichment analysis on the 196 signature genes and
find strong enrichment for terms associated with interferon
signalling pathways (Fig. S6c). From these results we con-
clude that although IFNγ leads to upregulation of the canon-
ical signalling pathways in all three cell types, the responses
to stimulation are subtly different between delta cells and al-
pha or beta cells.

We next examined the distribution of EES values within
each of the clusters identified by vertex-frequency clustering
(Fig. 5b). Interestingly, choosing k=9 clusters, we find two
clusters of beta cells with intermediate EES values. These
clusters are cleanly separated on the PHATE plot of all islet
cells (Fig. 5a) and together represent the largest range of EES
scores in the data set. To further inspect these clusters, we
generated a new PHATE plot of the cells in the four beta cell
clusters (Fig. 5d). Examining the distribution of RES values
in these intermediate cell types, we find that one cluster, that
we label as non-responsive, exhibits high frequency distri-
bution of RES values indicative of a population of cells that
does not respond to an experimental treatment (Fig. 5d - out-
set). The Responsive - mid cluster matches our characteriza-
tion of a transitional population with a structured distribution
of RES values. Supporting this characterization, we find a
lack of upregulation in IFNγ-regulated genes such as STAT1
in the non-responsive cluster, similar to the cluster of beta
cells with the lowest EES values Fig. 5e.

Seeking to understand the difference between the nonre-
sponsive beta cells and the responsive populations, we calcu-
lated the Wasserstein distance between expression of genes
in the non-responsive clusters and all others. The gene with
the greatest difference in expression was insulin, the marker
of beta cells, which was approximately 2.5-fold increased in
the non-responsive cells (Fig. 5e). This cluster of cells bears
resemblance to a recently described “extreme” population of
beta cells that exhibit elevated insulin mRNA levels and are
found to be more abundant in diabetic mice59. Given that
these cells appear non-responsive to IFNγ stimulation and
exhibit extreme expression of insulin suggests that the pres-
ence of abnormally high insulin in a beta cell prior to IFNγ
exposure inhibits the IFNγ response pathway through an un-

known mechanism. Confirming this hypothesis will require
further experimental validation.

Here, we applied MELD to a new data set to identify the
signature of IFNγ stimulation across alpha, beta, and delta
cells. Furthermore, we used vertex frequency clustering to
identify a population of beta cells with high insulin expres-
sion that appears unaffected by IFNγ stimulation. Together,
these results demonstrate the utility of MELD analysis to re-
veal novel biological insights in a clinically-relevant biologi-
cal experiment.

3 Discussion

When performing multiple scRNA-seq experiments in var-
ious experimental and control conditions, researchers often
seek to characterize the cell types or groups of genes that
change from one condition to another. However, quantifying
these differences is a challenging task due to the subtlety of
most biological effects relative to the biological and techni-
cal noise inherent to single cell data. To overcome this hur-
dle, we designed MELD to enhance the experimental signal
in scRNA-seq data sets and to characterize the differences
between samples.

MELD uses the framework of Graph Signal Processing to
learn a signal over a cell similarity graph that indicates how
prototypical that cell is of each experiment. In this context,
the similarity graph is built from the gene expression profiles
of all samples. Next, the label that indicates the sample origin
of each cell is defined as a signal over the graph. This signal
is called the Raw Experimental Signal (RES). MELD filters
this signal to remove biological and technical noise to infer
the Enhanced Experimental Signal (EES). The EES can be
used to identify individual cells that are the most prototypical
of each sample and the individual patterns in gene expres-
sion that are associated with these changes. The EES can
also be used to identify groups of cells that do not change be-
tween experimental conditions. Moreover, we demonstrate
that using the EES, it is possible to identify non-linear and
non-monotonic changes in gene expression that would be lost
through a direct comparison of expression between two sam-
ples. These benefits can be applied to arbitrary experimental
designs, as long as the categorical condition labels can be or-
dered on a number line (e.g. dosage of treatment, time of
collection, biological sex).

Existing strategies for quantifying the effect on an experi-
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mental perturbation generally focus on clustering cells based
on gene expression alone, then calculating statistics, such as
differential expression within clusters or fold-change in cells
from each cluster between samples4,7–13. However, we show
in Section 2.5 that this approach can fail to identify the di-
vergent responses of subpopulations of cells within a cluster.
To identify clusters of cells with cohesive responses to a per-
turbation, we introduce a novel clustering algorithm, called
vertex-frequency clustering. Using the raw and enhanced ex-
perimental signals, we derive clusters of cells that are tran-
scriptionally similar and exhibit uniform response to an ex-
perimental perturbation. We show that this strategy is capa-
ble of differentiating between groups of cells that exhibit in-
termediate responses to a perturbation and cells that are tran-
sitioning to a different state as a result of a perturbation.

We demonstrate the advantages of MELD analysis across
synthetic and biological data sets. When analyzing the effect
of T cell receptor stimulation, we derive a biological signa-
ture of T cell activation, and identify non-monotonic gene
trends that would be hidden by direct comparison of expres-
sion between conditions. Next, we use MELD to quantify the
effect of CRISPR/Cas9 mutagenesis in a single-cell experi-
ment in the zebrafish embryo. Here, we demonstrate that the
EES provides deeper insight into the effect of chordin loss-
of-function than the published analysis. We identify subpop-
ulations with the Tailbud – Presomitic Mesoderm cluster that
each have divergent responses to the mutation. We further
demonstrated the applicability of MELD to quantify latent
developmental time in a time course of stem cell differentia-
tion. Finally, we presented a new data set of pancreatic islet
cells with and without stimulation with interferon-gamma.
Here, we quantified the degree to which canonical islet al-
pha, beta, and delta cell populations respond to stimulation
and found the response more similar between alpha and beta
cells than delta. Furthermore, we identified a subpopulation
of beta cells marked by extremely high insulin expression that
appears to be unaffected by the experimental IFNγ stimulus.
Together, these results demonstrate the utility of MELD to
characterize diverse biological phenomenon. MELD analy-
sis is a powerful tool for quantifying scRNA-seq experiments
and generating new hypotheses from single-cell data sets.

The flexibility of MELD to analyze arbitrary signals over
a cell similarity graph suggest several future applications in
scRNA-seq analysis. For example, in Fig. S2 we demonstrate
the ability of MELD to extract convoluted signals of different
frequencies on a graph. These two signals might represent
cell cycle effect, experimental signal, and technical noise.

By tracking genes that vary with cell cycle, for example, we
could remove this trend from the experiment to improve the
identification of gene signatures of an experimental perturba-
tion. Another potential application of MELD is the compari-
son of multiple experimental meta-variables. One can imag-
ine an experiment where cells are exposed to combinations of
drugs in varying concentrations with the goal of understand-
ing how these combinations of drugs interact. By building
a unified cell similarity graph across conditions, one could
deconvolve the signals of each component of the treatment
and then calculate a measure of association, such as mutual
information, to identify which drugs elicit similar or diver-
gent effects alone or in combination. This flexibility makes
MELD an ideal analytical tool for scRNA-seq experiments
across biological systems.

4 Algorithm

Previous works have attempted to uncover a pseudotime di-
mension for single cell data using various methods for cell
ordering21,43,46,60. Others have attempted to denoise or visu-
alize data by diffusion15,16. A common theme amongst these
methods is the abstraction of single cell data into a similarity
graph, which encodes the relationships structure of cells in
an experiment. MELD builds upon this framework by using
the spectrum of the graph Laplacian to extract latent features
in single cell data.

4.1 Preliminaries and Graph Construction

A graph G = (V,E) is a mathematical abstraction consisting
of vertices vi ∈ V and edges (i, j) ∈ E : vi, vj ∈ V . Graphs
are a flexible tool for modelling structures irregular and reg-
ular; graphs can model structures from logic, mathematical
groups, and infinite geometries, to circuits, social networks,
and neuronal geometry. In MELD, we use weighted, undi-
rected graphs defined by choosing single cells as vertices.

On the weighted, undirected graphs that model single-cells
the edge set E is replaced by a symmetric weight matrix W .
The entry Wij encodes the weighted similarity between cell
vi and vj , determined by a comparison function between the
corresponding vectors xi and xj from the data set X . Many
choices have been suggested for determining Wij (e.g., Ma-
teos et al. 61). MELD can be run on graphs for any choice
of W , although graph geometry is vital to the algorithm. To
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construct a graph from input data we use an affinity kernel,
which encodes similarities or affinities between data points,
to determine edge weights. In most cases, we use an adap-
tive alpha-decaying kernel proposed by Moon et al. 15 for
this purpose. However, in cases where batch, density, and
technical artifacts confound graph construction, we also use
anisotropic and mutual nearest neighbor kernels. These con-
structions are discussed in further detail in section 4.1.1.

Finally, we introduce a few additional key graph concepts
used in MELD. First, D is the degree matrix. This matrix
contains the total connectivity of every node as described by
the degree d(i) =

∑N
j Wij . D is a diagonal matrix, where

Dii is the degree d(i) of the vertex vi. From the degree we
define the graph Laplacian,

L := D −W. (5)

In MELD, we use the graph Laplacian to analyze and process
graph signals, which for a graph with N vertices are func-
tions that map from vertices to real values, i.e., f : V 7→ R.
By abuse of notation, we interchange this functional notion of
a signal with its discretized realization as an N -dimensional
vector f ∈ RN .

4.1.1 Kernel Selection

The graph construction at the core of MELD relies on a quan-
titative notion of neighborhoods in the data, which are en-
coded by a symmetric nonnegative kernel function k(x, y).
Such kernel functions are often used in manifold learning ap-
proaches (see Moon et al. 21 and references therein) to cap-
ture intrinsic data geometries that approximate underlying
manifold models from the data. A wide variety of kernels
have been proposed over the years for the task of formu-
lating appropriate kernels for capturing meaningful notions
of locality and data neighborhoods. We refer the readers
to Coifman and Lafon 62 , Coifman and Hirn 63 , Berry and
Sauer 64 , Bermanis et al. 65,66 , Marshall and Coifman 67 , Mar-
shall and Hirn 68 , Lindenbaum et al. 69 and Lindenbaum
et al. 70 for relevant examples and discussions.

In MELD, we mainly use the kernel proposed in Moon
et al. 15 , defined as

Kk,α(x,y)=
1
2
exp

(
−
(
‖x−y‖2
εk(x)

)α)
+ 1

2
exp

(
−
(
‖x−y‖2
εk(y)

)α)
, (6)

where x, y are data points, εk(x), εk(x) are the distance from
x, y to their k-th nearest neighbors (correspondingly), and

alpha is a parameter that controls the decay rate (i.e., local-
ity) of the kernel. This construction generalizes the popular
Gaussian kernel, which is typically used in manifold learn-
ing, but also has some disadvantages alleviated by the α-
decaying kernel, as explained in Moon et al. 15 .

While the kernel in (6) provides an effective way of captur-
ing neighborhood structure in data, it is susceptible to batch
effects. For example, when data is collected from multiple
patients, subjects, or environments (generally referred to as
“batches”), such batch effects can cause affinities within each
batch are often much higher than between batches, thus artifi-
cially creating separation between them rather than follow the
underlying biological state. To alleviate such effects, we ad-
just the kernel construction as follows when applied to multi-
batch data. First, within each batch, the affinities are com-
puted using (6). Then, across batches, we compute slightly
modified affinities as

K′k,α(x,y)=min

{
exp

(
−
(
‖x−y‖2
ε′
k
(x)

)α)
,exp

(
−
(
‖x−y‖2
ε′
k
(y)

)α)}
,

where ε′k(x) are now computed via the k-th nearest neigh-
bor of x in the batch containing y (and vice versa for ε′k(y)).
Next, a rescaling factor γxy is computed such that∑

z∈batch(y)

γxyK
′
k,α(x, z) ≤ β

∑
z∈batch(x)

Kk,α(x, z)

for every x and y, where β > 0 is a user configurable param-
eter. This factor gives rise to the rescaled kernel

K ′k,α,β(x, y) =

{
γxyK

′
k,α(x, y) if batch(x) = batch(y)

K ′k,α(x, y) otherwise.

Finally, the full kernel is then computed as

K ′k,α(x, y) = min
{
K ′k,α,β(x, y),K ′k,α,β(y, x)

}
,

and used to set the weight matrix for the constructed graph
over the data. Notice that this construction is a well defined
extension of (6), as it reduces back to that kernel when only
a single batch exists in the data.

4.2 Graph Signal Processing Background

The graph Laplacian eigensystem L = ΨΛΨ−1 with eigen-
values Λ := {0 = λ1 ≤ λ2 ≤ · · · ≤ λN} and correspond-
ing eigenvectors Ψ := {ψi}Ni=1 has been used with great
success in spectral clustering71, graph sparsification72, and
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dimensionality reduction73.‡ Recently, a number of works
in the emergent field of graph signal processing (GSP) have
shown that the Laplacian eigensystem is useful for analyzing,
manipulating, and inferring data that resides on a graph20.
Tools such as wavelet transforms74, windowed Fourier trans-
forms35, and uncertainty principles75 have been extended to
graphs via analogy with the classical Fourier transform and
eigenfunctions of the Laplacian. In MELD, we use graph
signal processing to infer and enhance latent dimensions in
scRNA-seq data. In the following sections, we provide an
introduction to this field.

4.2.1 Classical Fourier

To begin, the graph Laplacian L introduced above is a dis-
crete analog of the Laplace operator ∇2. For some contin-
uously differentiable real-valued function f ∈ Ck(RN ), the
Laplacian, ∇2f , is a scalar-valued function that yields a sum
of the unmixed second partial derivatives around a point §.
Recall from univariate Calculus that the second derivative
f ′′(x) for some function f : R 7→ R corresponds to the cur-
vature of f at the point x. The Laplacian is a multivariate
generalization of this notion, measuring the total curvature in
all directions around a point.

The Laplace operator is found throughout physics and
mathematics, where its uses include the heat equation, which
is used for modelling diffusion, heat flow, and brownian mo-
tion. Solving the heat equation served as the catalyst for
the genesis of modern Fourier analysis, as general solutions
to the equation eluded mathematics for many years prior to
1807 when Joseph Fourier introduced the concept of spectral
decompositions. Prior to Fourier, simple solutions to the heat
equation were known if the initial heat source was a sine or
a cosine. These solutions are called eigenfunctions - when
the Laplace operator is applied to these functions, the result
is the same function times a scalar eigenvalue. These eigen-
functions are the basis of the Fourier Transform.

In the Fourier Transform, arbitrary square integrable func-

‡Note that in this discussion we abuse notation by treating Λ as an
ordered set of Laplacian eigenvalues and as the diagonal matrix with en-
tries from the elements of this set. Similarly, Ψ is both the set of column
eigenvectors {ψi}Ni=1 as well as the N × N matrix [ψ1ψ2 · · ·ψN ] with
eigenvector as a column.

§The Laplace operator maps functions from Ck to Ck−2. Functions
in Ck are continuously differentiable i.e. for any real valued function f ∈
Ck(RN ), the derivative f ′(x) is defined and differentiable.

tions¶ are decomposed into the orthonormal basis of periodic
sines and cosines.|| These summations have various physical
connections but the salient notion of the Fourier transform is
a change of variables into a dual space that encodes the fre-
quency of the function.

In audio, frequency encodes pitch. In images, frequencies
describe edges and patterns. Common to all of these inter-
pretations is that frequency is related to smoothness. We say
that a function is smooth if one is unlikely to encounter a
dramatic change in value across neighboring points. A sim-
ple way to imagine this is to look at the zero-crossings of a
function. A fundamental example of this tool is found in one
dimensional sin waves of various frequencies, i.e. sin ax for
a = 2k, k ∈ N. For k = 0, the wave crosses the x-axis (a
zero-crossing) when x = π. When we double the frequency
at k = 1, our wave is now twice as likely to cross the zero and
is thus less smooth than k = 0. This simple zero-crossing in-
tuition for smoothness is relatively powerful, as we will see
shortly.

4.2.2 The Graph Fourier Transform

Next, we’ll show that our notions of smoothness and fre-
quency are readily applicable to data that is not regularly
structured, such as single-cell data. Before, we mentioned
that the graph Laplacian L is a discrete analog of ∇2. Let’s
make this transparent by deriving the graph Laplacian from
first principles. For a graph G on N vertices, its graph Lapla-
cian L and an arbitrary graph signal f ∈ RN , we use equation
(5) to write

(L f) (i) = ([D −W ] f) (i)

= d(i)f(i)−
∑
j

Wijf(j)

=
∑
j

Wij (f(i)− f(j)) . (7)

As the graph Laplacian is a weighted sum of differences of
a function around a vertex, we may interpret it analogously to

¶Square integrable functions have a finite integral when taken over the
real line. L2(R) is the set of all real-valued square integrable functions.

||Various forms of the Fourier transform exist. In the continuous set-
ting, it is typical to use Euler’s identity to decompose functions using the
complex exponential. For some function f(t) we have its Fourier trans-
form f̂(ξ) =

∫∞
−∞ f(t)e−2πitξdt.
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its continuous counterpart as the curvature of a graph signal.
Another common interpretation made explicit by derivation
(7) is that (Lf)(i) measures the local variation of a function
at vertex i.

Local variation naturally leads to the notivation of total
variation,

TV(f) =
∑
i,j

Wij(f(i)− f(j))2,

which is effectively a sum of all local variations. TV(f) de-
scribes the global smoothness of the graph signal f . In this
setting, the more smooth a function is, the lower the value of
the variation. This quantity is more fundamentally known as
the Laplacian quadratic form,

fTL f =
∑
i,j

Wij(f(i)− f(j))2. (8)

Clearly, the graph Laplacian can be used as an operator and
in a quadratic form to measure the smoothness of a function
defined over a graph. One effective tool for analyzing oper-
ators is to examine their eigensystems. As the Laplacian is
a square, symmetric matrix, the spectral theorem tells us that
its eigenvectors Ψ := {ψi}Ni=1 form an orthonormal basis for
RN . Furthermore, the Courant-Fischer theorem establishes
that the eigenvalues λi of L are local minima of fTLf when
fT f = 1 and f ∈ U as dim(U) = i = 1, 2, · · ·N . At each
eigenvalue λi this function has f = ψi. In summary, the
eigenvectors of the graph Laplacian (1) are an orthonormal
basis and (2) minimize the Laplacian quadratic form for a
given dimension.

Henceforth, we use the term graph Fourier basis inter-
changeably with graph Laplacian eigenvectors, as this basis
can be thought of as an extension of the classical Fourier
modes to irregular domains. In particular, the ring graph
eigenbasis is composed of sinusoidal eigenvectors, as they
converge to discrete Fourier modes in one dimension. The
graph Fourier basis thus allows one to define the graph
Fourier transform (GFT) by direct analogy to the classical
Fourier transform.

The GFT of a signal f is given by

f̂(λ`) =
∑
i

f(i)ψT` (i)

= 〈f , ψ`〉.

We will also write this GFT as the matrix-vector product

f̂ = ΨT f . (9)

As this transformation is unitary, the inverse graph Fourier
transform (IGFT) is f = Ψf̂ . Although the graph setting
presents a new set of challenges for signal processing, many
classical signal processing notions such as filterbanks and
wavelets have been extended to graphs using the GFT. We
use the GFT to process, analyze, and cluster experimental
signals from single-cell data using a novel graph filter con-
struction and a new harmonic clustering method.

4.3 The MELD Filter

In MELD, we seek to extract latent features from experi-
mental signals. To do this, we employ a novel graph filter
construction that can be used for denoising and deconvolu-
tion. To begin, we review the notion of filtering with focus
on graphs, and demonstrate the filter in a low-pass setting.
Next, we demonstrate the expanded version of the MELD
filter and provide an analysis of its parameters. Finally, we
provide a simple solution to the MELD filter that allows fast
computation.

4.3.1 Filters on graphs

In their simplest forms, filters can be thought of as devices
that alter the spectrum of their input. Filters can be used as
bases, as is the case with wavelets, and they can be used to di-
rectly manipulate signals by changing the frequency response
of the filter. For example, many audio devices contain an
equalizer that allows one to change the amplitude of bass and
treble frequencies. Simple equalizers can be built simply by
using a set of filters called a filterbank. In MELD, we use a
tunable filter to amplify latent features on a single-cell graph.

Mathematically, graph filters work analogously to classi-
cal filters. Particularly, a filter takes in a signal and attenu-
ates it according to a frequency response function. This func-
tion accepts frequencies and returns a response coefficient.
This is then multiplied by the input Fourier coefficient at the
corresponding frequency. The entire filter operation is thus
a reweighting of the input Fourier coefficients. In low-pass
filters, the function only preserves frequency components be-
low a threshold. Conversely, high-pass filters work by remov-
ing frequencies below a threshold. Bandpass filters transfer
frequency components that are within a certain range of a
central frequency. The tunable filter in MELD is capable of
producing any of these responses.

As graph harmonics are defined on the set Λ, it is common
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to define them as functions of the form h : [0,max(Λ)] 7→
[0, 1]. For example, a low pass filter with cutoff at λk would
have h(x) > 0 for x < λk and h(x) = 0 otherwise. By abuse
of notation, we will refer to the diagonal matrix with the filter
h applied to each Laplacian eigenvalue as h(Λ), though h is
not a set-valued or matrix-valued function. Filtering a signal
f is clearest in the spectral domain, where one simply takes
the multiplication f̂filt = h(Λ)f̂ = h(Λ)Ψ∗f .

Finally, it is worth using the above definitions to define a
vertex-valued operator to perform filtering. As a graph filter
is merely a reweighting of the graph Fourier basis, one can
construct the filter matrix,

H = Ψh(Λ)ΨT . (10)

A simple manipulation using equation (9) will verify that Hf
is the IGFT of f̂filt. This filter matrix will be used to solve
the MELD filter in approximate form for computational effi-
ciency.

4.3.2 Laplacian Regularization

A simple assumption for recovering a latent signal from raw
measurements is smoothness. In this model the latent sig-
nal is assumed to have a low amount of neighbor to neigh-
bor variation. Laplacian regularization23–31 is a simple tech-
nique that targets signal smoothness via the optimization

y = argmin
z
‖x− z‖22︸ ︷︷ ︸

a

+βzTLz︸ ︷︷ ︸
b

. (11)

Laplacian regularization is a subproblem of the MELD filter
that we will discuss for low-pass filtering. In the above, a
reconstruction penalty (a) is considered alongside the Lapla-
cian quadratic form (b), which is weighted by the parameter
β. The Laplacian quadratic form may also be considered as
the norm of the graph gradient, i.e.

βzTLz = β‖∇Gz‖22.

Thus one may view Laplacian regularization as a minimiza-
tion of the edge-derivatives of a function while preserving a
reconstruction. Because of this form, this technique has been
cast as Tikhonov regularization31,76, which is a common reg-
ularization to enforce a high-pass filter to solve inverse prob-
lems in regression. In our results we demonstrate a MELD
filter that may be reduced to Laplacian regularization using a
squared Laplacian.

In section 4.3.1 we introduced filters as functions defined
over the Laplacian eigenvalues (h(Λ)) or as vertex operators
(equation 10). Minimizing optimization 11 reveals a similar
form for Laplacian regularization. To begin,

y = argmin
z
‖x− z‖22 + βzTLz

= argmin
z

(x− z)T (x− z) + βzTLz

= argmin
z

xTx + zT z− 2xT z + βzTLz

Substituting y = z, we next differentiate with respect to y
and set this to 0,

0 = ∇y(xTx + yTy − 2yTx + βyTLy)

= 2y − 2x + 2βLy
x = (I + βL)y,

so the solution to problem 11 is

y = (I + βL)−1x. (12)

As the input x is a graph signal in the vertex domain, the least
squares solution (12) is a filter matrix Hreg = (I + βL)−1 as
discussed in section 4.3.1. The spectral properties of Lapla-
cian regularization immediately follow as

Hreg = (I + βL)−1

= Ψ
1

1 + βΛ
ΨT . (13)

Thus Laplacian regularization is a graph filter with frequency
response hreg(λ) = (1 + βλ)−1. Figure S2b shows that this
function is a low-pass filter on the Laplacian eigenvalues with
cutoff parameterized by β.

4.3.3 Tunable Filtering with MELD

Though simple low-pass filtering with Laplacian regulariza-
tion is a powerful tool for many machine learning tasks, we
sought to develop a filter that is flexible and capable of filter-
ing noise of any frequency. To accomplish these goals, we
introduce the MELD filter:

y = argmin
z
‖x− z‖22 + zTL∗z (14)

where L∗ = [βL − αI]ρ .

This filter expands upon Laplacian regularization by the ad-
dition of a new smoothness structure. Early and related work
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proposed the use of a power Laplacian smoothness matrix S
in a similar manner as we apply here31, but little work has
since proven its utility. In our construction, α is referred to as
modulation, β acts as a reconstruction penalty, and ρ is filter
order. These parameters add a great deal of versatility to the
MELD filter, and we demonstrate their spectral and vertex ef-
fects in Figure S2, as well as provide mathematical analysis
of the MELD parameters in section 4.3.4. Finally, in section
4.3.5 we discuss an implementation of the filter.

4.3.4 Parameter Analysis

A similar derivation as section 4.3.2 quickly reveals the filter
matrix

HMELD(λ) = [I + (βL − αI)ρ]−1 . (15)

which has the frequency response

hMELD(λ) =
1

1 + (βλ− α)ρ
. (16)

Thus, the value of MELD parameters in the vertex optimiza-
tion (14) has a direct effect on the graph Fourier domain.
First, we note by inspection that hMELD(λ) = hreg(λ) for
α = 0 and ρ = 1 (see equation 13). Thus the MELD filter is
a superset of graph filters in which Laplacian regularization
is a special case.

It is clear that β acts analogously in (16) as it does in the
subfilter (13). In each setting, β steepens the cutoff of the fil-
ter and shifts it more towards its central frequency (Fig. S2b).
In the case of α = 0, this frequency is λ1 = 0. This is done
by scaling all frequencies by a factor of β. For stability rea-
sons, we choose β > 0, as a negative choice of β yields a
high frequency amplifier.

The parameters α and ρ change the filter from low pass to
band pass or high pass. Figure S2 highlights the effect on
frequency response of the filters and showcases their vertex
effects in simple examples. We begin our mathematical anal-
ysis with the effects of ρ.

ρ powers the Laplacian harmonics. This steepens the
frequency response around the central frequency of the
MELD filter and, for even values, makes the function square-
integrable. Higher values of ρ lead to sharper tails (Fig. S2c,
S2e), limiting the frequency response outside of the target
band, but with increased response within the band. For tech-
nical reasons we do not consider odd-valued ρ > 1 when

α > 0 or ρ 6∈ N. Indeed, though the parameters β and α
do not disrupt the definiteness of L∗ (thus L∗ is defined for
ρ 6∈ N), odd-valued and fractional matrix powers of L∗ re-
sult in hyperbolic and unstable filter discontinuities. When
α = 0, these discontinuities are present only at λ = 0 and are
thus stable. However, when α > 0, the hyperbolic behavior
of the filter is unstable as these discontinuities now lie within
the Laplacian spectrum. Finally, ρ can be used to make a high
pass filter by setting it to negative values (Fig. S2f).

For the integer powers used in MELD, a basic vertex inter-
pretation of ρ is available. Each column of Lk is k-hop lo-
calized, meaning that Lkij is non-zero if and only if the there
exists a path length k between vertex i and vertex j (for a
detailed discussion of this property, see Hammond et al. 74,
section 5.2.) Thus, for ρ ∈ N, the operator Lρ considers vari-
ation over a hop distance of ρ. This naturally leads to the
spectral behavior we demonstrate in Figure S2c, as signals
are required to be smooth over longer hop distances when
α = 0 and ρ > 1.

The parameter α removes values from the diagonal of L.
This results in a modulation of frequency response by trans-
lating the Laplacian harmonic that yields the minimal value
for problem (14). This allows one to change the target fre-
quency when ρ > 1, as α effectively modulates a band-pass
filter. As graph frequencies are positive, we do not consider
α < 0. In the vertex domain, the effect of α is more nuanced.
We study this parameter for α > 0 by considering a modi-
fied Laplacian L∗ with ρ = 1. However, due to hyperbolic
spectral behavior for odd-valued ρ, α > 0 is ill-performing
in practice, so this analysis is merely for intuitive purposes,
as similar results extend for ρ > 1.

For mathematical analysis of α, L∗ is applied as an oper-
ator (equation 7) to an arbitrary graph signal f defined on a
graph G. Expanding (L∗f) (i) we have the following

(L∗f) (i) = ([β(D −W )− αI] f) (i)

= β(Df −W f − α

β
f)(i)

= β

(d(i)− α

β
)f(i)−

∑
j

Wijf(j)


= β

∑
j

(Wij −
α

Nβ
)f(i)−

∑
j

Wijf(j)


= β

∑
j

Wij

[
(1− α

d(i)β
)f(i)− f(j)

]
. (17)

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/532846doi: bioRxiv preprint 

https://doi.org/10.1101/532846
http://creativecommons.org/licenses/by-nc-nd/4.0/


Relation (17) establishes the vertex domain effect of α, which
corresponds to a reweighting of the local variation at vertex
i by a factor of 1 − α

d(i)β . The intuition that follows is that
positive α allows disparate values of f around each vertex to
minimize problem (14), which leads to greater response for
high frequency harmonics. We demonstrate this modulation
in Figure S2d.

To conclude, we propose a filter parameterized by recon-
struction β (Fig. S2b), order ρ (Fig. S2c, S2e), and modula-
tion α (Fig. S2d). The parameters α and β are limited to be
strictly greater than or equal to 0. When α = 0, ρmay be any
integer, and it adds more low-frequencies to the frequency re-
sponse as it becomes more positive. On the other hand, if ρ
is negative and α = 0, ρ controls a high pass filter. When
α > 0, ρ must be even-valued and the MELD filter becomes
a band-pass filter. In standard use cases we propose to use
the parameters α = 0, β = 1, and ρ = 2. All of our bio-
logical results were obtained using this parameter set, which
gives a square-integrable low-pass filter. As these parameters
have direct spectral effects, their implementation in an effi-
cient graph filter is straightforward and presented in section
4.3.5.

4.3.5 Implementation

A naive implementation of the MELD algorithm would apply
the matrix inversion presented in equation 15. This approach
is untenable for the large single-cell graphs that MELD is de-
signed for, as H−1MELD will have many elements, and, for high
powers of ρ or non-sparse graphs, extremely dense. A sec-
ond approach to solving Equation 14 would diagonalize L
such that the filter function in Equation 16 could be applied
directly to the Fourier transform of input raw experimental
signals. This approach has similar shortcomings as eigen-
decomposition is substantively similar to inversion. Finally,
a speedier approach might be to use conjugate gradient or
proximal methods. In practice, we found that these methods
are not well-suited for MELD filtering.

Instead of gradient methods, we use Chebyshev polyno-
mial approximations of hMELD(λ) to rapidly approximate and
apply the MELD filter. These approximations, proposed by
Hammond et al. 74 and Shuman et al. 77 , have gained traction
in the graph signal processing community for their efficiency
and simplicity. Briefly, a truncated and shifted Chebyshev
polynomial approximation is fit to the frequency response
of a graph filter. For analysis, the approximating polynomi-

als are applied as polynomials of the Laplacian multiplied
by the signal to be filtered. As Chebvyshev polynomials are
given by a recurrence relation, the approximation procedure
reduces to a computationally efficient series of matrix-vector
multiplications. For a more detailed treatment one may re-
fer to Hammond et al. 74 where the polynomials are pro-
posed for graph filters. For application of the MELD filter
to a small set of input raw experimental signals, Chebyshev
approximations offer the simplest and most efficient imple-
mentation of our proposed algorithm. For sufficiently large
sets of RES, the computational cost of obtaining the Fourier
basis directly may be less than repeated application of the
approximation operator; in these cases, we diagonalize the
Laplacian either approximately through randomized SVD or
exactly using eigendecomposition, depending on user prefer-
ence. Then, one simply constructsHMELD = ΨhMELD(Λ)ΨT

to analyze raw experimental signals.

4.3.6 Summary

In summary, we have proposed a family of graph filters based
on a generalization of Laplacian regularization. This fam-
ily is parameterized by the modulation α, which controls the
target graph harmonics, β, which adjusts the reconstruction
weight, and ρ, which defines the squareness of the resulting
MELD filter. We provide analysis of these three filters and
a consideration of implementation considerations in sections
4.3.4 and 4.3.5 respectively.

MELD is implemented in Python 3 and is built atop
the scprep, graphtools, and pygsp packages.
We developed scprep efficiently process single cell
data, and graphtools was developed for construc-
tion and manipulation of graphs built on data. Fourier
analysis and Chebyshev approximations are implemented
using functions from the pygsp toolbox78. These
packages are available through the pip package man-
ager. One may obtain the MELD package on github at
https://github.com/KrishnaswamyLab/MELD
and on pip as meld.

4.4 Vertex-frequency clustering

The goal of vertex-frequency clustering is to find a partition
of a graph that sufficiently separates dissimilar vertices with
respect to some observed signal. We use a technique pro-
posed in Shuman et al. 35 based on a graph generalization of
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the classical Short Time Fourier Transform. This generaliza-
tion will allow us to simultaneously localize signals in both
frequency and vertex domains. The output of this transform
will be a spectrogram that we then use to cluster the graph.

4.4.1 The Short Time Fourier Transform (STFT)

The STFT of a signal is obtained by partitioning the sig-
nal into short equal sized segments of time and computing
a Fourier transform on each segment. The result is a set of
frequency coefficients for each segment, describing the fre-
quency content of the signal as it changes over time. Plots of
these functions are called spectrograms.

The computation of an STFT proceeds by multiplying a
window by the input signal. The window is typically only
non zero in a small contiguous region of time, determined by
translating a window function, g ∈ L2(R) to a time u ∈ R.
The translation operator Tu : L2(R)→ L2(R) is defined via
convolution of a a function f ∈ L2(R) with a dirac delta δu:

(Tuf)(t) := (f ∗ δu)(t) = g(t− u). (18)

The window is modulated at frequencies ξ ∈ R via the mod-
ulation operator Mξ : L2(R) → L2(R), which multiplies a
function f ∈ L2(R) by a Fourier basis function:

(Mξf)(t) := e2πiξtf(t). (19)

Later, we use the fact that these two operations can be de-
fined in the Fourier domain via the convolution theorem,
i.e. T̂uf(ξ) = (f̂ · δ̂u)(ξ) = e−2πiξtf̂(ξ) and M̂kf(ξ) =
(f̂ ∗ δ̂k)(ξ) = f̂(ξ − k).

With these tools we can translate and modulate a window
function to produce a windowed Fourier atom:

gu,ξ(t) := (MξTug)(t) = g(t− u)e2πiξt. (20)

The inner product of each windowed Fourier atom with the
signal f yields the STFT, a set of frequency coefficients

Sf(u, ξ) := 〈f, gu,ξ〉 =

∫ ∞
−∞

f(t)[g(t− u)]∗e−2πiξtdt.

(21)

One way to interpret this transform Sf(u, ξ) is taking the
Fourier transform of time-slices of the input signal evaluated
at each frequency ξ.

4.4.2 The Windowed Graph Fourier Transform
(WGFT)

Recent works35 generalize the windowed Fourier transform
to graph signals. In order to define translation and modu-
lation for graph signals, a convolution operator must be de-
fined.35 construct the generalized convolution by extension
of the convolution theorem, i.e. that convolution in the ver-
tex(time) domain is equivalent to multiplication in the Fourier
domain. Then we have for two signals f, g ∈ RN on a graph
G with N vertices and Laplacian L = UΛU−1

(f ∗ g)(n) :=

N−1∑
`=0

f̂(λ`)ĝ(λ`)U`(n). (22)

We rewrite this equation more succinctly in vector notation:

f ∗ g = U diag(ĝ)f̂ , (23)

which amounts to taking the inverse Fourier transform of the
product of f and g in the spectral domain, implying the key
analogy to the classical setting

f̂ ∗ g = f̂ ĝ. (24)

A graph translation operator quickly follows from general-
ized convolution. For translation we translate the function f
to a vertex i ∈ {1, 2, ..., N} via Ti : RN → RN

(Tif)(n) :=
√
N(f ∗ δi)(n) (25)

which uses the generalized convolution of equation 22 to con-
volve f with a dirac delta localized to vertex i.35 demonstrate
that this operator inherits various properties of its classical
counterpart; however, the operator is not isometric and is af-
fected by the graph that it is built on. Furthermore, for sig-
nals that are not tightly localized in the vertex domain and
on graphs that are not directly related to Fourier harmonics
(e.g. the circle graph), it is not clear what graph translation
implies.

In addition to translation, a generalized modulation op-
erator is defined35 as Mk : RN → RN for frequencies
k ∈ {0, 1, ..., N − 1}.

(Mkf)(n) :=
√
Nf(n)Uk(n) (26)

This formulation is analogous in construction to classical
modulation, defined as multiplication by an eigenfunction
(equation 19). Classical modulation translates signals in
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the Fourier domain; because of the discrete nature of the
graph Fourier domain, this property is only weakly shared
between the two operators. Instead, the generalized modula-
tion Mk translates the DC component of f , f̂(0), to λk, i.e.
(̂Mkf)(λk) = f̂(0). Furthermore, for any function f whose
frequency content is localized around λ0, (Mkf) is localized
in frequency around λk.35 details this construction and pro-
vides bounds on spectral localization and other properties.

With these two operators, a graph windowed Fourier atom
is constructed35 for any window function g ∈ RN

gi,k(n) := (MkTig)(n) = NUk(n)

N−1∑
`=0

ĝ(λ`)U
∗
` (i)U`(n).

(27)

We can then build a spectrogram Q = (qik) ∈ RNxN by
taking the inner product of each gi,k∀i ∈ {1, 2, ..., N}∧∀k ∈
{0, 1, ..., N − 1} with the target signal f

qik = Sf(i, k) := 〈f, gi,k〉. (28)

As with the classical windowed Fourier transform, one could
interpret this as segmenting the signal by windows and then
taking the Fourier transform of each segment

qi = 〈(Tig .∗ f), U〉 (29)

where .∗ is the element-wise product.

4.4.3 Description of vertex-frequency clustering algo-
rithm

In order to generate the matrix Q we need a suitable window
function. We use the normalized heat kernel

ĝ(λ) = Ce−tλ, (30)

C = ||g||−12 . (31)

By translating this kernel, multiplying it with our target
signal f and taking the Fourier transform of the result, we
obtain a windowed graph Fourier transform of f that is local-
ized based on the diffusion distance35,75 from each vertex to
every other vertex in the graph.

For an input RES x, signal-biased spectral clustering pro-
ceeds as follows:

1. Generate the window matrix Pt, which contains as its
columns translated and normalized heat kernels at the
scale t

2. Column-wise multiply Xt = P .∗x; the i-th column of
Xt is an entry-wise product of the i-th window and x.

3. Take the Fourier Transform of each column of Xt. This
matrix, Ĉt is the normalized WGFT matrix.

This produces a single WGFT for the scale t. At this stage,
Shuman et al. 35 proposed to saturate the elements of Ĉt using
the activation function tanh(|Ĉt|) (where | . | is an element-
wise absolute value). Then, k-means is performed on this
saturated output to yield clusters. This operation has connec-
tions to spectral clustering as the features that k-means is run
on are coefficients of graph harmonics.

We build upon this approach to add robustness, sensi-
tivity to sign changes, and scalability. Particularly, vertex-
frequency clustering builds a set of activated spectrograms at
different window scales using the procedure outlined above.
Then, the entire set is combined through summation and the
filtered input signal y is concatenated as an additional fea-
ture. Finally, k-means is performed on this matrix.

The multiscale approach we have proposed has a number
of benefits. Foremost, it removes the complexity of picking
a window-size. Second, using the actual input signal as a
feature allows the clustering to consider both frequency and
sign information in the raw experimental signal. For scala-
bility, we leverage the fact that Pt is effectively a diffusion
operator and thus can be built efficiently by treating it as a
Markov matrix and normalizing the graph adjacency by the
degree.

5 Methods

5.1 Processing and analysis of the T-cell datasets

Gene expression counts matrices prepared by Datlinger
et al. 11 were accessed from the NCBI GEO database acces-
sion GSE92872. 3,143 stimulated and 2,597 unstimulated
T-cells were processed in a pipeline derived from the pub-
lished supplementary software. First, artificial genes corre-
sponding to gRNAs were removed from the counts matrix.
Genes observed in fewer than five cells were removed. Cell
with a library size higher than 35,000 UMI / cell were re-
moved. To filter dead or dying cells, expression of all mi-
tochondrial genes was z-scored and cells with average z-
score expression greater than 1 were removed. As in the
published analysis, all mitochondrial and ribosomal genes
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were excluded. Filtered cells and genes were library size
normalized and square-root transformed. To impute gene
expression, MAGIC was run using default parameters. To
build a cell-state graph, 100 PCA dimensions were calcu-
lated and edge weights between cells were calculated us-
ing an alpha-decay kernel as implemented in the Graphtools
library (www.github.com/KrishnaswamyLab/graphtools) us-
ing knn=10 and decay=20. To infer the EES, MELD was run
on the cell state graph using the stimulated / unstimulated la-
bels and input with the smoothing parameter β = 1. To iden-
tify genes that vary with the MELD vector, kNN-DREMI16

scores were calculated between each gene and the EES
vector using default parameters as implemented in scprep
(www.github.com/KrishnaswamyLab/scprep). GO term en-
richment was performed using EnrichR with the genes hav-
ing the top 1% of kNN-DREMI scores used as input.

5.2 Processing and analysis of the chordin datasets

Gene expression counts matrices prepared by Wagner et al. 12

(the chordin dataset) were downloaded from NCBI GEO
(GSE112294). 16079 cells from chd embryos injected with
gRNAs targeting chordin and 10782 cells from tyr embryos
injected with gRNAs targeting tyrosinase were accessed.
Lowly expressed genes detected in fewer than 5 cells were re-
moved. Cells with library sizes larger than 15000 UMI / cell
were removed. Counts were library-size normalized and
square root transformed. Cluster labels included with the
counts matrices were used for cell type identification.

During preliminary analysis, a group of 24 cells were iden-
tified originating exclusively from the chd embryos. Despite
an average library size in the bottom 12% of cells, these
cells exhibited 546-fold, 246-fold, and 1210-fold increased
expression of Sh3Tc1, LOC101882117, and LOC101885394
respectively. To the best of our knowledge, the function of
these genes in development is not described. These cells were
annotated by Wagner et al. 12 as belonging to 7 cell types in-
cluding the Tailbud – Spinal Cord and Neural – Midbrain.
These cells were excluded from further analysis.

To generate a cell state graph, 100 PCA dimensions were
calculated from the square root transformed filtered gene ex-
pression matrix of both datasets. Edge weights between cells
on the graph were calculated using an alpha-decay kernel
with parameters knn=10, decay=10. MAGIC was used to im-
pute gene expression values using t=7. MELD was run using
the tyr or chd label as input. To identify subpopulations of

the Tailbud - Presomitic Mesoderm cluster, we applied Ver-
tex Frequency Clustering with k=4. Cell types were anno-
tated using sets of marker genes curated by Farrell et al. 13 .
Changes in gene expression for the top and bottom 20% of
cells by EES values in the four clusters were compared.

5.3 Generation, processing and analysis of the pan-
creatic islet datasets

Single cell RNA-sequencing was performed on human β
cells from three different islet donors in the presence and
absence of IFNγ. The islets were received on three differ-
ent days. Cells were cultured for 24 hours with 25ng/mL
IFNγ (R&D Systems) in CMRL 1066 medium (Gibco) and
subsequently dissociated into single cells with 0.05% Trypsin
EDTA (Gibco). Cells were then stained with FluoZin-3 (In-
vitrogen) and TMRE (Life Technologies) and sorted using
a FACS Aria II (BD). The three samples were pooled for
the sequencing. Cells were immediately processed using the
10X Genomics Chromium 3’ Single Cell RNA-sequencing
kit at the Yale Center for Genome Analysis. The raw se-
quencing data was processed using the 10X Genomics Cell
Ranger Pipeline.

Data from all three donors was concatenated into a single
matrix for analysis. First, cells not expressing insulin, so-
matostatin, or glucagon were excluded from analysis using
donor-specific thresholds. The data was square root trans-
formed and reduced to 100 PCA dimensions. Next, we ap-
plied our MNN batch-effect correction kernel to create a
graph across all three donors with parameters knn=5, de-
cay=30. This graph was then used for PHATE and MAGIC.
The EES was calculated using MELD with default parame-
ters. To identify cell types, we performed Vertex Frequency
Clustering using k=8. To identify signature genes of IFNγ
stimulation, we calculated kNN-DREMI scores for all genes
with the EES vector and kept genes with the top 1% of scores.
To identify genes that were differentially expressed in the
beta - nonresponsive cluster, we calculated the Wasserstein
distance (also called Earth Mover’s distance) between expres-
sion of each gene in the nonresponsive cluster and all other
clusters.
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Gribonval. Wavelets on graphs via spectral graph the-
ory. Applied and Computational Harmonic Analysis, 30
(2):129–150, 2011.

[75] Nathanael Perraudin, Benjamin Ricaud, David Shuman,
and Pierre Vandergheynst. Global and local uncer-
tainty principles for signals on graphs. arXiv preprint
arXiv:1603.03030, 2016.
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Figure S1: MELD captures the latent experimental signals across clusters. (a) In many scRNA-seq experiments, there is not one, but many populations
of cells. Each of these populations, or cell types, may respond to an experimental perturbation differently. We simulated four Gaussian clouds of various
sizes and densities and created artificial latent dimensions across each population. The scale of this dimension is arbitrarily defined over the interval
[-1,1], Note that the axis of greatest variation within a population does not always match the dimension corresponding to the experimental response,
as in the lower left cluster. Furthermore, some populations of cells may not respond to the experimental perturbation, as in the upper right cluster.
(b) To simulate the results of noisy experimental sampling of these cell populations, we assigned experimental labels to cells such that cells with high
latent dimension values are more likely to come from the experimental condition and cells with low latent dimension values are likely to come from
the control experiment. These labels are used as the Raw Experimental Signal (RES). (c) MELD identifies an Enhanced Experimental Signal (EES) in
each cluster. (d) Comparing the EES to the ground truth Latent Dimension, we find very strong correlation between the EES and the true experimental
signal.
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Figure S2: Source Separation and Parameter Analysis with the MELD filter. (a) A raw experimental signal (center) is obtained that is a binarized
observation of a low frequency latent signal (top left), a medium frequency latent signal (top middle), and high frequency noise (top right). Analysis
of the RES alone is intractable as it is corrupted by noise and experimental binarization. MELD low-pass filters (bottom left) to separate a longitudinal
trajectory and band-pass filters (bottom right) to yield the periodic signature of the medium frequency latent signal. Parameters used for this analysis
are supplied beneath the corresponding arrows. (b) Reconstruction penalty β controls a low-pass filter. For this demonstration, α = 0, ρ = 1. This
filter is equivalent to Laplacian regularization. (c) Order ρ controls the filter squareness. This parameter is used in the low-pass filter of (a). For this
demonstration, β = 1, α = 0. (d) Band-pass modulation via α. When ρ is even valued, α modulates the central frequency of a band-pass filter. This
parameter is used in (a) to separate a medium-frequency source from a low-frequency source. (e) α and ρ combine to make square band-pass filters.
For (d) and (e), β = 1. (f) Negative values of ρ yield a high-pass filter. For (b-f), Laplacian harmonics for a general normalized Laplacian are plotted
on the x-axis. The frequency response of the filter given by the colored parameters is on the y-axis.
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Figure S3: MELD can capture a ground-truth non-linear gene expression signature. (a) To demonstrate the ability for MELD to capture non-linear, and
non-monotonic gene expression signatures, we simulated a simple 100-dimensional datatset with two terminal cell states connected by an intermediate,
transitional spectrum of cells with added noise. The true latent experimental dimension (corresponding to the progression instigated by an experimental
condition) is a smooth progression from the left to the right terminal cell state. (b) To simulate the results of noisy experimental sampling of these cell
populations, we assigned experimental labels to cells such that cells with high latent dimension values are more likely to come from the experimental
condition and cells with low latent dimension values are likely to come from the control experiment. These labels are used as the Raw Experimental
Signal (RES). (c) MELD identifies an Enhanced Experimental Signal (EES). (d) Comparing the EES to the ground truth experimental dimension, we
find very strong recovery of the true experimental signal. (e) To simulate a non-linear gene expression pattern of a single gene, we created an artificial
gene expression signal that is low in the terminal cell states, but peaks in the intermediate transitional cells. (f) Plotting the expression of the artifical
gene as a function of the true experimental dimension, we can observe the non-linear nature of the artificial expression signal. (g) Using only the sample
labels to characterize expression of this gene in our simulated dataset, we observe no difference in expression of the gene between conditions. (h) Only
when plotting the expression as a function of the enhance experimental signal can we observe the non-linear nature of the expression. This would be
hidden without MELD.
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Figure S4: Vertex-Frequency clustering with MELD. A Gaussian mixture model was used to generate N = 1000 points in a mixture of three Gaussian
distributions. This experiment is representative of a two-cell type experiment (split by Dim 2) in which one sample changes (bottom clusters) along Dim
1 due to the experiment while the other remains mixed (top clusters). (a) k-Means clustering separates the left and right experimental groups but splits
the upper group erroneously. (b) Spectral clustering replicates the performance of k-Means in this example. (c) Louvain modularity clustering splits
the mixture into five groups, with the same lower separations as before but with three groups in the upper cell type. (d) Vertex-Frequency clustering
recovers a new cluster type. Briefly, the RES (left) is used for (1) a windowed graph Fourier Transform to obtain vertex-frequency information (above,
logarithmically downsampled for clarity) and (2) MELD, which generates a continuous profile of the simulated experimental effect. These measures
are concatenated together and clustered with k-Means. The clusters (right) separate the two cell types (purple and green/red/blue), and finds a separate
grouping of cells that are in transition from green to blue, shown in red. One may see that in the spectrogram the green and blue groups are found on
relatively low frequency patterns (bottom half of spectrogram, mostly black bands), whereas the medium frequency transition is well separated (middle
of bottom bands). The well-mixed, nonresponsive population is entirely high frequency (top half).
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Figure S5: Characterization of vertex-frequency clusters in the Tailbud - Presomitic Mesoderm Cluster (a) Raw vertex-frequency cluster assignments on
a PHATE visualization. (b) Normalized expression of previously identified marker genes of possible subtypes of the Tailbud - Presomitic Mesoderm 13.
The color of the dot for each gene in each cluster indicates the expression level after MAGIC and the size of the dot corresponds to the normalized
Wasserstein distance between expression within cluster to all other clusters. (c) Average z-score transformed expression of genes associated with each
cell type is plotted on a PHATE visualization of the Tailbud - Presomitic Mesoderm Cluster.
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Figure S6: Analysis of pancreatic islet cells from three donors. (a) Library-size normalized expression of insulin (INS), glucagon (GCG), and
somatostatin (SST) shows donor-specific batch effect across islet cells. (b) Normalized expression of previously identified marker genes of alpha, beta,
and delta cells 52 in each cluster. The color of the dot for each gene in each cluster indicates the expression level after MAGIC and the size of the dot
corresponds to the normalized Wasserstein distance between expression within cluster to all other clusters. (c) Results of Enrichr 37 gene set enrichment
of 491 signature genes identified in at least one cell-type shows strong enrichment for genes in the interferon signalling pathways.
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