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Abstract4

Single-cell RNA-sequencing (scRNA-seq) is a powerful tool to quantify transcriptional states5

in thousands to millions of cells. It is increasingly common for scRNA-seq data to be col-6

lected in multiple conditions to measure the effect of an experimental perturbation. However,7

quantifying differences between scRNA-seq datasets remains an analytical challenge. Previ-8

ous efforts at quantifying such differences focus on discrete regions of the transcriptional state9

space such as clusters of cells. Here, we describe a continuous measure of the effect of an10

experiment across the transcriptomic space with single cell resolution. First, we use the man-11

ifold assumption to model the cellular state space as a graph with cells as nodes and edges12

connecting cells with similar transcriptomic profiles. Next, we calculate an Enhanced Exper-13

imental Signal (EES) that estimates the likelihood of observing cells from each condition at14

every point in the manifold. We show that the EES has useful properties for analysis of sin-15

gle cell perturbation studies. We show that we can use the magnitude and frequency of the16

EES, using an algorithm we call vertex frequency clustering, to identify specific populations17

of cells that are or are not affected by an experimental treatment at the appropriate level of18

granularity. Using these selected populations we can derive gene signatures of affected popula-19

tions of cells. We demonstrate both algorithms using a combination of biological and synthetic20

datasets. Implementations are provided in the MELD Python package, which is available at21

https://github.com/KrishnaswamyLab/MELD.22

1 Introduction23

As single-cell RNA-sequencing (scRNA-seq) has become more accessible, the design of single-cell exper-24

iments has become increasingly complex. Researchers regularly use scRNA-seq to quantify the effect of a25

drug, gene knockout, or other experimental perturbation on a biological system. However, quantifying the26
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differences between single-cell datasets collected from multiple experimental conditions remains an analyt-27

ical challenge [1]. This task is hindered by the heterogeneity and noise in both the data and the effects of a28

given perturbation. More specifically, each single-cell dataset comprises several intrinsic structures of het-29

erogeneous cells, and the effect of the experimental condition could be diffuse across all cells or isolated to30

particular areas of the cellular state space. Further, technical noise from scRNA-seq measurements, stochas-31

tic biological heterogeneity, and uneven exposure to a perturbation can frustrate attempts to understand32

differences between single-cell datasets.33

To address this, we develop a signal over the cellular manifold that quantifies the conditional likeli-34

hood that each cell would appear in a given sample condition. Our approach relies on manifold model of35

single-cell data, which treats the transcriptomic state space as a continuous low-dimensional manifold, or36

set of manifolds, to characterize cellular heterogeneity and dynamic biological processes [2–8]. In the man-37

ifold model, the biologically valid combinations of gene expression are represented as a locally Euclidean38

topological space, such as a two-dimensional sheet embedded in three dimensions.39

Our goal is to quantify the effect of an experimental perturbation on every single cell state observed40

in matched experimental and control scRNA-seq samples of the same biological system. We explicitly41

define and calculate an enhanced experimental signal (EES), which quantifies the effect of an experimental42

perturbation across the manifold as a change in the probability of observing each transcriptomic profile in43

the treatment condition relative to the control. We assume that the cell profiles observed in each experiment44

are sampled from an underlying multivariate probability density function over the transcriptomic state space45

that describes the likelihood of observing any cell state in a given condition. For example, it is more likely46

to observe neuronal cells in a sample of brain tissue than in a peripheral blood sample. Next, we assume47

that the effect of an experimental perturbation is to change this underlying probability density. For example,48

if you knock out a gene, some neuronal types or even transcriptional states of the same type may be more49

or less likely to be observed. The key observation here is that we expect to observe a continuous spectrum50

of changes in probability across the cellular manifold (Figure 1). Because the effect of an experiment is51

continuous, we seek to estimate this effect across all the observed regions of the manifold, namely at each52

single-cell profile sampled from each condition.53

Although several methods exist for jointly analyzing multiple single-cell datasets [9–11], all previous54

works quantifying differences between datasets rely on an initial aggregation of the data prior to down-55

stream analysis calculating differential abundance or differential gene expression between conditions. Most56

published analyses of multiple scRNA-seq samples follow the same basic steps [12–19]. First, datasets57

are merged applying either batch normalization [18, 19] or a simple concatenation of data matrices [12–17].58

Next, clusters are identified by grouping either sets of cells or modules of genes. Finally, within each cluster,59

the cells from each condition are used to calculate statistical measures, such as fold-change between sam-60

ples. However, reducing the experimental signal to the level of clusters sacrifices the power of single-cell61

data. In particular, we demonstrate cases in the following sections where subsets of a cluster are enriched62

and others subsets are depleted, but in the published analysis these nuances were missed because the analysis63

focused on fold-change in abundance of each cluster.64

Instead of quantifying the effect of a perturbation on clusters, we focus on the level of single cells.65

First, we use the manifold assumption to create a simplified data model, a cell similarity graph where nodes66

are cells and edges connect cells with similar transcriptomic profiles [20]. We then apply tools from the67

emerging field of graph signal processing [21] to compute the EES as the likelihood of observing a given68

cell in the treatment condition relative to the control. An EES value of 0.5 indicates a cell is equally likely69

to originate from either condition while values close to 1 or 0 are almost only found in the experimental or70

control conditions respectively.71
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In the sections that follow, we show that the EES has useful information for the analysis of experi-72

mental conditions in scRNA-seq. First, the EES can be used as a measure of transcriptional response to73

a perturbation on a cell-by-cell basis to identify the cell states most and least affected by an experimen-74

tal treatment. Second, we show that the frequency composition of the EES can be used as the basis for a75

clustering algorithm we call vertex frequency clustering (VFC), which identifies populations of cells that76

are transcriptionally similar and are similarly affected (either enriched, depleted, or unchanged) between77

conditions. In other words, the identification of the affected population is done using the EES at the level of78

granularity pertinent to the perturbation response, rather than at a predetermined granularity based on data79

geometry alone. Third, we obtain gene signatures of a perturbation by performing differential expression80

between vertex frequency clusters with varying EES distributions. We show that these signatures outperform81

signatures obtained by direct comparisons of two experimental conditions.82

To demonstrate these advantages, we apply this analysis to a variety of biological datasets, including83

T-cell receptor stimulation [16], CRISPR mutagenesis in the developing zebrafish embryo [18], and a newly84

published dataset of interferon-gamma stimulation in human pancreatic islets. We also provide a set of85

quantitative comparisons for both algorithms using ground truth simulated scRNA-seq data. In each case, we86

demonstrate the ability of the EES to identify trends across experimental conditions and identify instances87

where use of the EES and vertex frequency clustering improves over published analytic techniques.88

Implementations of the EES algorithm and vertex frequency clustering are provided in the Python pack-89

age MELD, so named for its utility in joint analysis of single-cell datasets. MELD is open-source and90

available on GitHub at https://github.com/KrishnaswamyLab/MELD.91

2 Results92

2.1 Overview of the EES algorithm93

We propose a novel framework for quantifying differences in cell states observed across single-cell experi-94

ments. Our work is inspired by recent successes in applying manifold learning to scRNA-seq analysis [20].95

The manifold model is a useful approximation for the cellular transcriptomic space because not all combina-96

tions of gene expression are biologically valid. Instead, valid cellular states are intrinsically low-dimensional97

with smooth transitions between similar states. Single-cell data generally consists of several disconnected98

manifolds that each are locally continuous. The power of scRNA-seq as a measure of an experimental treat-99

ment is that it provides observations of cell state at thousands to millions of points along the manifold in100

each condition. In this context, our goal is to quantify the change in enrichment of cell states along the101

manifold as a result of the experimental treatment (Figure 1).102

For an intuitive understanding, we first consider a simple experiment with one treatment condition and103

one control. We seek to calculate the conditional probability that each cell would be observed in either the104

experimental or control condition over a manifold approximated from all cells from both conditions. This105

conditional probability can be used as a measure of the effect of the experimental perturbation because it106

indicates for each cell how much more likely we are to observe that cell state in the treatment condition107

relative to the control condition (Figure 1). We refer to this ratio as the Enhanced Experimental Signal108

(EES). The steps of the EES algorithm are given in Algorithm 1.109
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Figure 1: (a) To quantify the effect of an experiment, we model single cell experiments as samples from a probability density
function (pdf) over the underlying transcriptomic cell state space manifold. The pdf for the control sample is the frequency with
which cell states are observed in the control sample compared to the overall frequency of the cell state in both samples combined. In
this context, the effect of an experimental perturbation is to alter this probability density and thus the data density in the experimental
sample. Therefore, the effect of an experimental can be quantifies as the change in the probability density in the experiment
condition relative to the control. (b) The Enhanced Experimental Signal (EES) quantifies this effect by computing a kernel density
estimate over the cell similarity graph on the Raw Experimental Signal (RES). The EES indicates the likelihood that a particular
cell is from the experimental or control conditions. (c) In traditional analysis, the clusters are based solely on the data geometry
and changes in abundance between conditions may not align with the true affected populations. Using the EES and VFC, we can
identify the correct cluster resolution for downstream analysis.
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As has been done previously, we first approximate the cellular manifold by constructing a simplified110

data geometry represented by an affinity graph between cells from both conditions [2–8]. In this graph,111

nodes are cells and the edges between nodes describe the transcriptional similarity between the cells. We112

then take a new approach to analyze the distribution of cells from each sample over the graph using graph113

signal processing [21]. A graph signal is any function that has a defined value for each node in a graph.114

For example, it is natural to represent gene expression values as signals on a graph. Here we use labels115

indicating the sample origin of each cell as a signal over the graph that we call the Raw Experimental116

Signal. The RES is a collection of one-hot indicator signals, with one signal per condition. Each signal117

has value 1 associated with each cell from the corresponding condition and value 0 elsewhere. In a simple118

two-sample experiment, the RES would comprise two one-hot signals, one for the control condition and one119

for the experimental condition. These one-hot signals are row-wise L1 normalized to normalize different120

numbers of cells sequenced in each sample.121

To derive the Enhanced Experimental Signal (EES), we next calculate a kernel density estimate of the122

RES by applying a low pass filter, which can be thought of as averaging values of the RES across the edges123

on the graph, with higher weighting on edges connecting nearer neighbors. The output of this filter gives the124

EES (conditional probability), which is smooth on the graph, meaning neighboring cells will have similar125

probability estimates of being observed in a given condition. A visual representation of each step of the126

algorithm on real-world data can be found in Figure S1. We also describe a full pipeline for analysis of127

single cell datasets using MELD in Section 4.3.128

Algorithm 1: The EES algorithm
Input: Dataset X = {x1,x2, ...,xn},xi ∈ Rm; Condition labels y s.t. yi indicates the condition in

which observation xi was sampled.
Output: Enhanced Experimental Signal Ỹnorm ∈ Rn×d where d is the number of unique conditions

in y
1. Build graph G = {V,E} by applying anisotropic or other kernel function on X ;
2. Instantiate One-Hot Indicator Y, also referred to as the RES, with one column for each unique
condition in y;

3. Column-wise L1-normalize Y to yield Ynorm;
4. Apply EES filter over (G,Ynorm) to calculate Ỹ, the kernel density estimate of the data in each

condition;
5. Row-wise L1 normalize Ỹ to yield Ỹnorm also referred to as the EES;

129

2.2 Graph construction approximates the underlying data manifold130

The first step of the EES algorithm is to create a cell similarity graph in which neighboring cells (i.e.,131

cells with small distances between them) are connected by edges. The goal of graph construction is to132

approximate the underlying manifold from which the data was sampled [22]. There are many ways to133

construct such a graph, and in general the algorithm presented here can work over any such construction.134

The default graph construction implemented in the MELD toolkit quantifies cell similarity (i.e., the edge135

weights of the graph) using the α-decay kernel proposed in [3], which can be interpreted as a smooth136

k-Nearest Neighbors (kNN) kernel. However, in cases where batch normalization between replicates is137

required, we first apply a variant of Mutual Nearest Neighbors (MNN) to merge the datasets [9]. The use138

of batch correction algorithms with the MELD toolkit is discussed more fully in Supplementary Note 7.1.139

Details of graph construction and implications of various choices are discussed in detail in Section 4.1.1.140
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2.3 Derivation of the EES Filter141

Having constructed a graph from the combined datasets, the next step in the EES algorithm is to estimate142

the density of each sample label over the graph. A popular non-parametric approach to estimating the data143

density is using a kernel density estimate (KDE), which relies on an affinity kernel function. To estimate the144

density of labels over a graph, we turn to the heat kernel, which uses diffusion to provide local adaptivity145

in regions of varying data density [23] such as is observed in single cell data. Here, we extend this kernel146

as a low pass filter over a graph to estimate the density of sample labels. This is a natural extension of an147

affinity kernel function because when applied as an integral operator to a signal, it acts as a low-pass filter.148

For example, filters based on Gaussian kernels are often used to blur or smooth images. To begin, we take149

the Gaussian KDE, which is well known tool for density estimation in Rd. The EES generalizes this form to150

smooth manifolds. The full construction of this generalization is described in detail in Section 4.1.10, and a151

high level overview is provided here.152

A kernel density estimator f(x, t) with bandwidth t > 0 and kernel function K(x, y, t) is defined as153

f̂(x, t) =
1

N

N∑
i=1

K(x,Xi, t), x ∈ X (1)

where X is the observed data, x is some point in X := Rd (i.e., X is defined as Rd), and X is endowed with154

the Gaussian kernel defined as155

K(x, y, t) =
1

(4πt)d/2
e−‖x−y‖

2
2/4t (2)

Thus, Equation 2 defines the Gaussian KDE in Rd. However, this function relies on the Euclidean distance156

‖x− y‖22, which is derived from the kernel space in Rd. Since manifolds are only locally Euclidean, we157

cannot apply this KDE directly to a general manifold.158

Figure 2: Vertex Frequency Analysis using the EES and RES (a) The Windowed Graph Fourier Transform of the RES and values of
EES values at four example points shows distinct patterns between a transitional (blue) and unaffected (red) cell. This information
is used in spectral clustering, resulting in Vertex Frequency Clustering. (b) Characterizing Vertex Frequency Clusters with the
highest and lowest EES values elucidates gene expression changes associated with experimental perturbations. (c) Examining the
distribution of EES scores in vertex-frequency clusters identifies cell populations most affected by a perturbation.
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To generalize the Gaussian KDE to a manifold we need to define a kernel space (i.e., the range of a159

kernel operator) over a manifold. In Rd the kernel space is often defined via infinite weighted sums of sines160

and cosines, also known as the Fourier series. However, this basis is not well defined for a Riemannian161

manifold, so we instead use the eigenbasis of the Laplace operator as our kernel basis. The derivation and162

implication of this extension is formally explored in Section 4.1.10. The key insight is that using this kernel163

space, the Gaussian KDE can be defined as a filter constructed from the eigenvectors and eigenvalues of the164

Laplace operator on a manifold. When this manifold is approximated using a graph, we define this KDE as165

a graph filter over the graph Laplacian given by the following equation:166

f̂(x, t) = e−tLx = Ψh(Λ)Ψ−1x (3)

where t is the kernel bandwidth, L is the graph Laplacian, x is the empirical density, Ψ and Λ are the167

eigenvectors and corresponding eigenvalues of L, and e−tL is the matrix exponential. This signal processing168

formulation can alternatively be formulated in an optimization with Tikhonov Regularization, which seeks169

to reconstruct the original signal while penalizing differences along edges of the graph. This connection is170

further explored in Section 4.1.7.171

To achieve an efficient implementation of the filter in Equation 3, the MELD toolkit considers the spec-172

tral representation of the RES and uses a Chebyshev polynomial approximation [24] to efficiently compute173

the EES (see Section 4.1.4). The result is a highly scalable implementation. The EES can be calculated on174

a dataset of 50,000 cells in less than 8 minutes in a free Google Colaboratory notebook1, with more than 7175

minutes of that spent constructing a graph that can be reused for visualization [3] or imputation [4]. With the176

EES, it is now possible to identify the cells that are most and least affected by an experimental perturbation.177

2.4 Vertex-frequency clustering identifies cell populations affects by a perturbation178

A common goal for analysis of experimental scRNA-seq data is to identify subpopulations of cells that179

are responsive to the experimental treatment. Existing methods cluster cells by transcriptome alone and180

then attempt to quantify the degree to which these clusters are differentially represented in the two condi-181

tions. However, this is problematic because the granularity, or sizes, of these clusters may not correspond182

to the sizes of the cell populations that respond similarly to experimental treatment. Additionally, when183

partitioning data along a continuum, cluster boundaries are somewhat arbitrary and may not correspond to184

populations with distinct differences between conditions. Our goal is to identify clusters that are not only185

transcriptionally similar but also respond similarly to an experimental perturbation.186

A naı̈ve approach to identify such clusters would be to simply concatenate the EES to the gene expres-187

sion data as an additional feature and cluster on these combined features. However, the magnitude of the188

EES does not give a complete picture of differences in response to a perturbation. For example, there are189

multiple ways for a cell to have an EES value of 0.5. In one case, it might be that there is a contiuum of190

cells one end of which is enriched for the experimental condition, the other end for the control condition.191

In this case cells halfway through this continuum, or transitional cells will have an EES of 0.5 (we show192

an example of this in Section 2.6). Another scenario that would result in an EES value of 0.05 is even193

mixing of a population of cells between control and experimental conditions (with no transition), i.e., cells194

that are part of a non-responsive cell subtype that is unchanged between conditions (we show an example195

of this in Section 2.8). Figure S2. To differentiate between such response regimes we must consider not196

only the magnitude of the EES but also the frequency of the RES and how fast it changes over the manifold.197

1Freely available at colab.research.google.com, most instances provide a 4-core 2GHz CPU and 20GB of RAM.
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Indeed in the transitional case the RES changes slowly or has low frequency over the manifold, and in the198

even-mixture case it changes frequently or has high frequency over the manifold.199

As no contemporary method is suitable for resolving these cases, we developed an algorithm that in-200

tegrates gene expression, the magnitude of EES, and the frequency response of the RES over the cellular201

manifold (Figure S2d). In particular, we cluster using local frequency profiles of the RES around each202

cell. This paradigm is motivated by the utility of analyzing cells based on different classes of heterogeneity.203

This method, which we call vertex-frequency clustering (VFC), is an adaptation of the signal-biased spectral204

clustering proposed by Shuman et al. [25]. The VFC algorithm provides a new feature basis for clustering205

based on the spectrogram [25] of the RES, which can be thought of as a histogram of frequency components206

of a graph signal. We observe that we can distinguish between non-responsive populations of cells with high207

frequency RES components and transitional populations with lower frequency RES components. The VFC208

feature basis combines this frequency information with the magnitude of the EES and the cell similarity209

graph to identify phenotypically similar populations of cells with uniform response to a perturbation. The210

algorithm is discussed in further detail in Section 4.2.211

2.5 Quantitative validation of the EES and VFC algorithms212

To validate the EES and VFC algorithms, we used a combination of simulated scRNA-seq data and synthetic213

experiments using previously published datasets. Because no previous benchmarks exist to quantify the214

ability of an algorithm to capture changes in density between samples, we needed to create a new framework215

for our comparisons. To create simulated scRNA-seq data, we used Splatter [26]. To ensure the algorithms216

worked on real scRNA-seq datasets, we also used two previously published datasets comprising Jurkat217

T cells [16] and cells from whole zebrafish embryos [18]. In each dataset, we created a ground truth218

probability distribution over all cells that determined the probability each cell would be observed in one of219

two simulated conditions. In each simulation, different populations of cells of varying sizes were depleted220

or enriched. Cells were then randomly split into two samples according to this ground truth probability and221

used as input to each algorithm. More detail on the comparison experiments is provided in Section 4.7.222

We performed three sets of quantitative comparisons. First, we calculated the degree to which the EES223

algorithm captured the ground truth conditional probability distribution in each simulation. We found that224

the Pearson correlation between the EES and the simulated probabilities densities outperformed other graph225

smoothing algorithms by 10-52% on simulated data and 36-51% on real datasets (Figure 3, Table 1). We226

also determined that the EES is robust to the number of cells captured in the experiment with only a 10%227

decrease in performance when 65% of the cells in the T cell dataset were removed (Figure S5). We used228

results from these simulations to determine the optimal parameters for the EES algorithm (Section 7.2).229

Next, we quantified the accuracy of the VFC algorithm to identify clusters of cells that were enriched or230

depleted in each condition. When compared to six common clustering algorithms including Leiden [27] and231

CellHarmony [11], VFC was the top performing algorithm on every simulation on the T cell data and best232

performing on average on the zebrafish dataset with a 57% increase in average performance over Louvain,233

the next best algorithm (Figures S6a-c & S7, Table 2). Finally, we calculated how well VFC clusters234

could be used to calculate the gene signature of a perturbation. Gene signatures obtained using VFC and235

EES had compared to signatures obtained using direct comparison of two conditions–the current standard–236

and those obtained using other clustering algorithms (Figure S6d). These results confirm that EES and237

VFC outperform existing methods for analyzing multiple scRNA-seq datasets from different experimental238

conditions.239
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Figure 3: Quantitative comparison of the EES and VFC. (a) Single cell datasets were generated using Splatter [26] or taken from
previously published experiments [16, 18]. Ground truth EES probabilities were randomly generated 20 times with varying noise
and regions of enrichment for the simulated data and 100 random EES were generated for the real-world datasets. Each cell is
colored the EES. (b) Comparison of the EES algorithm to kNN averaging of the RES and graph Averaging. (c) Comparison of VFC
to popular clustering algorithms. Adjusted Rand Score (ARS) quantifies how accurately each method detects regions that were
enriched, depleted, or unchanged in the experimental condition relative to the control. Higher values are better.
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Dataset EES Graph Averaging kNN Averaging

Branch and Cluster 0.82 (0.05) 0.41 (0.05) 0.73 (0.04)
Non-monotonic 0.94 (0.03) 0.52 (0.06) 0.85 (0.03)

Four clusters 0.91 (0.06) 0.44 (0.07) 0.76 (0.07)
Three Branches 0.90 (0.03) 0.48 (0.07) 0.73 (0.07)

T cells [16] 0.98 (0.01) 0.72 (0.06) 0.32 (0.04)
Zebrafish [18] 0.98 (0.01) 0.53 (0.07) 0.80 (0.07)

Table 1: Quantitative comparison of methods for label smoothing over a graph. 40 random seeds were used for each of 4 synthetic
datasets. 100 random seeds were used to create random signals on the T cell and zebrafish datasets. Average Pearson Correlation
with ground truth signal is displayed with standard deviation in parentheses. Top performing algorithm is bolded.

Dataset VFC Spectral Louvain Leiden KMeans CellHarmony

T cell [16] 0.62 (0.07) 0.23 (0.11) 0.31 (0.13) 0.34 (0.14) 0.11 (0.04) 0.13 (0.05)
Zebrafish [18] 0.53 (0.31) 0.13 (0.15) 0.23 (0.22) 0.19 (0.21) 0.23 (0.20) 0.22 (0.16)

Table 2: Quantitative comparison of clustering methods to identify the cell types affected by a simulated experimental perturbation
using real world data.

2.6 The EES identifies a biologically relevant signature of T cell activation240

To demonstrate the ability of the EES to identify a biologically relevant EES, we apply the algorithm to241

Jurkat T cells cultured for 10 days with and without anti-CD3/anti-CD28 antibodies as part of a Cas9 knock-242

out screen published by Datlinger et al. [16] (Figure 4a). The goal of this experiment was to characterize the243

transcriptional signature of T cell Receptor (TCR) activation and determine the impact of gene knockouts in244

the TCR pathway. First, we visualized cells using PHATE, a visualization and dimensionality reduction tool245

for single-cell RNA-seq data (Figure 4b) [3]. We observed a large degree of overlap in cell states between246

the stimulated and control conditions, as noted in the original study [16].247

To determine a gene signature of the TCR activation, we considered anti-CD3/anti-CD28 stimulated248

cells with no CRISPR perturbation. First, we computed EES and VFC clusters on these samples. Then249

we derived a gene signature by performing differential expression analysis between VFC clusters with the250

highest and lowest EES values. We identified 2335 genes q-value< 0.05 as measured by a rank sum test with251

a Benjamini & Hochberg False Discovery Rate correction [28]. We then compared this signature to those252

obtained using the same methods from our simulation experiments. To determine the biological relevance253

of these signature genes, we performed gene set enrichment analysis on both gene sets using EnrichR [29].254

Considering the GO terms highlighted by Datlinger et al. [16], we found that the MELD gene list has the255

highest combined score in all of the gene terms we examined (Figure 4d). These results show that the EES256

and VFC are capable of identifying a biologically relevant dimension of T cell activation at the resolution257

of single cells. Furthermore, the gene signature identified using the MELD toolkit outperformed standard258

differential expression analyses to identify the signature of a real-world experimental perturbation.259

Finally, to quantitatively rank the impact of each Cas9 gene knockout on TCR activation we examined260

the distribution of EES values for all stimulated cells transfected with gRNAs targeting a given gene (Figure261

S8). We observed a large variation in the impact of each gene knockout consistent with the published results262

from Datlinger et al. [16]. Encouragingly, our results agree with the bulk RNA-seq validation experiment263
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Figure 4: MELD recovers signature of TCR activation. (a) Jurkat T-cells were stimulated with α-CD3/CD28 coated beads for
10 days before collection for scRNA-seq. (b) Examining a PHATE plot, there is a large degree of overlap in cell state between
experimental conditions. However, after MELD it is clear which cells states are prototypical of each experimental condition. (c)
Vertex Frequency Clustering identifies an activated, a naive, and an intermediate population of cells. (d) Signature genes identified
by comparing the activated to naive cells are enriched for annotations related to TCR activation using EnrichR analysis. Combined
scores for the MELD gene signature are shown in red and scores for a gene signature obtained using the sample labels only are
shown in grey.

of Datlinger et al. [16] showing strongest depletion of TCR response with knockout of kinases LCK and264

ZAP70 and adaptor protein LAT. We also find a slight increase in EES values (and therefore stimulation)265

in cells in which negative regulators of TCR activation are knocked out, including PTPN6, PTPN11, and266

EGR3. Together, these results show that the EES and VFC algorithms are suitable for characterizing a267

biological process such as TCR activation in the context of a complex Cas9 knockout screen.268

2.7 VFC improves characterization of subpopulation response to chd loss-of-function269

To demonstrate the utility of EES analysis applied to datasets composed of multiple cell types, we applied270

EES analysis to a recently published chordin loss-of-function experiment in zebrafish using CRISPR/Cas9271

(Figure 5) [18]. In this system, loss of chordin function results in a ventralization phenotype characterized272
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by expansion of the ventral mesodermal tissues at the expense of the dorsally-derived neural tissues [30–32].273

In the experiment published by Wagner et al. [18], zebrafish embryos were injected at the 1-cell stage with274

Cas9 and gRNAs targeting either chordin (chd), a BMP-antagonist required for developmental patterning,275

or tyrosinase (tyr), a control gene not expected to affect cell composition at these stages. Embryos were276

collected for scRNA-seq at 14-16 hours post-fertilization (hpf). We expect incomplete penetrance of the277

perturbation in this dataset because of the mosaic nature of Cas9 mutagenesis [33].278

First, we calculate the EES between the chordin and tyrosinase conditions. Because the experiment279

was performed in triplicate with three paired chd and tyr samples, we first ran the EES algorithm for each280

replicate and then averaged the replicate-specific conditional likelihoods to calculate an EES per dataset281

(Figure S9). To characterize the effect of mutagenesis on various cell populations, we first examined the282

distribution of EES values across the 28 cell state clusters generated by Wagner et al. [18] (Figure 5b). We283

find that overall the most enriched clusters contain mesodermal cells and the most depleted clusters contain284

dorsally-derived neural cells matching the ventralization phenotype previously reported with chd loss-of-285

function [30–32]. However, we observe that several clusters have a wide range of EES values suggesting286

that there are cells in these clusters with differing responses to chd. Using VFC analysis we find that several287

of these clusters contain biologically distinct subpopulations of cells with divergent responses to chd knock288

out. Next, we examine three of these cases in depth and reveal previously unreported effects of chd loss-of-289

function within this dataset.290

An advantage of using the EES and VFC is the ability to characterize the response to the perturbation291

at the proper resolution (Figure 2c). We infer that the resolution of the published clusters is too coarse292

because the distribution of EES values is very large for several of the clusters. For example the EES values293

within the Tailbud – Presomitic Mesoderm (TPM) range from 0.29-0.94 indicating some cells are strongly294

enriched while others are depleted. To disentangle these effects, we performed VFC subclustering for all295

clusters using the strategy proposed in Section 4.3. We found 12 of the 28 published clusters warranted296

further subclustering with VFC resulting in a total of 50 final cluster labels. To determine the biological297

relevance of the VFC clusters, we manually annotated each of the three largest clusters subdivided by VFC.298

The Tailbud – Presomitic Mesoderm (TPM) cluster exhibits the largest range of EES values of all the299

clusters annotated by Wagner et al. [18]. In a PHATE visualization of the cluster, we observe many differ-300

ent branches of cell states, each with varying ranges of EES values (Figure 5c). Within the TPM cluster,301

we find four subclusters using VFC (Figure 5d). Using established markers [19], we identify these clus-302

ters as immature adaxial cells, mature adaxial cells, presomitic mesoderm cells, and hematopoietic cells303

(Figures 5c & S10). Examining the distribution of EES scores within each cell type, we conclude that304

the large range of EES values within the TPM cluster is due to largely non-overlapping distributions of305

scores within each of these subpopulations (Figure 5e). The immature and mature adaxial cells, which are306

embryonic muscle precursors, have low EES values indicating depletion of these cells in the chd condition307

which matches observed depletion of myotomal cells in chordin mutants [30]. Conversely, the presomitic308

mesoderm and hematopoietic mesoderm have high EES values, indicating that these cells are enriched in a309

chordin mutant. Indeed, expansion of the hematopoietic mesoderm has been observed in chordin morphants310

[34] and expansion of the presomitic mesoderm was observed in siblings of the chd embryos by Wagner311

et al. [18]. This heterogeneous effect was entirely missed by the fold-change analysis, since the averaging312

of all cells assigned to the TPM cluster caused the depletion of adaxial cells to be masked by the expansion313

of the presomitic and hematopoietic mesoderm.314

Another advantage of vertex-frequency clustering is that we can now differentiate between a change315

in gene expression levels across conditions and a change in abundance of cells expressing a given gene316

between conditions. When we examined marker gene expression within each of the VFC subclusters, we317
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Figure 5: Characterizing chordin Cas9 mutagenesis with MELD. (a) PHATE shows a high degree of overlap of sample labels
across cell types. Applying MELD to the mutagenesis vector reveals regions of cell states enriched in the chd or tyr conditions.
(b) Using published cluster assignments2, we show that the EES quantifies the effect of the experimental perturbation on each cell,
providing more information than calculating fold-change in the number of cells between conditions in each cluster (grey dot), as
was done in the published analysis. Color of each point corresponds to the sample labels in panel (a). Generally, average EES value
aligns with the fold-change metric. However, we can identify clusters, such as the TPM or TSC, with large ranges of EES values
indicating non-uniform response to the perturbation. (c) Visualizing the TPM cluster using PHATE, we observe several cell states
with mostly non-overlapping EES values. (d) Vertex Frequency Clustering identifies four cell types in the TPM. (e) We see the
range of EES values in the TPM cluster is due to subpopulations with divergent responses to the chd perturbation. (f) We observe
that changes in gene expression between conditions is driven mostly by changes in abundance of subpopulations with the TPM
cluster.
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find different trends in expression in each cluster (Figure 5f). For example, Myod1, a marker of adaxial cells,318

is lowly expressed in the presomitic and hematopoietic mesoderm, but highly expressed in adaxial cells.319

Using a rank sum test, we find that Myod1 is not differentially expressed between conditions within any of320

the VFC clusters despite there being differential expression using all cells in the TPM cluster (Figure 5f).321

We find a similar trend with Tbx6, a mesoderm marker that is not expressed in adaxial cells. We find Tbx6 is322

differentially expressed between chd and tyr embryos within the whole cluster but not within the adaxial or323

presomitic mesoderm clusters. These results show that the observed change in expression of these genes in324

the published analysis was in fact due to changes in abundance of cell subpopulations that led to misleading325

differences in statistics calculated across multiple populations as a whole. Using the EES and VFC, we can326

identify more appropriate clusters.327

We similarly analyzed the ”Epidermal - pfn1 (EPP)” and ”Tailbud - Spinal Cord (TSC)” clusters which328

had the 6rd and 3th largest standard deviation in EES values of all published clusters, respectively (Figure329

S10). We used VFC to break up the Epidermal - pfn1 cluster into two subclusters. Among the top differen-330

tially expressed genes between the resulting clusters we find tbx2b, crabp2a, and pfn1. Crabp2a, a marker331

of the neural plate border [19], is more lowely expressed in the cluster with higher EES values, suggesting332

that chd loss-of-function inhibits expression of crabp2a. This is consistent with previous studies showing a333

requirement of chordin for proper gene expression patterning within the neural plate [35, 36].334

Within the Tailbud - Spinal Cord cluster we further identified three subpopulations of cells using VFC.335

Examining gene expression within the subclusters, we can see that the published cluster contains different336

populations of cells. One group expresses markers of the spinal cord (neurog, elavl3) and dorsal tissues337

(olig3, pax6a/b) with an average EES of 0.38, which is consitent with prior evidence that chd loss-of-338

function disrupts specification of the neuroectoderm and dorsal tissues such as the spinal cord [30]. Ex-339

amining the two remaining subclusters, we see that these cells resemble cells found in both the TPM and340

Epidermal - Pfn1 clusters. One cluster exhibits high levels of crabp2a and EES values <0.5 similar to the341

neural plate border cells subpopulation within the Epidermal - Pfn1 cluster. Similarly, we find the remaining342

cluster expressed markers of the tailbud and presomoitic mesoderm including tbx6, sox2, and fgf8a. To-343

gether, these results demonstrate the advantage of using the EES and vertex frequency clustering to quantify344

the effect of genetic loss-of-function perturbations in a complex system with many cell types.345

2.8 Identifying the effect of IFNγ stimulation on pancreatic islet cells346

Next to dermine the ability of the EES and VFC algorithms to uncover new biology, we characterized a347

newly generated dataset of human pancreatic islet cells cultured for 24 hours with and without interferon-348

gamma (IFNγ), a system with significant clinical relevance to auto-immune diseases of the pancreas such349

as Type I Diabetes mellitus (T1D). The pathogenesis of T1D is generally understood to be caused by T350

cell mediated destruction of beta cells in the pancreatic islets [37] and previous reports suggest that islet-351

infiltrating T cells secrete IFNγ during the onset of T1D[38]. It has also been described that IFNγ-expressing352

T cells mediate rejection of pancreatic islet allografts [39]. Previous studies have characterized the effect of353

these cytokines on pancreatic beta cells using bulk RNA-sequencing[40], but no studies have addressed this354

system at single-cell resolution.355

To better understand the effect of immune cytokines on islet cells, we cultured islet cells from three356

2Abbreviations: MLP: Lateral plate, TPM: Tailbud - Presomitic mesoderm, HG: Hatching gland, MBI: Blood island, EPP:
Epidermal - pfn1, MEN: Endothelial, PRD: Periderm, EPA: Epidermal anterior, EPO: Otic placode, LLP: Lateral line, EPF: Epi-
dermal - foxi3a, GL: Germline, NRB: Rohon beard, NFP: Floorplate, MHF: Heart field, MPA: Pharyngeal arch, NCC: Neural
crest - crestin, END: Endoderm, TSC: Tailbud - spinal cord, NC: Neural crest, NTE: Telencephalon, MPD: Pronephric duct, NHB:
Hindbrain, NMB: Midbrain, NTC: Notocord, NDI: Diencephalon, DN: Neurons, OP: Optic
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donors for 24 hours with and without IFNγ and collected cells for scRNA-seq. After filtering, we obtained357

5,708 cells for further analysis. Examining the expression of marker genes for major cell types of the358

pancreas, we observed a noticeable batch effect associated with the donor ID, driven by the maximum359

expression of glucagon, insulin, and somatostatin in alpha, beta, and delta cells respectively (Figure S11a).360

To correct for this difference while preserving the relevant differences between donors, we applied the MNN361

kernel correction described in Section 4.1.1 to merge samples from each donor. Examining PHATE plots362

after batch correction, we observe three distinct populations of cells corresponding to alpha, beta, and delta363

cells (Figure 6a).364

To quantify the effect of IFNγ treatment across these cell types, we calculated the EES of IFNγ stimu-365

lation using the same strategy to handle matched replicates as was done for the zebrafish data (Figure 6a).366

We then used established marker genes of islet cells [41] to identify three major populations of cells corre-367

sponding to alpha, beta, and delta cells (Figures 6a-b & S11b). We next applied vertex frequency clustering368

to each of the three endocrine cell types and identified a total of nine clusters. Interestingly, we found two369

clusters of beta cells with intermediate EES values. These clusters are cleanly separated on the PHATE370

plot of all islet cells (Figure 6a) and together the beta cells represent largest range of EES scores in the371

dataset. To further inspect these clusters, we consider a separate PHATE plot of the cells in the four beta372

cell clusters (Figure 6e). Examining the distribution of RES values in these intermediate cell types, we373

find that one cluster, which we label as Non-responsive, exhibits high frequency RES values indicative of374

a population of cells that does not respond to an experimental treatment. The Responsive - Mid cluster375

matches our characterization of a transitional population with a structured distribution of RES values. Sup-376

porting this characterization, we find a lack of upregulation in IFNγ-regulated genes such as STAT1 in the377

non-responsive cluster, similar to the cluster of beta cells with the lowest EES values (Figure 6f).378

In order to understand the difference between the non-responsive beta cells and the responsive popula-379

tions, we calculated differential expression of genes in the non-responsive clusters and all others as previ-380

ously described [4]. The gene with the greatest difference in expression was insulin, the major hormone381

produced by beta cells, which is approximately 2.5-fold increased in the non-responsive cells (Figure 6f).382

This cluster of cells bears resemblance to a recently described “extreme” population of beta cells that exhibit383

elevated insulin mRNA levels and are found to be more abundant in diabetic mice[42, 43]. That these cells384

appear non-responsive to IFNγ stimulation and exhibit extreme expression of insulin suggests that the pres-385

ence of extreme high insulin in a beta cell prior to IFNγ exposure may inhibit the IFNγ response pathway386

through an unknown mechanism.387

We next characterized the gene expression signature of IFNγ treatment across all three endocrine cell388

types (Figure 6c-d). Using a rank sum test to identify genes that change the most between the clusters389

with highest and lowest EES values within each endocrine population, we identify 911 genes differentially390

expressed in all three cell types. This consensus signature includes activation of genes in the JAK-STAT391

pathway including STAT1 and IRF1 [44] and in the IFN-mediated antiviral response including MX1, OAS3,392

ISG20, and RSAD2 [45–47]. The activation of both of these pathways has been previously reported in beta393

cells in response to IFNγ [48, 49]. Furthermore, we observe a high degree of overlap in the IFNγ response394

between alpha and beta cells, but less so between delta cells and either alpha or beta cells. Examining the395

significantly differentially expressed genes, we find 2394 shared genes in the signatures of alpha and beta396

cells, but only 911 shared by alpha, beta, and delta cells. To confirm the validity of our gene signatures, we397

use EnrichR [29] to perform gene set enrichment analysis on the signature genes and find strong enrichment398

for terms associated with interferon signalling pathways (Figure S11d). From these results we conclude399

that although IFNγ leads to upregulation of the canonical signalling pathways in all three cell types, the400

response to stimulation in delta cells is subtly different to that of alpha or beta cells.401
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Figure 6: MELD characterizes the response to IFNγ in pancreatic islet cells. (a) PHATE visualization of pancreatic islet cells
cultured for 24 hours with or without IFNγ. Vertex-frequency clustering identifies nine clusters corresponding to alpha, beta, and
delta cells. (b) Examining the EES in each cluster, we observe that beta cells have a wider range of responses than alpha or delta
cells. (c) We identify the signature of IFNγ stimulation by calculating differential expression between the VFC clusters with the
highest and lowest EES values for each cell type. We find a high degree of overlap of the significantly differentially expressed genes
between alpha and beta cells. (d) Results of gene set enrichment analysis for signature genes in each cell type. Beta cells have
the strongest enrichment for IFN response pathway genes. (e) Examining the four beta cell clusters more closely, we observe two
populations with intermediate EES values. These populations are differentiated by the structure of the RES in each cluster (outset).
In the non-responsive cluster, the RES has very high frequency unlike the low frequency pattern in the transitional Responsive - mid
cluster. (f) We find that the non-responsive cluster has low expression of IFNγ-regulated genes such as STAT1 despite containing
roughly equal numbers of unstimulated and stimulated cells. This cluster is marked by approximately 40% higher expression of
insulin.
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Here, we applied EES analysis to a new dataset to identify the signature of IFNγ stimulation across402

alpha, beta, and delta cells. Furthermore, we used vertex frequency clustering to identify a population of403

beta cells with high insulin expression that appears unaffected by IFNγ stimulation. Together, these results404

demonstrate the utility of EES analysis to reveal novel biological insights in a clinically-relevant biological405

experiment.406

2.9 Analysis of donor-specific composition407

Although most of the analysis in this manuscript focuses on the two-sample condition, we show that it is408

possible to use the EES to quantify the differences between more than two conditions. In the islet dataset,409

we have samples of treatment and control scRNA-seq data from three different donors. To quantify the410

differences in cell profiles between samples, we first create a one-hot vector for each donor label and nor-411

malize across all three smoothed vectors. This produces a measure of how likely each transcriptional profile412

is to be observed in donor 1, 2, or 3. We then analyze each of these signals for each cluster examined in413

Section 2.8 (Figure S12). We find that all of the alpha cell and delta cell clusters are depleted in donor 3 and414

the non-responsive beta cell cluster is enriched primarily in donor 1. Furthermore, the most highly activated415

alpha cell cluster is enriched in donor 2. As with the EES derived for the IFNγ response, it is also possible to416

identify donor-specific changes in gene expression, or clusters of cells differentially abundant between each417

donor. We propose that this strategy could be used to extend MELD analysis to experiments with multiple418

categorical experimental conditions, such as data collected from different tissues or stimulus conditions.419

3 Discussion420

When performing multiple scRNA-seq experiments in various experimental and control conditions, re-421

searchers often seek to characterize the cell types or sets of genes that change from one condition to another.422

However, quantifying these differences is challenging due to the subtlety of most biological effects relative423

to the biological and technical noise inherent to single-cell data. To overcome this hurdle, we designed the424

EES algorithm and vertex frequency clustering to quantify compositional differences between samples. The425

key innovation in the EES algorithm is quantifying the effect of a perturbation at the resolution of single426

cells using theory from manifold learning.427

We have shown that our analysis framework improves over the current best-practice of clustering cells428

based on gene expression and calculating differential abundance and differential expression within clusters.429

Clustering prior to quantifying compositional differences can fail to identify the divergent responses of sub-430

populations of cells within a cluster. To identify clusters of cells with cohesive responses to a perturbation,431

we introduce a novel clustering algorithm, called Vertex-Frequency Clustering. Using the RES and EES, we432

derive clusters of cells as the correct cluster size to identify cells that are most enriched in either condition,433

cells transitioning between these states, and cells that are unaffected by an experimental perturbation. We434

show that gene signatures extracted using these clusters outperform those derived from direct comparison435

of two samples.436

We demonstrated the application of EES and vertex frequency clustering analysis on single-cell datasets437

from three different biological systems and experimental designs. We provided a framework for handling438

paired experimental and control replicates and guidance on analysis of complex experimental designs with439

more than two conditions and in the context of a single-cell Cas9 knockout screen. In our analysis of the440

zebrafish dataset, we showed greatly improved resolution in our analysis facilitated by the use of the EES441

and VFC algorithms. In three cases, we show that the published clusters contained biologically relevant442
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subpopulations of cells with divergent responses the the experimental perturbation. We also described a443

previously unpublished dataset of pancreatic islet cells stimulated with IFN-γ and characterize a previously444

unreported subpopulation of β cells that appeared unresponsive to stimulation. We related this to emerg-445

ing research describing a β cells subtype marked by high insulin mRNA expression and unique biological446

responses.447

We anticipate MELD to have widespread use in many contexts since experimental labels can arise in448

many contexts. As we showed, if we have sets of single cell data from healthy individuals vs sick individuals,449

the EES could indicate cell types specific to disease. This framework could potentially be extended to patient450

level measurements where patients phenotypes as measured with clinical variables and laboratory values can451

be associated with enriched states in disease or treatment conditions. Indeed MELD has already seen use452

in several contexts [50–54]. To facilitate the application of these tools for future scRNA-seq analysis, we453

provide open-source Python implementations that inherit the Scikit-learn API in the MELD package on454

GitHub https://github.com/KrishnaswamyLab/MELD.455

4 Methods456

In this section, we will provide details about our computational methods for computing the EES, as well as457

extracting information from the EES by way of a method we call vertex frequency clustering. We will outline458

the mathematical foundations for each algorithm, explain how they relate to previous works in manifold459

learning and graph signal processing, and provide details of the implementations of each algorithm.460

4.1 Computation of the EES461

Computing the EES involves the following steps each of which we will describe in detail.462

1. A cell similarity graph is built over the combined data from all samples where each node or vertex in463

the graph is a cell and edges in the graph connect cells with similar gene expression values.464

2. The condition label for each cell is used to create the Raw Experimental Signal (RES).465

3. The RES is then smoothed over the graph to calculate the EES using a graph filter called the EES466

filter.467

4.1.1 Graph construction468

The first step in the EES algorithm is to create a cell similarity graph. In single-cell RNA sequencing,469

each cell is measured as a vector of gene expression counts measured as unique molecules of mRNA.470

Following best practices for scRNA-seq analysis [1], we normalize these counts by the total number of471

Unique Molecular Indicators (UMIs) per cell to give relative abundance of each gene and apply a square-472

root transform. Next we compute the similarity all pairs of cells, by using their Euclidean distances as an473

input to a kernel function. More formally, we compute a similarity matrix W such that each entry Wij474

encodes the similarity between cell gene expression vectors xi and xj from the dataset X .475

In our implementation we use α-decaying kernel proposed by Moon et al. [3] because in practice it pro-476

vides an effective graph construction for scRNA-seq analysis. However, in cases where batch, density, and477

technical artifacts confound graph construction, we also use a mutual nearest neighbor kernel as proposed478

by Haghverdi et al. [9].479
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The α-decaying kernel [3] is defined as480

Kk,α(x,y)= 1
2

exp
(
−
(
‖x−y‖2
εk(x)

)α)
+ 1

2
exp

(
−
(
‖x−y‖2
εk(y)

)α)
, (4)

where x, y are data points, εk(x), εk(y) are the distance from x, y to their k-th nearest neighbors, respec-481

tively, and α is a parameter that controls the decay rate (i.e., heaviness of the tails) of the kernel. This482

construction generalizes the popular Gaussian kernel, which is typically used in manifold learning, but also483

has some disadvantages alleviated by the α-decaying kernel, as explained in Moon et al. [3].484

The similarity matrix effectively defines a weighted and fully connected graph between cells such that485

every two cells are connected and that the connection between cells x and y is given by K(x, y). To allow486

for computational efficiency, we sparsify the graph by setting very small edge weights to 0.487

While the kernel in Equation 4 provides an effective way of capturing neighborhood structure in data,
it is susceptible to batch effects. For example, when data is collected from multiple patients, subjects, or
environments (generally referred to as “batches”), such batch effects can cause affinities within each batch
are often much higher than between batches, thus artificially creating separation between them rather than
follow the underlying biological state. To alleviate such effects, we adjust the kernel construction using an
approach inspired by recent work from by Haghverdi et al. [9] on the Mutual Nearest Neighbors (MNN)
kernel. We extend the standard MNN approach, which has previous been applied to the k-Nearest Neighbors
kernel, to the α-decay kernel as follows. First, within each batch, the affinities are computed using Equation
4. Then, across batches, we compute slightly modified affinities as

K′k,α(x,y)=min

{
exp

(
−
(
‖x−y‖2
ε′
k
(x)

)α)
,exp

(
−
(
‖x−y‖2
ε′
k
(y)

)α)}
,

where ε′k(x) are now computed via the k-th nearest neighbor of x in the batch containing y (and vice versa
for ε′k(y)). Next, a rescaling factor γxy is computed such that∑

z∈batch(y)

γxyK
′
k,α(x, z) ≤ β

∑
z∈batch(x)

Kk,α(x, z)

for every x and y, where β > 0 is a user configurable parameter. This factor gives rise to the rescaled kernel

K ′k,α,β(x, y) =

{
K ′k,α(x, y) if batch(x) = batch(y)

γxyK
′
k,α(x, y) otherwise.

Finally, the full symmetric kernel is then computed as

K ′k,α(x, y) = K ′k,α(y, x) = min
{
K ′k,α,β(x, y),K ′k,α,β(y, x)

}
,

and used to set the weight matrix for the constructed graph over the data. Note that this construction is a488

well-defined extension of (Equation 4), as it reduces back to that kernel when only a single batch exists in489

the data.490

We also perform an anisotropic density normalization transformation so that the kernel reflects the un-
derlying geometry normalized by density as in Coifman and Lafon [55]. The density normalized kernel
Kq
k,α divides out by density, estimated by the sum of outgoing edge weights for each node is as follows,

Kq
k,α =

K ′k,α(x, y)

q(x)q(y)
,
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where
q(x) =

∫
X
K ′k,αq(y)dy.

We use this density normalized kernel in all experiments. When the data is uniformly sampled from491

the manifold then the density around each point is constant then this normalization has no effect. When the492

density is non-uniformly sampled from the manifold this allows an estimation of the underlying geometry493

unbiased by density. This is especially important when performing density estimation from empirical dis-494

tributions with different underlying densities. By normalizing by density, we allow for construction of the495

manifold geometry from multiple differently distributed samples and individual density estimation for each496

of these densities on the same support. This normalization is further discussed in Section 4.1.10.497

4.1.2 Estimating density and conditional likelihood on a graph498

Density estimation is difficult in high dimensions because the number of samples needed to accurately499

reconstruct density with bounded error is exponential in the number of dimensions. Since general high500

dimensional density estimation is an intrinsically difficult problem, additional assumptions must be made.501

A common assumption is that the data exists on a manifold of low intrinsic dimensionality in ambient space.502

Under this assumption a number of works on graphs have addressed density estimation limited to the support503

of the graph nodes [56–60]. Instead of estimating kernel density or histograms in D dimensions where D504

could be large, these methods rendered the data as a graph, and density is estimated each point on the graph505

(each data point) as some variant counting the number of points which lie within a radius of each point on506

the graph.507

The EES algorithm also estimates density of a signal on a graph. We use a generalization of the stan-508

dard heat kernel on the graph to estimate density (See Section 4.1.7). We draw analogs between the EES509

and Gaussian kernel density estimation on the manifold. Where the EES with a specific parameter set is510

equivalent to the Gaussian density estimate on the graph (See Section 4.1.10).511

4.1.3 Graph Signal Processing512

The EES algorithm leverages recent advances in graph signal processing (GSP) [21], which aim to extend513

traditional signal processing tools from the spatiotemporal domain to the graph domain. Such extensions514

include, for example, wavelet transforms [61], windowed Fourier transforms [25], and uncertainty prin-515

ciples [62]. All of these extensions rely heavily on the fundamental analogy between classical Fourier516

transform and graph Fourier transform (described in the next section) derived from eigenfunctions of the517

graph Laplacian, which is defined as518

L := D −W, (5)

where D is the degree matrix, which is a diagonal matrix with Dii = d(i) =
∑

jWij containing the degrees519

of the vertices of the graph defined by W .520

4.1.4 The Graph Fourier Transform521

One of the fundamental tools in traditional signal processing is the Fourier transform, which extracts the522

frequency content of spatiotemporal signals [63]. Frequency information enables various insights into im-523

portant characteristics of analyzed signals, such as pitch in audio signals or edges and textures in images.524

Common to all of these is the relation between frequency and notions of smoothness. Intuitively, a function525

is smooth if one is unlikely to encounter a dramatic change in value across neighboring points. A simple526
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way to imagine this is to look at the zero-crossings of a function. Consider, for example, sine waves sin ax527

of various frequencies a = 2k, k ∈ N. For k = 0, the wave crosses the x-axis (a zero-crossing) when x = π.528

When we double the frequency at k = 1, our wave is now twice as likely to cross the zero and is thus less529

smooth than k = 0. This simple zero-crossing intuition for smoothness is relatively powerful, as we will see530

shortly.531

Next, we show that our notions of smoothness and frequency are readily applicable to data that is not532

regularly structured, such as single-cell data. The graph Laplacian L can be considered as a graph analog533

of the Laplace (second derivative) operator ∇2 from multivariate calculus. This relation can be verified by534

deriving the graph Laplacian from first principles.535

For a graph G on N vertices, its graph Laplacian L and an arbitrary graph signal f ∈ RN , we use
Equation 5 to write

(L f) (i) = ([D −W ] f) (i)

= d(i)f(i)−
∑
j

Wijf(j)

=
∑
j

Wij (f(i)− f(j)) . (6)

As the graph Laplacian is a weighted sum of differences of a function around a vertex, we may interpret it536

analogously to its continuous counterpart as the curvature of a graph signal. Another common interpretation537

made explicit by the derivation in Equation 6 is that (Lf)(i) measures the local variation of a function at538

vertex i.539

Local variation naturally leads to the notion of total variation,

TV(f) =
∑
i,j

Wij(f(i)− f(j))2,

which is effectively a sum of all local variations. TV(f) describes the global smoothness of the graph signal
f . In this setting, the more smooth a function is, the lower the value of the variation. This quantity is more
fundamentally known as the Laplacian quadratic form,

fTL f =
∑
i,j

Wij(f(i)− f(j))2. (7)

Thus, the graph Laplacian can be used as an operator and in a quadratic form to measure the smoothness540

of a function defined over a graph. One effective tool for analyzing such operators is to examine their541

eigensystems. In our case, we consider the eigendecomposition L = ΨΛΨ−1, with eigenvalues3 Λ :=542

{0 = λ1 ≤ λ2 ≤ · · · ≤ λN} and corresponding eigenvectors Ψ := {ψi}Ni=1. As the Laplacian is a square,543

symmetric matrix, the spectral theorem tells us that its eigenvectors in Ψ form an orthonormal basis for544

RN . Furthermore, the Courant-Fischer theorem establishes that the eigenvalues in Λ are local minima of545

fTLf when fT f = 1 and f ∈ U as dim(U) = i = 1, 2, . . . , N . At each eigenvalue λi this function has546

f = ψi. In summary, the eigenvectors of the graph Laplacian (1) are an orthonormal basis and (2) minimize547

the Laplacian quadratic form for a given dimension.548

3Note that in this discussion we abuse notation by treating Λ as an ordered set of Laplacian eigenvalues and as the diagonal
matrix with entries from the elements of this set. Similarly, Ψ is both the set of column eigenvectors {ψi}Ni=1 as well as the N ×N
matrix [ψ1ψ2 · · ·ψN ] with eigenvector as a column.
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Henceforth, we use the term graph Fourier basis interchangeably with graph Laplacian eigenvectors,549

as this basis can be thought of as an extension of the classical Fourier modes to irregular domains [21]. In550

particular, the ring graph eigenbasis is composed of sinusoidal eigenvectors, as they converge to discrete551

Fourier modes in one dimension. The graph Fourier basis thus allows one to define the graph Fourier552

transform (GFT) by direct analogy to the classical Fourier transform.553

The GFT of a signal f is given by f̂(λ`) =
∑

i f(i)ψT` (i) = 〈f , ψ`〉, which can also be written as the
matrix-vector product

f̂ = ΨT f . (8)

As this transformation is unitary, the inverse graph Fourier transform (IGFT) is f = Ψf̂ . Although the graph554

setting presents a new set of challenges for signal processing, many classical signal processing notions555

such as filterbanks and wavelets have been extended to graphs using the GFT. We use the GFT to process,556

analyze, and cluster experimental signals from single-cell data using a novel graph filter construction and a557

new harmonic clustering method.558

4.1.5 The EES Filter559

In the EES algorithm, we seek to estimate the change in likelihood between two experimental labels along a560

manifold represented by a cell similarity graph. To estimate likelihood along the graph, we employ a novel561

graph filter construction, which we explain in the following sections. To begin, we review the notion of562

filtering with focus on graphs and demonstrate the filter in a low-pass setting. Next, we demonstrate the563

expanded version of the EES filter and provide an analysis of its parameters. Finally, we provide a simple564

solution to the EES filter that allows fast computation.565

4.1.6 Filters on graphs566

Filters can be thought of as devices that alter the spectrum of their input. Filters can be used as bases, as567

is the case with wavelets, and they can be used to directly manipulate signals by changing the frequency568

response of the filter. For example, many audio devices contain an equalizer that allows one to change the569

amplitude of bass and treble frequencies. Simple equalizers can be built simply by using a set of filters570

called a filterbank. In the EES algorithm, we use a tunable filter to amplify latent features on a single-cell571

graph.572

Mathematically, graph filters work analogously to classical filters. Particularly, a filter takes in a signal573

and attenuates it according to a frequency response function. This function accepts frequencies and returns a574

response coefficient. This is then multiplied by the input Fourier coefficient at the corresponding frequency.575

The entire filter operation is thus a reweighting of the input Fourier coefficients. In low-pass filters, the576

function only preserves frequency components below a threshold. Conversely, high-pass filters work by577

removing frequencies below a threshold. Bandpass filters transfer frequency components that are within a578

certain range of a central frequency. The tunable filter in the EES algorithm is capable of producing any of579

these responses.580

As graph harmonics are defined on the set Λ, it is common to define them as functions of the form581

h : [0,max(Λ)] 7→ [0, 1]. For example, a low pass filter with cutoff at λk would have h(x) > 0 for x < λk582

and h(x) = 0 otherwise. By abuse of notation, we will refer to the diagonal matrix with the filter h applied to583

each Laplacian eigenvalue as h(Λ), though h is not a set-valued or matrix-valued function. Filtering a signal584

f is clearest in the spectral domain, where one simply takes the multiplication f̂filt = h(Λ)f̂ = h(Λ)ΨT f .585
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Finally, it is worth using the above definitions to define a vertex-valued operator to perform filtering. As
a graph filter is merely a reweighting of the graph Fourier basis, one can construct the filter matrix,

H = Ψh(Λ)ΨT . (9)

A manipulation using Equation 8 will verify that Hf is the WGFT of f̂filt. This filter matrix will be used to586

solve the EES filter in approximate form for computational efficiency.587

4.1.7 Laplacian Regularization588

A simple assumption for recovering the EES signal from raw measurements is smoothness. In this model
the latent signal is assumed to have a low amount of neighbor to neighbor variation. Laplacian regulariza-
tion [64–72] is a simple technique that targets signal smoothness via the optimization

y = argmin
z
‖x− z‖22︸ ︷︷ ︸

a

+βzTLz︸ ︷︷ ︸
b

. (10)

Note that this optimization has two terms. The first term (a), called a reconstruction penalty, aims to589

keep the EES similar to the RES. The second term (b) ensures smoothness of the signal. Balancing these590

terms adjusts the amount of smoothness performed by the filter.591

Laplacian regularization is a sub-problem of the EES filter that we will discuss for low-pass filtering.
In the above, a reconstruction penalty (a) is considered alongside the Laplacian quadratic form (b), which
is weighted by the parameter β. The Laplacian quadratic form may also be considered as the norm of the
graph gradient, i.e.

βzTLz = β‖∇Gz‖22.

Thus one may view Laplacian regularization as a minimization of the edge-derivatives of a function while592

preserving a reconstruction. Because of this form, this technique has been cast as Tikhonov regulariza-593

tion [66, 73], which is a common regularization to enforce a low-pass filter to solve inverse problems in594

regression. In our results we demonstrate a EES filter that may be reduced to Laplacian regularization using595

a squared Laplacian.596

In Section 4.1.6 we introduced filters as functions defined over the Laplacian eigenvalues (h(Λ)) or as
vertex operators in Equation 9. Minimizing optimization Equation 10 reveals a similar form for Laplacian
regularization. Although Laplacian regularization filter is presented as an optimization, it also has a closed
form solution. We derive this solution here as it is a useful building block for understanding the EES. To
begin,

y = argmin
z
‖x− z‖22 + βzTLz

= argmin
z

(x− z)T (x− z) + βzTLz

= argmin
z

xTx + zT z− 2xT z + βzTLz

Substituting y = z, we next differentiate with respect to y and set this to 0,

0 = ∇y(xTx + yTy − 2yTx + βyTLy)

= 2y − 2x + 2βLy
x = (I + βL)y,
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so the global minima of (10) can be expressed in closed form as

y = (I + βL)−1x. (11)

As the input x is a graph signal in the vertex domain, the least squares solution (11) is a filter matrix
Hreg = (I + βL)−1 as discussed in Section 4.1.6. The spectral properties of Laplacian regularization
immediately follow as

Hreg = (I + βL)−1

= Ψ
1

1 + βΛ
ΨT . (12)

Thus Laplacian regularization is a graph filter with frequency response hreg(λ) = (1 +βλ)−1. Figure S14b597

shows that this function is a low-pass filter on the Laplacian eigenvalues with cutoff parameterized by β.598

4.1.8 Tunable Filtering599

Though simple low-pass filtering with Laplacian regularization is a powerful tool for many machine learning
tasks, we sought to develop a filter that is flexible and capable of filtering the signal at any frequency. To
accomplish these goals, we introduce the EES filter:

y = argmin
z
‖x− z‖22 + zTL∗z (13)

where L∗ = exp
(
β(L/λmax − αI)ρ

)
− I

This filter expands upon Laplacian regularization by the addition of a new smoothness structure. Early and600

related work proposed the use of a power Laplacian smoothness matrix S in a similar manner as we apply601

here [66], but little work has since proven its utility. In our construction, α is referred to as modulation,602

β acts as a reconstruction penalty, and ρ is filter order. These parameters add a great deal of versatility603

to the EES filter, and we demonstrate their spectral and vertex effects in Figure S14, as well as provide604

mathematical analysis of the EES algorithm parameters in Section 4.1.8. Finally, in Section 4.1.11 we605

discuss an implementation of the filter.606

A similar derivation as Section 4.1.7 reveals the filter matrix

HEES(L) = e−β(L/λmax−αI)ρ , (14)

which has the frequency response

hEES(λ) = e−β(λ/λmax−α)ρ . (15)

Thus, the value of the EES algorithm parameters in the vertex optimization (Equation 13) has a direct effect607

on the graph Fourier domain.608

4.1.9 Parameter Analysis609

β steepens the cutoff of the filter and shifts it more towards its central frequency (Figure S14b). In the case610

of α = 0, this frequency is λ1 = 0. This is done by scaling all frequencies by a factor of β. For stability611

reasons, we choose β > 0, as a negative choice of β yields a high frequency amplifier.612
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The parameters α and ρ change the filter from low pass to band pass or high pass. Figure S14 highlights613

the effect on frequency response of the filters and showcases their vertex effects in simple examples. We614

begin our mathematical analysis with the effects of ρ.615

ρ powers the Laplacian harmonics. This steepens the frequency response around the central frequency of616

the EES filter. Higher values of ρ lead to sharper tails (Figure S14c, S14e), limiting the frequency response617

outside of the target band, but with increased response within the band. Finally, ρ can be used to make a618

high pass filter by setting it to negative values (Figure S14f).619

For the integer powers, a basic vertex interpretation of ρ is available. Each column of Lk is k-hop620

localized, meaning that Lkij is non-zero if and only if the there exists a path length k between vertex i and621

vertex j (for a detailed discussion of this property, see Hammond et al. [61, section 5.2].) Thus, for ρ ∈ N,622

the operator Lρ considers variation over a hop distance of ρ. This naturally leads to the spectral behavior623

we demonstrate in Figure S14c, as signals are required to be smooth over longer hop distances when α = 0624

and ρ > 1.625

The parameter α removes values from the diagonal of L. This results in a modulation of frequency626

response by translating the Laplacian harmonic that yields the minimal value for the problem (Equation627

13). This allows one to change the central frequency, as α effectively modulates a band-pass filter. As graph628

frequencies are positive, we do not consider α < 0. In the vertex domain, the effect of α is more nuanced.629

We study this parameter for α > 0 by considering a modified Laplacian L∗ with ρ = 1.630

To conclude, we propose a filter parameterized by reconstruction β (Figure S14b), order ρ (Figure S14c,631

S14e), and modulation α (Figure S14d). The parameters α and β are limited to be strictly greater than or632

equal to 0. When α = 0, ρmay be any integer, and it adds more low frequencies to the frequency response as633

it becomes more positive. On the other hand, if ρ is negative and α = 0, ρ controls a high pass filter. When634

α > 0, the EES filter becomes a band-pass filter. In standard use cases we propose to use the parameters635

α = 0, β = 60, and ρ = 1. Other parameter values are explored further in (Figure S13). We note that636

the results are relatively robust to parameter values around this default setting. All of our biological results637

were obtained using this parameter set, which gives a square-integrable low-pass filter. As these parameters638

have direct spectral effects, their implementation in an efficient graph filter is straightforward and presented639

in Section 4.1.11.640

In contrast to previous works using Laplacian filters, our parameters allow analysis of signals that are641

combinations of several underlying changes occurring at various frequencies. For an intuitive example, con-642

sider that the frequency of various Google searches will vary from winter to summer (low-frequency vari-643

ation), Saturday to Monday (medium-frequency variation), or morning to night (high-frequency variation).644

In the biological context such changes could manifest as differences in cell type abundance (low-frequency645

variation) and cell-cycle (medium-frequency variation) [74]. We illustrate such an example in Figure S14a646

by blindly separating a medium frequency signal from a low frequency contaminating signal over simulated647

data. Such a technique could be used to separate low- and medium-frequency components so that they can648

be analyzed independently. Each of the filter parameters is explained in more detail in Section 4.1.8.649

4.1.10 Relation between the EES and Gaussian KDE through the Heat Kernel650

Kernel density estimators (KDEs) are widely used as estimating density is one of the fundamental tasks651

in many data applications. The density estimate is normally done in ambient space, and there are many652

methods to do so with a variety of advantages and disadvantages depending on the application. We instead653

assume that the data is sampled from some low dimensional subspace of the ambient space, e.g. that the654

data lies along a manifold. The EES can be thought of as a Gaussian KDE over the discrete manifold655

formed by the data. This gives a density estimate at every sampled point for a number of distributions.656

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2020. ; https://doi.org/10.1101/532846doi: bioRxiv preprint 

https://doi.org/10.1101/532846
http://creativecommons.org/licenses/by-nc-nd/4.0/


This density estimate, as the number of samples goes to infinity, should converge to the density estimate657

along a continuous manifold formed by the data. The case of data uniformly sampled on the manifold was658

explored in [22] proving convergence of the eigenvectors and eigenvalues of the discrete Laplacian to the659

eigenfunctions of the continuous manifold. Coifman and Maggioni [75] explored when the data is non-660

uniformly sampled from the manifold and provided a kernel which can normalize out this density which661

results in a Laplacian modeling the underlying manifold geometry, irrespective of data density. Building662

on these two works the EES allows us to estimate the manifold geometry using multiple samples with663

unknown distribution along it and estimate density and conditional density for each distribution on this664

shared manifold.665

A general kernel density estimator (KDE) f(x, t) with bandwidth t > 0 and kernel function K(x, y, t)666

is defined as667

f̂(x, t) =
1

N

N∑
i=1

K(x,Xi, t), x ∈ X (16)

With X := Rd, and endowed with the Gaussian kernel,668

K(x, y, t) =
1

(4πt)d/2
e−‖x−y‖

2
2/4t, (17)

we have the Gaussian KDE in Rd.669

This kernel is of particular interest for its thermodynamic interpretation. Namely the Gaussian KDE is a670

space discretization of the unique solution to the heat diffusion partial differential equation (PDE) [23, 76]:671

∂

∂t
f̂(x, t) =

1

2

∂2

∂x2
f̂(x, t), x ∈ X , t > 0, (18)

with f̂(x, 0) = 1
N

∑n
i=1 δXi where δx is the Dirac measure at x. This is sometimes called Green’s function672

for the diffusion equation. Intuitively, f̂(x, t) can be thought of as measuring the heat after time t after673

placing units of heat on the data points at t = 0.674

In fact the Gaussian kernel can be represented instead in terms of the eigenfunctions of the ambient675

space. With eigenfunctions φ and eigenvalues λ, the Gaussian kernel can be alternative expressed as:676

K(x, y, t) =

∞∑
n=0

e−tλnφn(x)φn(y) (19)

Of course for computational reasons we often prefer the closed form solution in (17). We now consider677

the case when X instead consists of uniform samples from a Riemannian manifold M embedded in Rd678

such that X ⊂ M ⊂ Rd. An analog to the Gaussian KDE in Rd on a manifold is then the solution to the679

heat PDE restricted to the manifold, and again we can use the eigenfunction interpretation of the Green’s680

function in (19), except replacing the eigenfunctions of the manifold.681

The eigenfunctions of the manifold can be approximated through the eigenvectors of the discrete Lapla-682

cian. The solution of the heat equation on a graph is defined in terms of the discrete Laplacian L = ΨΛΨ−1
683

as684

K̂L(x, y, t) = δxe
−tLδy = δxΨe−tΛΨ−1δy (20)

Where δx, δy are dirac functions at x and y respectively. This is equivalent to the EES when β = tλmax,685

α = 0, and φ = 1.686
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When data X is sampled uniformly from the manifold M and the standard gaussian kernel is used687

to construct the graph, then Theorem 2.1 of Belkin and Niyogi [22] which proves the convergence of the688

eigenvalues of the discrete graph laplacian to the continuous laplacian implies (20) converges to the Gaussian689

KDE on the manifold.690

However, real data is rarely uniformly sampled from a manifold. When the data is instead sampled691

from a smooth density X ∼ q(x) over the manifold then the density must be normalized out to recover the692

geometry of the manifold. This problem was first tackled in Coifman and Lafon [55], by constructing an693

anisotropic kernel which divides out the density at every point. This correction allows us to estimate density694

over the underlying geometry of the manifold even in the case where data is not uniformly sampled. This695

allows us to use samples from multiple distributions, in our case distributions over cellular states, which696

allows a better estimate of underlying manifold utilizing all available data.697

In practice, we combine two methods to construct a discrete Laplacian that reflects the underlying data698

geometry over which we estimate heat propagation and perform density estimation, as explained in Sec-699

tion 4.1.1.700

4.1.11 Implementation701

A naı̈ve implementation of the EES algorithm would apply the matrix inversion presented in Equation702

14. This approach is untenable for the large single-cell graphs that the EES algorithm is designed for, as703

H−1
EES will have many elements, and, for high powers of ρ or non-sparse graphs, extremely dense. A second704

approach to solving Equation 13 would diagonalize L such that the filter function in Equation 15 could705

be applied directly to the Fourier transform of input raw experimental signals. This approach has similar706

shortcomings as eigendecomposition is substantively similar to inversion. Finally, a speedier approach707

might be to use conjugate gradient or proximal methods. In practice, we found that these methods are not708

well-suited for EES filtering.709

Instead of gradient methods, we use Chebyshev polynomial approximations of hEES(λ) to rapidly ap-710

proximate and apply the EES filter. These approximations, proposed by Hammond et al. [61] and Shuman711

et al. [24], have gained traction in the graph signal processing community for their efficiency and simplic-712

ity. Briefly, a truncated and shifted Chebyshev polynomial approximation is fit to the frequency response713

of a graph filter. For analysis, the approximating polynomials are applied as polynomials of the Laplacian714

multiplied by the signal to be filtered. As Chebyshev polynomials are given by a recurrence relation, the715

approximation procedure reduces to a computationally efficient series of matrix-vector multiplications. For716

a more detailed treatment one may refer to Hammond et al. [61] where the polynomials are proposed for717

graph filters. For application of the EES filter to a small set of input RES, Chebyshev approximations of-718

fer the simplest and most efficient implementation of our proposed algorithm. For sufficiently large sets719

of RES, such as when considering hundreds of conditions, the computational cost of obtaining the Fourier720

basis directly may be less than repeated application of the approximation operator; in these cases, we diag-721

onalize the Laplacian either approximately through randomized SVD or exactly using eigendecomposition,722

depending on user preference. Then, one simply constructs HEES = ΨhEES(Λ)ΨT to calculate the EES723

from the RES.724

4.1.12 Summary of the EES algorithm725

In summary, we have proposed a family of graph filters based on a generalization of Laplacian regulariza-726

tion framework to implement the computation of the EES. This optimization, which can be solved analyt-727

ically, allows us to derive the EES, or conditional likelihood of the experimental label, as a smooth and728
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denoised signal, while also respecting multi-resolution changes in the likelihood landscape. As we show729

in Section 4.7, this formulation performs better at deriving the true conditional likelihood in quantitative730

comparisons than simpler label smoothing algorithms. Further, the EES algorithm it is efficient to compute.731

The EES algorithm is implemented in Python 3 as part of the MELD package and is built atop the732

scprep, graphtools, and pygsp packages. We developed scprep efficiently process single-cell733

data, and graphtools was developed for construction and manipulation of graphs built on data. Fourier734

analysis and Chebyshev approximations are implemented using functions from the pygsp toolbox [77].735

4.2 Vertex-frequency clustering736

Next, we will describe the vertex frequency clustering algorithm for partitioning the cellular manifold into737

regions of similar response to experimental perturbation. For this purpose, we use a technique proposed in738

Shuman et al. [25] based on a graph generalization of the classical Short Time Fourier Transform (STFT).739

This generalization will allow us to simultaneously localize signals in both frequency and vertex domains.740

The output of this transform will be a spectrogramQ, where the value in each entryQi,j indicates the degree741

to which the RES in the neighborhood around vertex i is composed of frequency j. We then concatenate the742

EES and perform k-means clustering. The resultant clusters will have similar transcriptomic profiles, similar743

EES values, and similar frequency trends of the RES. The frequency trends of the RES are important because744

they allow us to infer movements in the cellular state space that occur during experimental perturbation.745

We derive vertex frequency clusters in the following steps:746

1. We create the cell graph in the same way as is done to derive the EES in Section 4.1.1.747

2. For each vertex in the graph (corresponding to a cell in the data), we create a series of localized748

windowed signals by masking the RES using a series of heat kernels centered at the vertex. Graph749

Fourier decomposition of these localized windows capture frequency of the RES at different scales750

around each vertex.751

3. The graph Fourier representation of the localized windowed signals is thresholded using a tanh acti-752

vation function to produce pseudo-binary signals.753

4. These pseudo-binarized signals are summed across windows of various scales to produce a single754

N ×N spectrogram Q. PCA is performed on the spectrogram for dimensionality reduction.755

5. The EES is concatenated to the reduced spectrogram weighted by the L2-norm of PC1 to produce Q̂756

which captures both local RES frequency trends and changes in conditional density around each cell757

in both datasets.758

6. k-Means is performed on the concatenated matrix to produce vertex-frequency clusters.759

4.2.1 Analyzing frequency content of the RES760

Before we go into further detail about the algorithm, it may be useful to provide some intuitive explanations761

for why the frequency content of the RES provides a useful basis for identifying clusters of cells affected762

by an experimental perturbation. Because the low frequency eigenvectors of the graph Laplacian identify763

smoothly varying axes of variance through a graph, we associate trends in the RES associated these low-764

frequency eigenvectors as biological transitions between cell states. This may correspond to the shift in T765

cells from naive to activated, for example. We note that at intermediate cell transcriptomic states between766
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the extreme states that are most enriched in either condition, we observe both low and middle frequency767

RES components, see the blue cell in the cartoon in Figure 2a. This is because locally, the RES varies768

from cell to cell, but on a large scale is varying from enriched in one condition to being enriched in the769

other. This is distinct from what we observe in our model when a group of cells are completely unaffected770

by an experimental perturbation. Here, we expect to find only high frequency variations in the RES and no771

underlying transition or low-frequency component. The goal of vertex frequency clustering is to distinguish772

between these four cases: enriched in the experiment, enriched in the control, intermediate transitional773

states, and unaffected populations of cells. We also want these clusters to have variable size so that even774

small groups of cells that may be differentially abundant are captured in our clusters.775

4.2.2 Using the Windowed Graph Fourier Transform (WGFT) to identify local changes in RES fre-776

quency777

While the graph Fourier transform is useful for exploring the frequency content of a signal, it is unable778

to identify how the frequency content of graph signals change locally over different regions of the graph.779

In vertex frequency clustering, we are interested in understanding how the frequency content of the RES780

changes in neighborhoods around each cell. In the time domain, the windowed Fourier transform identifies781

changing frequency composition of a signal over time by taking slices of the signal (e.g. a sliding window782

of 10 seconds) and applying a Fourier decomposition to each window independently (WFT) [63]. The result783

is a spectrogram Q, where the value in each cell Qi,j indicates the degree to which time-slice i is composed784

of frequency j. Recent works in GSP have generalized the constructions windowed Fourier transform to785

graph signals[25]. To extend the notion of a sliding window to the graph domain, Shuman et al. [25] write786

the operation of translation in terms of convolution as follows.787

The generalized translation operator Ti : RN → RN of signal f to vertex i ∈ {1, 2, ..., N} is given by

(Tif)(n) :=
√
N(f ∗ δi)(n), δi(j) =

{
1 j = i

0 j 6= i
(21)

which convolves the signal f , in our case the RES, with a dirac at vertex i. Shuman et al. [25] demonstrate788

that this operator inherits various properties of its classical counterpart; however, the operator is not isometric789

and is affected by the graph that it is built on. Furthermore, for signals that are not tightly localized in the790

vertex domain and on graphs that are not directly related to Fourier harmonics (e.g., the circle graph), it is791

not clear what graph translation implies.792

In addition to translation, a generalized modulation operator is defined by Shuman et al. [25] as Mk :
RN → RN for frequencies k ∈ {0, 1, ..., N − 1} as

(Mkf)(n) :=
√
Nf(n)Uk(n) (22)

This formulation is analogous in construction to classical modulation, defined by pointwise multiplication793

with a pure harmonic – a Laplacian eigenvector in our case. Classical modulation translates signals in the794

Fourier domain; because of the discrete nature of the graph Fourier domain, this property is only weakly795

shared between the two operators. Instead, the generalized modulation Mk translates the DC component796

of f , f̂(0), to λk, i.e. (̂Mkf)(λk) = f̂(0). Furthermore, for any function f whose frequency content is797

localized around λ0, (Mkf) is localized in frequency around λk. Shuman et al. [25] details this construction798

and provides bounds on spectral localization and other properties.799
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With these two operators, a graph windowed Fourier atom is constructed[25] for any window function
g ∈ RN

gi,k(n) := (MkTig)(n) = NUk(n)
N−1∑
`=0

ĝ(λ`)U
∗
` (i)U`(n). (23)

We can then build a spectrogram Q = (qik) ∈ RN×N by taking the inner product of each gi,k∀i ∈
{1, 2, ..., N} ∧ ∀k ∈ {0, 1, ..., N − 1} with the target signal f

qik = Sf(i, k) := 〈f, gi,k〉. (24)

As with the classical windowed Fourier transform, one could interpret this as segmenting the signal by
windows and then taking the Fourier transform of each segment

qi = 〈(Tig� f), U〉 (25)

where � is the element-wise product.800

4.2.3 Using heat kernels of increasing scales to produce the WGFT of the RES801

To generate the spectrogram for clustering, we first need a suitable window function. We use the normalized
heat kernel as proposed by Shuman et al. [25]

ĝ(λ) = Ce−tλ, (26)

C = ||g||−1
2 . (27)

By translating this kernel, element-wise multiplying it with our target signal f and taking the Fourier802

transform of the result, we obtain a windowed graph Fourier transform of f that is localized based on the803

diffusion distance [25, 62] from each vertex to every other vertex in the graph.804

For an input RES f , signal-biased spectral clustering as proposed by Shuman et al. [25] proceeds as805

follows:806

1. Generate the window matrix Pt, which contains as its columns translated and normalized heat kernels807

at the scale t808

2. Column-wise multiply Ft = P � f ; the i-th column of Ft is an entry-wise product of the i-th window809

and f .810

3. Take the Fourier Transform of each column of Ft. This matrix, Ĉt is the normalized WGFT matrix.811

This produces a single WGFT for the scale t. At this stage, Shuman et al. [25] proposed to saturate the812

elements of Ĉt using the activation function tanh(|Ĉt|) (where | . | is an element-wise absolute value). Then,813

k-means is performed on this saturated output to yield clusters. This operation has connections to spectral814

clustering as the features that k-means is run on are coefficients of graph harmonics.815

We build upon this approach to add robustness, sensitivity to sign changes, and scalability. Particularly,816

vertex-frequency clustering builds a set of activated spectrograms at different window scales. These scales817

are given by simulated heat diffusion over the graph by adjusting the time-scale t in Equation 26. Then, the818

entire set is combined through summation.819
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4.2.4 Combining the EES and WGFT of the RES820

As discussed in Section 2.4, it is useful to consider the sign of the EES in addition to the frequency content821

of the RES. This is because if we consider two populations of cells, one of which is highly enriched in822

the experimental condition and another that is enriched in the control, we expect to find similar frequency823

content of the RES. Namely, both should have very low-frequency content, as indicated in the cartoon in824

Figure 2a. However, we expect these two populations to have very different EES values. To allow us to825

distinguish between these populations, we also include the EES in the matrix used for clustering.826

We concatenate the EES as an additional column to the multi-resolution spectrogram Q. However, we827

want to be able to tune the clustering with respect to how much the EES affects the result compared to the828

frequency information in Q. Therefore, inspired by spectral clustering as proposed by [78], we first perform829

PCA on Q to get k + 1 principle components and then normalize the EES by the L2-norm of the first830

principle component. We then add the EES as an additional column to the PCA-reduced Q to produce the831

matrix Q̂. The weight of the EES can be modulated by a user-adjustable parameterw, but for all experiments832

in this paper, we leave w = 1. Finally, Q̂ is used as input for k-means clustering.833

The multiscale approach we have proposed has a number of benefits. Foremost, it removes the com-834

plexity of picking a window-size. Second, using the actual input signal as a feature allows the clustering to835

consider both frequency and sign information in the raw experimental signal. For scalability, we leverage836

the fact that Pt is effectively a diffusion operator and thus can be built efficiently by treating it as a Markov837

matrix and normalizing the graph adjacency by the degree.838

4.2.5 Summary of the vertex frequency clustering algorithm839

To identify clusters of cells that are transcriptionally similar and also affected by an experimental perturba-840

tion in the same way, we introduced an algorithm called vertex frequency clustering. Our approach builds841

on previous work by Shuman et al. [25] analyzing the local frequency content of the RES (raw experimental842

signal) as defined over the vertices of a graph. Here, we introduce two novel adaptations of the algorithm.843

First, we take a multiresolution approach to quantifying frequency trends in the neighborhoods around each844

node. By considering windowed signals that are large (i.e. contain many neighboring points) and small (i.e.845

very proximal on the graph), we can identify clusters both large and small that are similarly affected by an846

experimental perturbation. Our second contribution is the inclusion of the EES in our basis for clustering.847

This allows VFC to take into account the degree of enrichment of each group of cells between condition.848

849

4.3 A pipeline for analyzing single cell data using MELD850

Using the EES algorithm and VFC, it is now possible to propose a novel framework for analyzing single851

cell perturbation experiments. The goal of this framework is to identify populations of cells that are the852

most affected by an experimental perturbation and to characterize a gene signature of that perturbation. A853

schematic of the proposed pipeline is shown in Figure S4.854

Prior to using the algorithms in MELD, we recommended first following established best practices855

for analysis of single cell data including exploratory analysis using visualization, preliminary clustering,856

and cluster annotation via differential expression analysis [1]. These steps ensure that the dataset is of857

high quality and comprises the cell types expected from the experimental setup. Following exploratory858

characterization, we propose the following analysis:859

1. Calculate the EES for the experimental and control condition860

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2020. ; https://doi.org/10.1101/532846doi: bioRxiv preprint 

https://doi.org/10.1101/532846
http://creativecommons.org/licenses/by-nc-nd/4.0/


2. Determine which exploratory clusters require subclustering with VFC by examining the EES distri-861

bution within each cluster, a visualization of the cluster, and the results of VFC with varying numbers862

of clusters863

3. Create new cluster assignments using VFC864

4. Annotate each cluster following best practices [1]865

5. Characterize enrichment of cell populations using EES and gene signatures866

The basic steps to calculate the EES for each condition is described in Section 2.1. In the case of867

multiple replicates, we recommend calculating the EES for each sample over a graph of all cells from all868

samples so long as there is sufficient overlap between samples. This overlap can be assessed using the k-869

nearest neighbor batch effect test described in Büttner et al. [79]. We then normalize the EES for matched870

experimental and control samples of the same replicate. A single EES for the experimental condition across871

replicates can be calculated by averaging the treatment condition EES across replicates. Variation in this872

signal across replicates can be used as a measure of consistency for the measured perturbation across cell873

types. The result of this step is an estimate of the probability that each cell would be observed in the874

experimental condition relative to the control.875

Having calculated the EES, we next recommend determining which cell populations identified during876

exploratory analysis require further subclustering with VFC to identify cell types enriched or depleted in877

the experimental condition. Determining optimal cluster resolution for single cell analysis will vary across878

experiments depending on the biological system being studied and the goals of each individual researcher.879

Instead of providing a single measure to determine the number of clusters, we outline a general strategy as880

a guide for users of MELD.881

To determine the number of VFC clusters, we suggest taking into consideration transcriptional variation882

within each coarse-grained cluster and the effect of the perturbation. First, using a dimensionality reduction883

tool such as PHATE, examine a two or three dimensional scatter plot of the cluster colored by the EES884

for each cell. Here, the goal is to identify either regions that have very different EES values or regions885

of data density separated by low-density regions suggesting the present of multiple subclusters to target886

with VFC. We also suggest examining the distribution the EES values within each cluster to determine887

if the cells in the cluster exhibit a restricted range of responses to the EES or large variation that would888

require subclustering. Finally, we recommend running VFC with various numbers of clusters (2-5 is often889

sufficient) and inspecting the output on a PHATE plot and/or with a swarm plot. In ambiguous cases, it may890

be helpful to perform differential expression analysis and gene set enrichment to determine whether or not891

each cluster is biologically relevant to the experimental question under consideration [1, 80]. Importantly,892

not all clusters need subclustering, and we emphasize the ideal cluster resolution will vary based on the893

goals of each analyst.894

To determine the gene signature of the perturbation, we recommend quantifying the differences in ex-895

pression between VFC clusters. For experiments with only a single cell type and 3-4 VFC clusters, it is often896

sufficient to perform differential expression analysis between the cluster most enriched in the experimental897

condition and the cluster most depleted in the experimental condition. And example of this analysis is pro-898

vided in Section 2.6. For experiments with several cell types, we recommend calculating the gene signature899

between the enriched and depleted VFC clusters within each exploratory cluster. To obtain a consensus gene900

signature, a research may take the intersection of the gene signatures within exploratory cluster. An example901

of this analysis is provided in Section 2.8.902
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We note that the strategy for identifying gene signatures outlined in the previous paragraph differs from903

the current framework employed in recent papers (Figure S3). Instead of comparing expression between904

cells from the experimental condition and the control, we compare clusters of cells identified with VFC. The905

rationale for the framework presented here is that if VFC clusters are transcriptionally homogeneous and906

exhibit a uniform response to the perturbation, we expect differences in gene expression between conditions907

within each cluster to represent biological and technical noise. However, characterizing transcriptional908

differences between cells of different clusters regardless of condition of origin will yield a description of the909

cell states that vary between experimental conditions. We confirm that the gene signatures obtained in this910

manner are more accurate than between-sample comparisons in Section 4.7.911

4.4 Processing and analysis of the T-cell datasets912

Gene expression counts matrices prepared by Datlinger et al. [16] were accessed from the NCBI GEO913

database accession GSE92872. 3,143 stimulated and 2,597 unstimulated T-cells were processed in a pipeline914

derived from the published supplementary software. First, artificial genes corresponding to gRNAs were915

removed from the counts matrix. Genes observed in fewer than five cells were removed. Cell with a916

library size higher than 35,000 UMI / cell were removed. To filter dead or dying cells, expression of all917

mitochondrial genes was z-scored and cells with average z-score expression greater than 1 were removed.918

As in the published analysis, all mitochondrial and ribosomal genes were excluded. Filtered cells and919

genes were library size normalized and square-root transformed. To build a cell-state graph, 100 PCA920

dimensions were calculated and edge weights between cells were calculated using an alpha-decay kernel921

as implemented in the Graphtools library (www.github.com/KrishnaswamyLab/graphtools) using default922

parameters. To infer the EES, MELD was run on the cell state graph using the stimulated / unstimulated923

labels as input with the smoothing parameter β = 60. To identify a signature, the top and bottom VFC924

clusters by EES value were used for differential expression using a rank test as implemented in diffxpy [28]925

and a q-value cutoff of 0.05. GO term enrichment was performed using EnrichR using the gseapy Python926

package (https://pypi.org/project/gseapy/).927

4.5 Processing and analysis of the zebrafish dataset928

Gene expression counts matrices prepared by Wagner et al. [18] (the chordin dataset) were downloaded929

from NCBI GEO (GSE112294). 16079 cells from chd embryos injected with gRNAs targeting chordin and930

10782 cells from tyr embryos injected with gRNAs targeting tyrosinase were accessed. Lowly expressed931

genes detected in fewer than 5 cells were removed. Cells with library sizes larger than 15,000 UMI / cell932

were removed. Counts were library-size normalized and square root transformed. Cluster labels included933

with the counts matrices were used for cell type identification.934

During preliminary analysis, a group of 24 cells were identified originating exclusively from the chd935

embryos. Despite an average library size in the bottom 12% of cells, these cells exhibited 546-fold, 246-fold,936

and 1210-fold increased expression of Sh3Tc1, LOC101882117, and LOC101885394 respectively relative937

to other cells. To the best of our knowledge, the function of these genes in development is not described.938

These cells were annotated by Wagner et al. [18] as belonging to 7 cell types including the Tailbud – Spinal939

Cord and Neural – Midbrain. These cells were excluded from further analysis.940

To generate a cell state graph, 100 PCA dimensions were calculated from the square root transformed941

filtered gene expression matrix of both datasets. Edge weights between cells on the graph were calculated942

using an alpha-decay kernel with parameters knn=20, decay=40. MAGIC was used to impute gene expres-943

sion values using default parameters. MELD was run using the tyr or chd labels as input. The EES was944
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calculated for each of the 6 samples independently and normalized per replicate to generate 3 EESs. The945

average EES for the experimental condition was calculated and used for downstream analysis. To identify946

subpopulations within the published clusters, we manually examined a PHATE embedding of each sub-947

cluster, the distribution of EES values in each cluster, and the results of VFC subclustering with varying948

numbers of clusters. The decision to apply VFC was done one a per-cluster basis with the goal of identify-949

ing cell subpopulations with transcriptional similarity (as assessed by visualization) and uniform response950

to perturbation (as assessed by EES values). Cell types were annotated using sets of marker genes curated951

by Farrell et al. [19]. Changes in gene expression between VFC clusters was assess using a rank sum test as952

implemented by diffxpy.953

4.6 Generation, processing and analysis of the pancreatic islet datasets954

Single-cell RNA-sequencing was performed on human islet cells from three different islet donors in the955

presence and absence of IFNγ. The islets were received on three different days. Cells were cultured for 24956

hours with 25ng/mL IFNγ (R&D Systems) in CMRL 1066 medium (Gibco) and subsequently dissociated957

into single cells with 0.05% Trypsin EDTA (Gibco). Cells were then stained with FluoZin-3 (Invitrogen)958

and TMRE (Life Technologies) and sorted using a FACS Aria II (BD). The three samples were pooled959

for the sequencing. Cells were immediately processed using the 10X Genomics Chromium 3’ Single-Cell960

RNA-sequencing kit at the Yale Center for Genome Analysis. The raw sequencing data was processed using961

the 10X Genomics Cell Ranger Pipeline. Raw data will be made available prior to publication.962

Data from all three donors was concatenated into a single matrix for analysis. First, cells not expressing963

insulin, somatostatin, or glucagon were excluded from analysis using donor-specific thresholds. The data964

was square root transformed and reduced to 100 PCA dimensions. Next, we applied an MNN kernel to create965

a graph across all three donors with parameters knn=5, decay=30. This graph was then used for PHATE. The966

EES was calculated using MELD with default parameters. To identify coarse-grained cell types, we used967

previously published markers of islet cells [41]. We then used VFC to identify subpopulations of stimulated968

and unstimulated islet cells. To identify signature genes of IFNγ stimulation, we calculated differential969

expression between the clusters with the highest and lowest EES values within each cell type using a rank970

sum test as implemented in diffxpy. A consensus signature was then obtained by taking the intersection971

genes with q-values < 0.05. Gene set enrichment was then calculated using gseapy.972

4.7 Quantitative comparisons973

To generate single-cell data for the quantitative comparisons, we used Splatter. Datasets were all generated974

using the ”Paths” mode so that a latent dimension in the data could be used to create the ground truth975

likelihood that each cell would be observed in the ”experimental” condition relative to the ”control”. We976

focused on four data geometries: a tree with three branches, a branch and cluster with either end of the977

branch enriched or depleted and the cluster unaffected, a single branch with a middle section either enriched978

or depleted, and four clusters with random segments enriched or depleted. To create clusters, a multi-979

branched tree was created, and all but the tips of the branches were removed. The ground truth experimental980

signal was created using custom Python scripts taking the ”Steps” latent variable from Splatter and randomly981

selecting a proportion of each branch or cluster between 10% and 80% of the data was enriched or depleted982

by 25%. These regions were divided into thirds to create a smooth transition between the unaffected regions983

and the differentially abundant regions. This likelihood ratio was then centered so that, on average, half984

the cells would be assigned to each condition. The centered ground truth signal was used to parameterize a985
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Bernoulli random variable and assign each cell to the experimental or control conditions. The data and RES986

were used as input to the respective algorithms.987

To quantify the accuracy of the EES to approximate the ground truth likelihood ratio, we compared988

the EES, kNN-smoothed signal, or graph averaged signal to the ground truth likelihood of observing each989

cell in either of the two conditions. We used the Pearson’s R statistic to calculate the degree to which990

these estimates approximate the likelihood ratio. Each of the four data geometries was tested 30 times with991

different random seeds for scRNA-seq simulation and RES generation.992

We also performed EES comparisons using the T cell and zebrafish datasets described above. The993

preprocessed data was used to generate a three-dimensional PHATE embedding that was z-score normalized.994

We then used a combination of PHATE dimensions to create a ground truth probability each cell would be995

observed in the experimental or control condition. Cells were then assigned to either condition based on this996

probability as described above. We ran the same comparisons as on the simulated data with 100 random997

seeds per dataset.998

To quantify the accuracy of VFC to detect the regions of the dataset that were enriched, depleted, or999

unaffected between conditions, we calculated the Adjusted Rand Score between the ground truth regions1000

with enriched, depleted, or unchanged likelihood ratios between conditions. VFC was compared to k-1001

Means, Spectral Clustering, Louvain, Leiden, and CellHarmony. As Leiden and Louvain do not provide a1002

method to control the number of clusters, we implemented a binary search to identify a resolution parameter1003

that provides the target number of clusters. Although Cell Harmony relies on an initial Louvain clustering,1004

the tool does not implement Louvain with a tuneable resolution. It is also not possible to provide an initial1005

clustering to CellHarmony, so we resorted to cutting Louvain at the level closest to our target number of1006

clusters. Finally, because CellHarmony does not reconcile the disparate cluster assignments in the reference1007

and query datasets, and because not all cells in the query dataset may be aligned to the reference we needed1008

to generate manually new cluster labels for cells in the query dataset so that the method could be compared1009

to other clustering tools.1010

To characterize the ability of MELD analysis using the EES and VFC to characterize gene signatures of1011

a perturbation dataset, we returned to the T cell dataset. We again used the same setup to create synthetically1012

3 regions with different sampling probabilities in the dataset using PHATE clusters as above. Because one1013

of these clusters has no differential abundance between conditions, we calculated the ground truth gene1014

expression signature between the enriched and depleted clusters only using diffxpy [28]. To calculate the1015

gene signature for each clustering method, we performed differential expression between the most enriched1016

cluster in the experimental condition and the most depleted cluster in the experimental condition (or highest1017

and lowest EES for MELD). We also considered directly performing two-sample comparison using the1018

sample labels. To quantify the performance of each method, we used the area under the receiving operator1019

characteristic (AUCROC) to compare the q-values produced using each method to the ground truth q-values.1020

This process was repeated over 100 random seeds. The AUCROC curves and performance of each method1021

relative to VFC is displayed in Figure S6d,e.1022

5 Data availability1023

Gene expression counts matrices prepared by Datlinger et al. [16] were accessed from the NCBI GEO1024

database accession GSE92872. Gene expression counts matrices prepared by Wagner et al. [18] were down-1025

loaded from NCBI GEO accession GSE112294. The new pancreatic islets datasets will be made available1026

on NCBI GEO prior to publication and this section will be revised to include the accession number.1027
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6 Code availability1028

Code for the EES and VFC algorithms implemented in Python is available as part of the MELD package on1029

GitHub https://github.com/KrishnaswamyLab/MELD and on the Python Package Index (PyPI).1030

The GitHub repository also contains tutorials, code to reproduce the analysis of the zebrafish dataset, and1031

code associated with several of the quantitative comparisons.1032
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Nature Reviews Disease Primers, 3:17016, March 2017. ISSN 2056-676X. doi: 10.1038/nrdp.2017.1170

16.1171

[38] V. Ablamunits, D. Elias, T. Reshef, and I. R. Cohen. Islet T cells secreting IFN-gamma in NOD mouse1172

diabetes: Arrest by p277 peptide treatment. Journal of Autoimmunity, 11(1):73–81, February 1998.1173

ISSN 0896-8411. doi: 10.1006/jaut.1997.0177.1174

[39] Andrew S. Diamond and Ronald G. Gill. An Essential Contribution by IFN-γ to CD8+ T Cell-1175

Mediated Rejection of Pancreatic Islet Allografts. The Journal of Immunology, 165(1):247–255, July1176

2000. ISSN 0022-1767, 1550-6606. doi: 10.4049/jimmunol.165.1.247.1177

[40] Miguel Lopes, Burak Kutlu, Michela Miani, Claus H. Bang-Berthelsen, Joachim Størling, Flemming1178

Pociot, Nathan Goodman, Lee Hood, Nils Welsh, Gianluca Bontempi, and Decio L. Eizirik. Temporal1179

profiling of cytokine-induced genes in pancreatic β-cells by meta-analysis and network inference.1180

Genomics, 103(4):264–275, April 2014. ISSN 0888-7543. doi: 10.1016/j.ygeno.2013.12.007.1181

39

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2020. ; https://doi.org/10.1101/532846doi: bioRxiv preprint 

https://doi.org/10.1101/532846
http://creativecommons.org/licenses/by-nc-nd/4.0/


[41] Mauro J. Muraro, Gitanjali Dharmadhikari, Dominic Grün, Nathalie Groen, Tim Dielen, Erik Jansen,1182

Leon van Gurp, Marten A. Engelse, Francoise Carlotti, Eelco J.P. de Koning, and Alexander van1183

Oudenaarden. A Single-Cell Transcriptome Atlas of the Human Pancreas. Cell Systems, 3(4):385–1184

394.e3, October 2016. ISSN 2405-4712. doi: 10.1016/j.cels.2016.09.002.1185

[42] Yurong Xin, Giselle Dominguez Gutierrez, Haruka Okamoto, Jinrang Kim, Ann-Hwee Lee, Christina1186

Adler, Min Ni, George D. Yancopoulos, Andrew J. Murphy, and Jesper Gromada. Pseudotime Or-1187

dering of Single Human β-Cells Reveals States of Insulin Production and Unfolded Protein Response.1188

Diabetes, 67(9):1783–1794, September 2018. ISSN 0012-1797, 1939-327X. doi: 10.2337/db18-0365.1189

[43] Lydia Farack, Matan Golan, Adi Egozi, Nili Dezorella, Keren Bahar Halpern, Shani Ben-Moshe, Im-1190
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7 Supplementary Notes1309

7.1 Applying MELD analysis to single cell datasets with a batch effect1310

When jointly analyzing single cell datasets collected in different samples, difficulty may arise due to sys-1311

tematic changes in gene expression profiles between biologically equivalent cells [79]. These changes may1312

be technical in nature (e.g. differences in the reverse transcription efficiency during library preparation) or1313

biological (e.g. changes in sample preparation cause unexpected changes in biological state of otherwise1314

equivalent cells). Regardless of the cause, the unifying feature of batch effects is that they confound the1315

analysis a given research wants to perform. As such, it is unsurprising that dozens of batch normalization1316

tools have been developed for single cell data [81]. However, it is important to emphasize that what consti-1317

tutes a batch effect is dependent on the biological question in which a researcher is interested. Some analysts1318

might be uninterested in variation caused by a change in cell media composition between samples, but other1319

researchers might want to study these differences. Batch normalization tools have no way to know what1320

variation is biologically relevant to the specific hypotheses of a given experiment and thus risk removing1321

meaningful experimental signal when ”correcting” measured values. This is problematic for analysis using1322

MELD, because the goal of the toolkit is to quantify the differences that exist between samples without1323

regard for the specific interests of given hypothesis. As such, we do not recommend using batch correc-1324

tion along the experimental axis (i.e. between experimental and control conditions) before running MELD.1325

However, recognizing that in some cases batch correction is essential, we describe several considerations1326

for performing MELD analysis on batch-corrected data.1327

For the EES algorithm to accurately estimate conditional probability of each sample, we assume that1328

the graph learned from single cell data approximates the underlying cell state manifold. In Section 20 we1329

describe the use of an anisotropic kernel that normalizes for varying sampling density across cell states.1330

However, some batch correction methods, such as mutual nearest neighbors [9], rely on the construction1331

of a graph with artificially inflated weights between nodes from different samples. This graph no longer1332
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models the cell states an experiment measured, but rather enforces similarities between cells based on the1333

heuristic of the chosen normalization model. We provide no theoretical guarantees that a graph learned from1334

batch corrected data will accurately model the underlying probability densities of each condition.1335

In practice when analyzing islet cells collected from multiple donors, that applying batch correction1336

methods across the donor label improves our ability to capture a signal of IFNg stimulation (Section 2.8). It1337

is important to note that in this case, batch correction applied to a label that is orthogonal to the experimental1338

axis. We have no examined the accuracy of the EES algorithm when batch correction is applied between1339

experimental and control samples, although it is our expectation that this will likely remove biological signal.1340

We recommend any user considering applying batch correction methods prior to running MELD analysis1341

follow these steps:1342

1. To determine if a batch effect exists, confirm that cells from one sample are not finding appropriate1343

neighbors in another following the strategy outlined by Büttner et al. [79].1344

2. To characterize the effect, identify which genes change the most between the samples1345

3. Confirm that the genes that are different are not relevant to the biological question under investigation1346

4. Apply batch correction1347

5. Confirm that relevant biological differences are still present using MELD analysis1348

6. If the biological differences are not present, repeat from step 1 with less batch correction. If you hit1349

your personal recursion limit, consider that you don’t actually want to do batch correction1350

7. If biological differences are present, then confirm that previous batch effect has been corrected and1351

proceed to downstream analysis1352

7.2 Parameter search for the EES algorithm1353

To determine the optimal set of parameters for the EES algorithm, we performed a parameter search using1354

splatter-generated datasets. For each of the four dataset structures, we generated 10 datasets with different1355

random seeds and 10 random ground-truth EES per dataset for a total of 400 datasets per combination of1356

parameters. A coarse-grained grid search revealed that setting α = 0 and ρ = 1 performed best regardless1357

of the β parameter. This is expected because with these settings, the MELD filter is the standard heat kernel.1358

A fine-grained search over parameters for β showed that optimal values were between 50-75 (Figure S13).1359

We chose a value of 60 as the default in the MELD toolkit and this was used for all experiments. We would1360

like to note that the optimal β parameter will vary with dataset structure and the number of cells. Figure1361

S13b shows how the optimal β values varies as a function of the number of cells generated using splatter1362

while keeping the underlying geometry the same.1363
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Figure S1: A step-by-step visual representation of the EES algorithm using data from Datlinger et al. [16]. The sample labels are
used to create a one-hot indicator vector for each condition. These one-hot vectors are then column-wise L1-normalized such that
the sum of each vector is 1. This gives each sample equal weight over the manifold despite a potential uneven number of cells
in each condition. Next, the EES filter is used to calculate a kernel density estimate for each condition. These density estimates
are then row-wise L1-normalized to yield the conditional probability that each cell would be observed in each condition. The
conditional probability of the experimental condition relative to the control is used as the EES for two-condition experiments.
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Figure S2: Vertex-Frequency clustering with MELD. A Gaussian mixture model was used to generate N = 1000 points in a
mixture of three Gaussian distributions. This experiment is representative of a two-cell type experiment (split by Dim 2) in which
one sample changes (bottom clusters) along Dim 1 due to the experiment while the other remains mixed (top clusters). (a) k-Means
clustering separates the left and right experimental groups but splits the upper group erroneously. (b) Spectral clustering replicates
the performance of k-Means in this example. (c) Louvain modularity clustering splits the mixture into five groups, with the same
lower separations as before but with three groups in the upper cell type. (d) Vertex-Frequency clustering recovers a new cluster
type. Briefly, the RES (left) is used for (1) a windowed graph Fourier Transform to obtain vertex-frequency information (above,
logarithmically downsampled for clarity) and (2) MELD, which generates a continuous profile of the simulated experimental effect.
These measures are concatenated together and clustered with k-Means. The clusters (right) separate the two cell types (purple and
green/red/blue), and finds a separate grouping of cells that are in transition from green to blue, shown in red. One may see that
in the spectrogram the green and blue groups are found on relatively low frequency patterns (bottom half of spectrogram, mostly
black bands), whereas the medium frequency transition is well separated (middle of bottom bands). The well-mixed, nonresponsive
population is entirely high frequency (top half).

46

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2020. ; https://doi.org/10.1101/532846doi: bioRxiv preprint 

https://doi.org/10.1101/532846
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3: Identifying gene signatures using the EES and VFC. (a) In traditional gene signature analysis, clusters are identified
based on data geometry and may not capture subpopulations of cells with varying response to a perturbation. In this framework,
gene signatures are calculated by comparing cells from the experimental and control condition within each cluster. (b) To identify
gene signatures of a perturbation with the MELD toolkit, we propose first partitioning cell populations with divergent responses to
an experimental perturbation prior to differential expression analysis. We then assume that the differences within each VFC cluster
is noise. Differential expression can either be calculated between subclusters identified by VFC (as shown) or by comparing each
VFC cluster to the rest of the dataset independently.
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Figure S4: Overview of a pipeline for single cell analysis using MELD. (1.) Initial exploratory analysis of the dataset should follow
established best practices to identify coarse-grained cell populations [1, 80]. (2.) Calculating the EES provides a measure for each
cell describing the probability that cell would be observed in the experimental condition relative to the control. (3.) To identify
populations most affected by a perturbation, we consider several sources of information regarding biological heterogeneity and the
effect of the perturbation within each exploratory cluster. We then apply VFC at the determined cluster resolution. (4.) To assess
the biological relevance of each VFC cluster, standard methods for cluster annotation can be applied. (5.) To characterize the gene
signature of the perturbation, we compare expression differences between VFC clusters with varying EES distributions.
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Figure S5: Result of down-sampling on accurately recovering simulated EES values. Using the procedure described in Section
4.7, we generated 100 random ground truth EES values and then removed between 1-99% of the cells in the dataset before running
the EES algorithm normally. The average Pearson’s R is shown as a function of the number of cells removed prior to running the
EES algorithm. The shaded area demarks ±1 standard deviation. We observe an average correlation >0.9 for all experiments with
at least 35% of the data present, or 1956 out of 5591 cells.

49

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2020. ; https://doi.org/10.1101/532846doi: bioRxiv preprint 

https://doi.org/10.1101/532846
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S6: VFC accurately identifies cell populations affected by a perturbation in T cell data from Datlinger et al. [16]. (a) To
create ground truth clusters, we artificially enriched and depleted various cell populations in either the experimental or control
condition. Here we show the Adjusted Rand Score (ARS) over 100 simulations for 6 methods. For ARS, values close to 1 indicate
perfect correspondence with ground truth, and values close to 0 indicate random labelling. VFC is the top performing method. (b)
Because each simulation produced varying ARS scores for each method due to random seeds, we also consider the difference on
performance between each method and VFC on each simulation. In none of 100 random seeds did any method outperform VFC. (c)
The sample labels, EES, and clustering results for one randomly selected simulation. (d) Receiver operating characteristic (ROC)
curves for the gene expression signatures described in Section 4.7. The Area Under the Curve of the ROC (AUCROC) indicates
the overall performance of each strategy for identifying a gene signature. MELD is the top performing approach followed by direct
comparison of the two samples. (e) As above, we consider the difference in AUCROC over each of 100 simulations between MELD
and each method. In only 4 simulations does another method outperform MELD by more than 0.01.
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Figure S7: Quantitative comparison of clustering algorithms using zebrafish data from Wagner et al. [18]. (a) To create ground
truth clusters, we artificially enriched and depleted various cell populations in either the experimental or control condition. Here
we show the Adjusted Rand Score (ARS) over 100 simulations for 6 methods. VFC is the top performing method on average. (b)
Difference on performance between each method and VFC on each simulation. (c) The sample labels, EES, and clustering results
for the simulation in which VFC performed best relative to other methods. (d) The sample labels, EES, and clustering results for
the simulation in which VFC performed best relative to other methods. We found that by adjusting the weighting of the EES from
1 (default) to 2, VFC becomes the top performing algorithm on this case (’VFC - new’).
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Figure S8: Quantitative analysis of Cas9 perturbations in T cells [16] using the EES. Each plot shows the distribution of EES
values for all stimulated cells transfected with gRNAs targeting a specific gene. The shade of each cell indicates the different
gRNAs targeting the same gene. To determine the impact of the gRNA on the TCR activation pathway, we rank each gene by the
average EES value. We observed a large variation in the impact of each gene knockout consistent with the published results from
Datlinger et al. [16]. Encouragingly, our results agree with their bulk RNA-seq validation experiment showing greatest depletion
of TCR response with knockout of kinases LCK and ZAP70 and adaptor protein LAT. We also find a slight increase in EES values
(and therefore stimulation) in cells in which negative regulators of TCR activation are knocked out, including PTPN6, PTPN11,
and EGR3.
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Figure S9: Analysis of replicates within the zebrafish data generated by Wagner et al. [18]. (a) Because the EES is calculated
by independently filtering a one-hot indicator vector for each condition, to calculate the EES for each replicate, we simply row-
normalize the smoothed vectors for the two signals indicating matched experimental / control pairs. For example, the Replicate A
- EES is calculated by normalizing the ”chdA” and ”tyrA” filtered indicator vectors. We notice comparing replicates that the EES
for a given cell population may vary. For example, the Adaxial cell population in enriched in the Chd condition in Replicate A, but
depleted in Replicate C. Similarly, cells in the Notochord population are depleted in the Chd condition in Replicates A and C, but
show minimal change in abundance in Replicate B. (b) The average EES across all replicates is shown for each cell on a PHATE
embedding. (c) The standard deviation of the EES across all replicates is shown for each cell on a PHATE embedding. Regions
that have higher values exhibit greater variation in their response to the experimental perturbation. We should trust the average
EES values for these cells less than for cells with little variation in EES values. (d) A biaxial scatter plot showing the relationship
between mean EES and standard deviation in the EES for each cell. Color indicates the cluster labels from Figure 5a We observe
that for cells with the highest EES values, the standard deviation is smaller than for cells with EES values close to 0.5 creating a
slight negative Pearson correlation of -0.18.
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Figure S10: Characterization of vertex-frequency clusters in the zebrafish dataset. (a) Raw vertex-frequency cluster assignments
on a PHATE visualization of the Tailbud - Presomitic Mesoderm cluster. (b) Normalized expression of previously identified marker
genes of possible subtypes of the Tailbud - Presomitic Mesoderm [19]. The color of the dot for each gene in each cluster indicates
the expression level and the size of the dot corresponds to the normalized Wasserstein distance between expression within cluster
to all other clusters. (c) Distribution of EES values within the ”Epidermal - pfn1” cluster identified by Wagner et al. [18] shown
on a PHATE plot. (d) Four different values of ”n clusters” that was used to create different VFC clusters with the ”Epidermal -
pfn1” cluster. We selected n clusters = 2 because this identified a population of cells with similar EES values and localization on
the PHATE embedding. (e) Expression of three significantly differentially expressed genes between the two VFC subpopulations
detected in the ”Epidermal - pfn1” population. Tbx2b and Crabp2a were identified as markers of the epidermis and neural plate
border respectively by Farrell et al. [19]. Because we observed differential expression of these two markers between the VFC
subclusters suggests the ”Epidermal - pfn1” cells identified by Wagner et al. [18] actually comprises cells originating from two
distinct cell populations. (f) Distribution of EES values within the ”Tailbud - Spinal Cord” cluster identified by Wagner et al. [18]
shown on a PHATE plot. (g) Four different values of n clusters that was used to create different VFC clusters within the ”Tailbud -
Spinal Cord” cluster. We selected n clusters = 3 because this identified populations of cells with similar EES values and localization
on the PHATE embedding. (h) Same plot as in (b) for the subclusters of the ”Tailbud - Spinal Cord”. (i) Distribution of EES values
within each VFC subcluster show that the three subclusters are biologically distinct with differing responses to the experimental
perturbation. (j) Repeating the VFC subclustering process for all cells, we identified a total of 50 clusters within the zebrafish
dataset generated by Wagner et al. [18]. Compared to the plot in Figure 5b, we observed a more restricted distribution of EES
values within each cluster suggesting these labels represent populations of cells that are more homogeneous with respect to the
experimental perturbation.
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Figure S11: Analysis of pancreatic islet cells from three donors. (a) Library-size normalized expression of insulin (INS), glucagon
(GCG), and somatostatin (SST) shows donor-specific batch effect across islet cells. (b) Normalized expression of previously
identified marker genes of alpha, beta, and delta cells[41] in each cluster. The color of the dot for each gene in each cluster
indicates the expression level after MAGIC and the size of the dot corresponds to the normalized Wasserstein distance between
expression within cluster to all other clusters. (c) Results of VFC using varying numbers of clusters for each of the three cell types.
The red box denotes the selected level of clustering for each cell type. (d) The EES is calculated independently for each donor and
then averaged to obtain the EES used in the main analysis. We also calculate the standard deviation of the EES for each cell.
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Figure S12: Analysis of islet cell profiles across donors. (a) The RES and EES associated with each donor from which islet cells
were obtained. (b) Comparison of the EES values within each vertex frequency cluster identifies changes in enrichment for each
cluster in various donors. For example, the β - non-responsive cluster is strongly enriched in donor 1.
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Figure S13: Selecting parameters for MELD. (a) Results of a parameter search over the β parameter using the four datasets
described in Section 4.7. The red line shows the average performance over 10 different datasets of each geometry with one standard
deviation marked by the grey lines. We observe reasonably consistent performance of the EES algorithm across all datasets using
a β value between 50-75. We chose a value of 60 as the default in the MELD package and used this setting for all experiments.
(b) We observe that the optimal β parameter for a dataset varies with the number of cells in the dataset. We suggest increasing the
default beta parameter for datasets larger than 30,000 cells.
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Figure S14: Source Separation and Parameter Analysis with the MELD filter. (a) A raw experimental signal (center) is obtained
that is a binarized observation of a low frequency latent signal (top left), a medium frequency latent signal (top middle), and high
frequency noise (top right). Analysis of the RES alone is intractable as it is corrupted by noise and experimental binarization.
MELD low-pass filters (bottom left) to separate a longitudinal trajectory and band-pass filters (bottom right) to yield the periodic
signature of the medium frequency latent signal. Parameters used for this analysis are supplied beneath the corresponding arrows.
(b) Reconstruction penalty β controls a low-pass filter. For this demonstration, α = 0, ρ = 1. This filter is equivalent to Laplacian
regularization. (c) Order ρ controls the filter squareness. This parameter is used in the low-pass filter of (a). For this demonstration,
β = 1, α = 0. (d) Band-pass modulation via α. When ρ is even valued, α modulates the central frequency of a band-pass filter.
This parameter is used in (a) to separate a medium-frequency source from a low-frequency source. (e) α and ρ combine to make
square band-pass filters. For (d) and (e), β = 1. (f) Negative values of ρ yield a high-pass filter. For (b-f), Laplacian harmonics for
a general normalized Laplacian are plotted on the x-axis. The frequency response of the filter given by the colored parameters is on
the y-axis.
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