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Abstract

As single-cell transcriptomics becomes a mainstream technology, the natural next step is
to integrate the accumulating data in order to achieve a common ontology of cell types and
states. However, owing to various nuisance factors of variation, it is not straightforward how
to compare gene expression levels across data sets and how to automatically assign cell type
labels in a new data set based on existing annotations. In this manuscript, we demonstrate
that our previously developed method, scVI, provides an effective and fully probabilistic
approach for joint representation and analysis of cohorts of single-cell RNA-seq data sets,
while accounting for uncertainty caused by biological and measurement noise. We also
introduce single-cell ANnotation using Variational Inference (scANVI), a semi-supervised
variant of scVI designed to leverage any available cell state annotations — for instance
when only one data set in a cohort is annotated, or when only a few cells in a single data
set can be labeled using marker genes. We demonstrate that scVI and scANVI compare
favorably to the existing methods for data integration and cell state annotation in terms of
accuracy, scalability, and adaptability to challenging settings such as a hierarchical structure
of cell state labels. We further show that different from existing methods, scVI and scANVI
represent the integrated datasets with a single generative model that can be directly used
for any probabilistic decision making task, using differential expression as our case study.
scVI and scANVT are available as open source software and can be readily used to facilitate
cell state annotation and help ensure consistency and reproducibility across studies.
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Introduction

Recent technological improvements in microfluidics and low volume sample handling [1] have en-
abled the emergence of single-cell transcriptomics [2, 3] as a popular tool for analyzing biological
systems [4, 5, 6]. This growing popularity along with a continued increase in the scale of the re-
spective assays [7] has resulted in massive amounts of publicly available data and motivated large
scale community efforts such as the Human Cell Atlas [8], Tabula Muris [9] and the BRAIN Ini-
tiative Cell Census Network [10]. The next natural step in the evolution of this field is therefore
to integrate many available datasets from related tissues or disease models in order to increase
statistical robustness [11], achieve consistency and reproducibility among studies [12, 13], and
ultimately converge to a common ontology of cell states and types [8, 14].

A fundamental step toward the ideal of a common ontology is data harmonization, namely in-
tegration of two or more transcriptomics datasets into a single dataset on which any downstream
analysis can be applied. We use the term harmonization rather than batch effect correction in
order to emphasize that the input datasets may come from very different sources (e.g., tech-
nology, laboratory), and from samples with a different composition of cell types. A wide range
of methods have already been developed for this fundamental problem, initially for Microarrays
and later on for bulk RNA sequencing, such as ComBat [15] and limma [16] which rely on gen-
eralized linear models with empirical Bayes shrinkage to avoid over-correction. More recently,
similar methods have been proposed specifically for single-cell RNA sequencing (scRNA-seq),
such as ZINB-WaVE [17], which explicitly accounts for the overabundance of zero entries in the
data. However, because of their linear assumptions, these approaches may not be appropriate
when provided with a heterogeneous sample that includes different cell states, each of which
may be associated with a different sample-to-sample bias [12]. With these limitations in mind,
the next generation of methods turned to non-linear strategies. Broadly speaking, each of these
methods includes a combination of two components: (i) joint factorization of the input matrices
(each corresponding to a different dataset) to learn a joint low-dimensional latent representation.
This is usually done with well established numerical methods, such as integrative non-negative
matrix factorization (LIGER [18]), singular value decomposition (Scanorama [19]), or canonical
correlation analysis (Seurat Alignment [13]); (ii) additional non-linear transformation of the re-
sulting latent representations so as to optimally “align” them onto each other. This is usually
done using heuristics, such as alignment of mutual nearest neighbors (MNN [12], Scanorama [19]
and Seurat Anchors [20]), dynamic time warping (Seurat Alignment [13]) or quantile normaliza-
tion (LIGER [18]). While this family of methods has been shown to effectively overlay different
datasets, it suffers from two important limitations. First, an explicit alignment procedure may be
difficult to tune in a principled manner and consequently result in over-normalization, especially
in challenging cases where the cell type composition is different between datasets and when tech-
nical differences between samples are confounded with biological differences of interest. Second,
the alignment is done in an ad hoc manner and lacks probabilistic interpretability. Consequently,
the resulting harmonized dataset is of limited use and cannot be directly applied for differential
expression and other probabilistic decision-making tasks.

Another recent line of work makes use of neural networks to learn a joint representation of
multiple datasets (SAUCIE [21]) or project one dataset into another (maximum mean discrepancy
[MMD] ResNet [22]). These methods rely on an explicit non-parametric measure of discrepancy
between probability distributions (MMD) to match either the latent spaces or directly the gene
expression values from pairs of datasets. However, using the MMD with a universal kernel
explicitly assumes that the cell type proportion is similar in all the datasets, which may be less
suitable in the general case of data harmonization.

Besides harmonization, another important and highly related problem is that of automated
annotation of cell state. In principle, there are two ways to approach this problem. The first
is ab initio labeling of cells based on marker genes or gene signatures [13, 23, 24]. While this
approach is intuitive and straightforward, its performance may be affected in the plausible case
where marker genes are absent due to limitations in sensitivity. The second approach is to
“transfer” annotations between datasets. In the simplest scenario, we have access to one dataset
where states have been annotated either ab initio, or using additional experimental measurements
(e.g., protein expression [3, 25] or lineage tracing [26]) and another, unannotated dataset from
a similar condition or tissue. The goal is to use the labeled data to derive similar annotations
for the second dataset, whenever applicable. This task is often complicated by factors such as
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differences in technology (e.g., using Smart-Seq2 data to annotate 10x Chromium data), partial
overlap in cell type composition (i.e., not all labels should be transferred and not all unannotated
cells should be assigned a label), complex organization of the labels (e.g., hierarchy of cell types
and sub-types [27], continuum along phenotypic or temporal gradients), partial labeling (i.e.,
only a subset of cells from the “annotated” dataset can be assigned a label confidently), and the
need to handle multiple (more than 2) datasets in a principled and scalable manner. One way
to address the annotation problem with this approach is learning a classifier [27, 28] in order to
predict a fixed stratification of cells. Another, more flexible approach is to transfer annotations
by first harmonizing the annotated and unannotated datasets, thus also gaining from the benefits
of having a single dataset that can be subject to additional, joint, downstream analysis.

In this paper, we propose a strategy to address several of the outstanding hurdles in both
of the harmonization and annotation problems. We first demonstrate that single-cell Varia-
tional Inference (scVI) [29] a deep generative model we previously developed for probabilistic
representation of scRNA-seq data — performs well in both harmonization and harmonization-
based annotation, going beyond its previously demonstrated capacity to correct batch effects.
We then introduce single-cell ANnotation using Variational Inference (scANVI), a new method
that extends scVI and provides a principled way to address the annotation problem probabilisti-
cally while leveraging any available label information. scANVT uses a semi-supervised generative
model, which can be utilized for both approaches to the annotation problem. In the first sce-
nario, we are concerned with a single dataset in which only a subset of cells can be confidently
labeled (e.g., based on expression of marker genes) and annotations should then be transferred
to other cells, when applicable. In the second scenario, annotated datasets are harmonized with
unannotated datasets and then used to assign labels to the unannotated cells.

The inference procedure for both of the scVI and scANVI models relies on neural networks,
stochastic optimization and variational inference [30, 31] and scales to large numbers of cells
and datasets. Furthermore, both methods provide a complete probabilistic representation of the
data, which non-linearly controls not only for sample-to-sample bias but also for other technical
factors of variation such as over-dispersion, library size discrepancies and zero-inflation. As such,
each method provides a single probabilistic model that underlies the harmonized gene expression
values (and the cell annotations, for scANVI), and can be used for any type of downstream
hypotheses testing. We demonstrate the latter point through a differential expression analysis
on harmonized data. Furthermore, through a comprehensive analysis of performance in various
aspects of the harmonization and annotation problems and in various scenarios, we demonstrate
that scVI and scANVI compare favorably to current state-of-the-art methods.

Results

In the following we demonstrate that our framework compares favorably to the existing state
of the art in the harmonization and annotation problems in terms of accuracy, scalability, and
adaptability to various settings. The first part of the paper focuses on the harmonization prob-
lem and covers a range of scenarios, including harmonization of datasets with varying levels of
biological overlap, handling cases where the data is governed by a continuous (e.g., pseudotime)
rather than discrete (cell types) form of variation, and processing multiple (> 20) datasets. While
we demonstrate that scVI performs well in these scenarios, we also demonstrate that the latent
space leaned by scANVI provides a proper harmonized representation of the input datasets —
a property necessary for guaranteeing its performance in the annotation problem. In the sec-
ond part of this manuscript we turn to the annotation problem and study its two main settings,
namely transferring labels between datasets and ab-inito labeling. In the first setting we consider
the cases of datasets with a complete or partial biological overlap and use both experimentally-
and computationally- derived labels to evaluate our performance. In the second settings, we
demonstrate how scANVI can be used effectively to annotate a single dataset by propagating
high confidence seed labels (based on marker genes) and by leveraging a hierarchical structure of
cell state annotations. Finally, we demonstrate that the generative models inferred by scANVI
and scVI can be directly applied for hypotheses testing, using differential expression as a case
study.
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Joint modeling of scRNA-seq datasets

We consider K different scRNA-seq datasets (Figure 1a). A dataset indexed by k € {1,--- , K}
consists of a Ny X G matrix where each entry records the number of transcripts observed for
each of G genes in each of N cells. In this work, we use a standard heuristic to filter the
genes and generate a common (possibly large) gene set of size G (Online Methods), and thus
format our data as a unique (D, Ni) X G matrix whose individual entries are noted z,; —
namely the expression of gene g in cell n. We use s,, € {1,---, K} to represent the dataset from
which each cell n was generated. Furthermore, a subset of the cells may be associated with a
cell state annotation c¢,, which can describe either discrete cell types or hierarchical cell types.
More complex structures over labels such as gradients are left as a future research direction.

Since the problem of data harmonization of single-cell transcriptomics is difficult and can
potentially lead to over-correction (Figure 1b) [32], we propose a fully-generative method as
a robust and principled approach to address it. In our previous work [29], we built single-cell
Variational Inference (scVI), a deep generative model where the expression level z,, is zero-
inflated negative binomial (ZINB) when conditioned on the dataset identifier (s,), and two
additional latent random variables. The first, which we denote by [,, is a one-dimensional
Gaussian accounting for the variation in capture efficiency and sequencing depth. The second is
2, is a low dimensional Gaussian vector that represents the remaining variability (Figure 1c).
This vector is expected to reflect biological differences between cells, and can be effectively
used for visualization, clustering, pseudotime inference and other tasks. Since the scVI model
explicitly conditions on the dataset identifier, it provides an effective way of controlling for
technical sample-to-sample variability. However, scVI is unsupervised and does not make use
of the available annotations c¢,, which can further guide the inference of an informative latent
representation z,. To this end, we present a more refined hierarchical structure for z,. We draw
zn as a mixture conditioned on the cell annotation ¢,, and another latent variable u,,, accounting
for further biological variability within a cell type (Figure 1d, Online Methods). We name
the resulting approach single-cell ANnotation using Variational Inference (scANVI).

The variables z,, inferred either with scVI or scANVI, provide an embedding of all cells in a
single, joint latent space. Since this latent space is inferred while controlling for the dataset of
origin (s,), it inherently provides a way to address the harmonization problem. The annotation
of unlabeled cells can therefore be conducted with scVI using their proximity to annotated cells in
the joint latent space (e.g., using majority vote over the k-nearest neighbors). The scANVI model
provides a more principled way to annotate cells, namely through a Bayesian semi-supervised
approach. Once fitted, the model is able to provide posterior estimates for the unobserved cell
state ¢,, which can be particularly useful when labels cannot be entirely trusted. Because the
marginal distribution p(z,g, ¢, | $p) if ¢, observed (resp. p(z,g | sn) otherwise) is not amenable
to exact Bayesian computation, we use variational inference parameterized by neural networks
to approximate it [30] (Online Methods).

Notably, scANVI and scVI both have a certain number of hyperparameters. In the following
evaluations, conducted on different datasets and different scenarios, we use the exact same set
of hyperparameters in order to demonstrate that our methods can be applied with a minimal
requirement of hyperparameter tuning (Online Methods). We provide a robustness study for
hyperparameters in the context of harmonization in Supplementary Figure 1. We further
discuss the underlying assumptions of our framework in the context of competing harmonization
methods in Supplementary Note 1.
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Figure 1: Harmonization of scRNA-seq datasets with generative models. (a) Schematic diagram of the variational inference procedure in both of the scVI and
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Datasets

We apply our method on datasets generated by a range of technologies (10x Chromium [3, 33],
plate-based Smart-Seq2 [34], Fluidigm C1 [35], MARS-Seq [36], inDrop [37] and CEL-Seq2 [38]),
spanning different numbers of cells (from a few thousand to over a hundred thousand cells), and
originating from various tissues (mouse bone marrow, human peripheral mononuclear blood cells
[PBMCs], human pancreas, mouse brain). Datasets are listed and referenced in Supplementary
Table 1.

Harmonizing pairs of datasets with a discrete population structure

We conducted a comparative study of harmonization algorithms on four different instances, each
consisting of a pair of datasets. The first pair (PBMC-CITE [25], PBMC-8K [33]) represents
the simplest case, in which the two datasets come from very similar biological settings (i.e.,
PBMCs) and are generated by the same technology (i.e., 10x) but in different labs (i.e., akin to
batch correction). A second scenario is that of similar tissue but different technologies, which
we expect to be more challenging as each technology comes with its own characteristics and
biases [39]. For instance, some methods (10x, CEL-Seq2) profile the end of the transcript and
use Unique Molecular Identifier (UMI) to mitigate inflation in counting, whereas others (e.g.,
most applications of Smart-Seq2) consider the full length of the transcript without controlling for
this potential bias. Additionally, some protocols (e.g., Smart-Seq2) tend to have higher sensitivity
and capture more genes per cell compared to others. Finally, studies using droplet based protocols
tend to produce much larger numbers of cells compared to plate-based methods. We explore three
such cases, including a bone marrow 10x and Smart-Seq2 pair from the Tabula Muris project
(MarrowTM-10x, MarrowTM-ss2 [9]), a pancreas inDrop and CEL-Seq2 pair (Pancreas-InDrop,
Pancreas-CEL-Seq2 [40]), and a dentate gyrus 10x and Fluidigm C1 pair (DentateGyrus-10x,
DentateGyrus-C1 [41]).

Successful harmonization should satisfy two somewhat opposing criteria (Supplementary
Figure 2). On the one hand, cells from the different datasets should be well mixed; namely,
the set of k-nearest neighbors (kKNN) around any given cell (computed e.g., using euclidean
distance in the harmonized latent space) should be balanced across the different datasets. For
a fixed value of k, this property can be evaluated using the entropy of batch mixing [12], which
is akin to evaluating a simple k-nearest neighbors classifier for the batch identifier (Online
Methods). While this property is important, it is not sufficient, since it can be achieved by
simply randomizing the data. Therefore, in our evaluations we also consider the extent to which
the harmonized data retains the original structure observed at each dataset in isolation. Here,
we expect that the set of k-nearest neighbors of any given cell in its original dataset should
remain sufficiently close to that cell after harmonization. This property can be evaluated using
a measure we call k-nearest neighbors purity (Online Methods). Clearly, this criterion can be
simply optimized by not changing the input datasets, which will result in poor performance with
respect to our first measure. Our evaluation therefore relies on both of these measures.

Since our results depend on the neighborhood size k, we consider a range of values - from a
high resolution (k = 10) to a coarse (k = 500) view of the data. We compare scVI to several
methods, including MNN [12], Seurat Alignment [13], ComBat [15] and principal component
analysis (PCA). For each algorithm and pair of datasets, we report embeddings computed via a
Uniform Manifold Approximation and Projection (UMAP) [42] (Figure 2a, Supplementary
Figure 3 - 6) as well as the two evaluation metrics (Figure 2b-c). Overall, we observed that
scVI performs well in terms of mixing, while comparing favorably to the other methods in terms
of retainment of the original structure, for a wide range of neighborhood sizes and across all
dataset pairs. As an example, consider the results of applying scVI and Seurat Alignment to the
Tabula Muris bone marrow datasets (Figure 2a). As can be observed from both the entropy of
batch mixing values and the visualization of the harmonized data, both methods perform well
when it comes to mixing the input datasets. However, we observe that scVI performs better in
retaining the original, continuous, structure of the data. Indeed, using cell type labels provided by
the original publication [9], we observe that scVI captures the continuous process of myeloid cell
development (from hematopoietic precursors to erythrocytes and monocytes) well, while Seurat
Alignment groups the two trajectories (erythrocytes and monocytes) into separate clusters.

While scANVI was designed for the problem of cell state annotation, we also wanted to
evaluate its ability to harmonize datasets, which can be seen as a prerequisite. To evaluate this,
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we consider each dataset pair twice, each time using labels from one of the datasets (exploiting
the semi-supervision framework of scANVI). Reassuringly, we found that scANVI is capable of
effectively harmonizing the datasets, with a similar performance to that of scVI in terms of
entropy of batch mixing and k-nearest neighbors purity (Figure 2b-c). We further explore the
performance of scANVI in the annotation problem in the subsequent sections.
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Harmonizing datasets with a different composition of cell types

One of the primary challenges of the harmonization problem is handling cases in which the
cell types present in the input datasets only partially overlap or do no overlap at all. Since
this is a plausible scenario in many applications, it is important to account for it and avoid
over-normalizing or “forcing” distinct cell populations onto each other. To evaluate this, we
performed several stress tests in which we artificially manipulated the composition of cell types in
the input datasets prior to harmonization. As our benchmark method we use Seurat Alignment,
which performed better than the remaining benchmark methods in our first round of evaluation
(Figure 2).

As a case study, we used a pair of PBMC datasets (PBMC-CITE [25], PBMC-8K [33]) that
initially contained a similar composition of immune cell types (Supplementary Table 2). We
were first interested in the case of no biological overlap (Figure 3a-d). To test this, for a given
cell type ¢y (e.g., natural killer cells), we only keep cells of this type in the PBMC-CITE dataset
and remove all cells of this type from the PBMC-8K dataset. In Figure 3a-b, we show an
example of UMAP visualization of the harmonized data, with natural killer cells as the left out
cell type ¢g. Evidently, when harmonizing the two perturbed datasets with scVI, the natural
killer cells appear as a separate cluster and are not wrongly mixed with cells of different types
from the other dataset. Conversely, we see a larger extent of mixing in the latent space inferred
by Seurat Alignment. A more formal evaluation is provided in Figure 3c-d, which presents
our two harmonization performance metrics for each cell type averaged across all perturbations
(in each perturbation, cg is set to a different cell type). We also included scANVI with the true
number of cell types (C' = 6) in this analysis, using the cell labels from the PBMC-CITE dataset.

Under the ideal scenario of a successful harmonization, we expect both a low entropy of
batch mixing (since the datasets do not overlap), and retainment of the original structure. Evi-
dently, both scVI and scANVI exhibit a consistently low level of batch mixing that is better or
comparable to that of Seurat Alignment, while retaining the original structure more accurately.

As an additional scenario, we investigated the case where the input datasets contain a similar
set of cell types, with the exception of one cell type that appears in only one of the datasets. To
simulate this, for a given cell type ¢y, we removed cells of this type from the PBMC-8K dataset,
and then harmonize the remaining cells with the unaltered PBMC-CITE (which still contains
¢p). We show an example of UMAP visualization in Figure 3e-f, removing CD4+ T cells from
the PBMC-8K dataset. Evidently, in the scVI latent space, the PBMC-CITE “unique” CD4+ T
cell population is not wrongly mixed with cells from the perturbed PBMC-8K dataset, but rather
appears as a distinct cluster. For a more formal analysis, Figure 3g-i shows the harmonization
statistics for perturbing the six major cell types present in the PBMC datasets. As above, we
also evaluated scANVI in this context, using the labels from the unperturbed (PBMC-CITE)
dataset.

Figure 3g shows that the entropy of batch mixing from the “unique” populations (averaging
over all six perturbations) is low in all three methods (scVI, scANVI and Seurat Alignment),
with a slight advantage for scVI and scANVI. Figure 3h-i shows the harmonization statistics
for each population, averaging over all shared cell types between the two datasets. Evidently,
for the populations that are indeed common to the two datasets, scVI and scANVTI are capable
of mixing them properly, while preserving the original structure, comparing favorably to Seurat
Alignment on both measures. Overall, the results of this analysis demonstrate that scVI and
scANVI are capable of harmonizing datasets with very different compositions, while not forcing
erroneous mixing. These results are consistent with the design of scVI and scANVI, which aim
to maximize the likelihood of a joint generative model, without making a priori assumptions
about the similarity in the composition of the input datasets.
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Harmonizing continuous trajectories

While so far we considered datasets that have a clear stratification of cells into discrete sub-
populations, a conceptually more challenging case is harmonizing datasets in which the major
source of variation forms a continuum, which inherently calls for accuracy at a higher level of
resolution.

To explore this, we use a pair of datasets that provide a snapshot of hematopoiesis in mice
(HEMATO-Tusi [43], HEMATO-Paul [44]; Figure 4). These datasets consist of cells along the
transition from common myeloid progenitor cells (Figure 4a-b; middle) through two primary
differentiation trajectories myeloblast (top) and erythroblast-megakaryocyte (bottom). Notably,
the HEMATO-Tusi dataset contains cells that appear to be more terminally differentiated, which
are located at the extremes of the two primary branches. This can be discerned by the ex-
pression of marker genes (Figure 4e). For instance the HEMATO-Tusi unique erythroid cell
population expresses Hba-a2 (hemoglobin subunit) and Alas2 (erythroid-specific mitochondrial
5-aminolevulinate synthase) that are known to be present in reticulocytes [45, 46]. At the other
end, the granulocyte subset that is captured only by HEMATO-Tusi expresses ltgam and S100a8.
S5100a8 is a neutrophil specific gene predicted by Nano-dissection [47] and is associated with GO
processes such as leukocyte migration associated with inflammation and neutrophil aggregation.
Ttgam is not expressed in granulocyte-monocyte progenitor cells but is highly expressed in mature
monocytes, mature eosinophils and macrophages [48]. We therefore do not expect mixing to take
place along the entire trajectory. To account for this, we evaluated the extent of batch entropy
mixing at different points along the harmonized developmental trajectory. As expected, we find
that in most areas of the trajectory the two datasets are well mixed, while at the extremes, the
entropy reduces significantly, using either scVI or Seurat Alignment (Figure 4c). Overall, we
observe that scVI compares well in terms of both mixing the differentiation trajectories in each
dataset and preserving their original, continuous, structure (Figure 4a-d).

To validate scANVI in this context as well, we provided it with the categorical labels of
cells along the two developmental trajectories, indicating their cell state (Figure 4c-d and
Supplementary Figure 7). Even though this labeling scheme does not explicitly account for
the ordering between states, we observe that scANVI is capable of mixing the two datasets, while
retaining their original structure, achieving a level of accuracy comparable to that of scVI and
better than that of Seurat Alignment.
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Rapid integration of multiple datasets

To demonstrate the scalability of our framework in the context of harmonizing multiple (and
possibly large) dataset, we ran scVI to integrate a cohort of 26 datasets spanning 105,476 cells
from multiple tissues and technologies, which was made available by the authors of Scanorama
(a scalable variant of MNN [19]). Using the hardware specified in the original paper [19] (Intel
Xeon E5-2650v3 CPU limited to 10 cores with 384 GB of RAM), Seurat Alignment and MNN
required over 24 hours, while Scanorama completed its run in 20 minutes. Using a simpler config-
uration (eight-core Intel i7-6820HQ CPU with 32 GB RAM) along with one NVIDIA Tesla K80
GPU (GK210GL; addressing 24 GB RAM), we found that scVI integrates all datasets and learns
a common embedding in less than 50 minutes. Notably, this running time is competitive con-
sidering the reduced memory availability and the increased complexity of our model (compared
to truncated singular value decomposition followed by the nearest neighbor matching algorithm
in Scanorama). Notably, the latent space of scVI recapitulates well the major tissues and cell
types (Supplementary Figure 8), and the position of cells in the latent space provides an
effective predictor for the cell type label (Supplementary Figure 8 and Online Methods).

Transferring cell type annotations between datasets

We next turned to evaluate scVI and scANVI in the context of harmonization-based annotation.
Here, we test the extent to which annotations from a previously annotated dataset can be used to
automatically derive annotations in a new unannotated dataset. For scVI and Seurat Alignment,
we derive the annotations by first harmonizing the input datasets and then running a k-nearest
neighbors classifier (setting & to 10) on the joint latent space, using the annotated cells to assign
labels to the unannotated ones. Conversely, scANVI harmonizes the input datasets while using
any amount of available labels. The prediction of unobserved labels is then conducted using
the approximate posterior assignments g (c | z) of cell types (Online Methods), which can
be derived directly from the model. An alternative approach, which we also include in our
benchmark was taken by scmap-cluster [28], which instead of harmonizing, directly builds a
classifier based on the labeled cells and then applies this classifier to the unlabeled cells.

We start by exploring the four dataset pairs in Figure 2, which have been annotated in their
respective studies. In each experiment, we “hide” the cell type annotations from one dataset
and transfer the second dataset labels to the first one. As a measure of performance, we report
the weighted accuracy, which is the percent of cells that were correctly assigned to their correct
(hidden) label, averaging over all labels (Online Methods). Importantly, the annotations in
this first set of case studies were derived computationally. For example, by first clustering the
cells, looking for marker genes expressed by each cluster and then assigning labels to the clusters
accordingly. This level of annotation therefore makes the prediction problem relatively easy,
and indeed, while we find that overall scANVI predicts unobserved labels more accurately, the
differences between the methods are mild (Supplementary Figures 9 and 10).

To evaluate the accuracy of annotations without the need for computationally- derived labels,
we turned to the PBMC-CITE dataset which includes measurements of ten key marker proteins
in addition to mRNA [25], and the PBMC-sorted dataset [3], where cells were collected from bead
purifications for eleven cell types (Supplementary Table 3). We applied scVI and scANVI
to harmonize and annotate these two datasets along with a third dataset of PBMC (PBMC-
68K [3]). Our analysis contains a combined set of n = 169,850 cells from the three datasets
altogether. To generate a realistic scenario of cell type annotation, we only provide access to the
experimentally-based labels from the PBMC-sorted dataset (Figure 5a-c). As an additional
benchmark, we also evaluate Seurat Alignment, which was tested after removal of a randomly
selected subset (40%) of the two large datasets (PBMC-68K and PBMC-sorted) due to scalability
issues. Considering our harmonization performance measures (i.e., retainment of the original
structure and batch mixing), we observe as before that scVI and scANVI perform similarly and
compare favorably to Seurat Alignment. We then evaluated the accuracy of assigning unobserved
labels, focusing on the PBMC-CITE dataset. Instead of using the labels from the original PBMC-
CITE study as ground truth (which were computationally derived), we used the protein data,
which provides an experimentally-derived proxy for cell state. To this end, we quantified the
extent to which the similarity between cells in the harmonized mRNA-based latent space is
consistent with their similarity at the protein level (Online Methods). We first computed
the average discrepancy (sum of squared differences) between the protein measurements in each
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cell and the average over its k-nearest neighbors. As a second measure we computed for each
PBMC-CITE cell the overlap between its k-nearest PBMC-CITE neighbors in the harmonized
mRNA-based space and in the protein space. We then report the average across all cells in
Supplementary Figure 11. Evidently, scANVI outperformed both scVI and Seurat Alignment
for a wide range of neighborhood sizes, providing a representation for the mRNA data that is
more consistent with the protein data (Figure 5c).

As further support for the validity of these results, we confirmed that the labels inferred
by scANVI in the PBMC-CITE dataset are consistent with the protein expression values (e.g.,
observing a uniquely high level of CD19 expression in cells assigned with the “B cell” label;
Figure 5d and Supplementary Figure 11). Interestingly, when considering the latent space
learned by scANVI, we observed a certain amount of possible mislabeling in the original study
of the PBMC-68K dataset (Figure 5e). In that study, the PBMC-68K cells were assigned with
labels by taking the maximum correlation with cell subsets from the experimentally-annotated
PBMC-sorted data. However this approach might be error prone, most likely due to low sen-
sitivity and the influence of genes that are less relevant to cell type classification. Specifically,
we observe a substantual amount of cells that are labeled by scANVI as T cells, but originally
labeled as dendritic cells or natural killer cells. This re-annotation as T cells is supported by the
expression of marker genes [49] of the respective cell subsets (Supplementary Figure 11).
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Cell type annotation in a single dataset based on “seed” labels

An important variant of the annotation problem lies within the context of an ab initio labeling
of a single dataset where only a subset of the cells can be confidently annotated based on the raw
data. This increasingly prevalent scenario may result from limited sensitivity of the scRNA-seq
assay, where marker genes may only be confidently observed in a small subset of cells. One
common way to address this problem is to compute some form of a distance metric between cells
(e.g., after embedding with scVI or using Seurat PCA) and then assign labels based on proximity
to annotated cells [3]. To benchmark our methods, we consider two such predictors: the first is
clustering the cells and taking a majority vote inside each cluster, and the second is taking the
majority vote of the k-nearest neighbors around each unannotated cell (k = 10). While these
approaches are quite straightforward, their accuracy might suffer when the data does not form
clear clusters [43], or when differences between labels are too subtle to be captured clearly by
a transcriptome-wide similarity measure. To address these issues, scANVI takes an alternative
approach, namely learning a latent embedding that is guided by the available labels, and then
producing posterior probabilities for assigning labels to each cell.

As a case study, we compiled a dataset consisting of several experimentally sorted and labeled
subsets of T cells from the PBMC-sorted dataset, including CD4 memory, CD4 naive, CD4
regulatory and CD8 naive. To make our analysis more realistic, we assume that the labels are
completely unknown to us and therefore begin by trying to assign each T cell to its respective
subset using marker genes (12 altogether; see Online Methods). Notably, several important
biomarkers (CD4, CTLA4, and GITR) are detected in less than 5% of the cells, which renders
their use for annotation not straightforward. Notably, many of these biomarkers are sparsely
expressed to the extent that they are likely to be filtered out in the gene selection step of most
harmonization procedures (Figure 6a).

To analyze this dataset, we first computed a signature score for each cell and for each label
(i.e., T cell subset) using the scaled raw expression values of the respective marker genes (Online
Methods). We then designated the top 50 scoring cells in each subset as the seed set of cells that
are confidently annotated for that subset (Figure 6b). Reassuringly, this partial annotation is in
agreement with the experimentally derived cell type labels available for this dataset (Figure 6c).
However, this dataset does not form clear clusters, and in particular the seed sets of cells are
not well separated. Such an observation makes clustering-based approaches potentially less
precise. Indeed, using k-means clustering on the scVI and Seurat Alignment latent space, we
find that 74% and 72% of the cells were assigned with their correct label. Similar analysis
with two additional popular clustering algorithms (DBSCAN [50] and PhenoGraph [51]) further
emphasizes the challenge of a cluster-based approach on this data. Specifically, DBSCAN does
not partition the data into more than one cluster (scanning through a large number of parameter
values; Online Methods), and PhenoGraph predicts 9 clusters and achieves an accuracy of 41%
(Supplementary Figure 12).

Consistent with these results, the application of a k-nearest neighbors classifier resulted in
a similar level of accuracy in the Seurat PCA latent space (71%), which is slightly improved
when replacing it with the scVI latent space (73%; Supplementary Figure 12). Conversely,
after fitting the scANVI model based on this partial labeling, the annotation posterior gs(c | 2)
(Figure 6d) provides a substantially more accurate cell type assignment, with 84% of cells
annotated correctly. The scANVI latent space also has more distinct cell type clusters than both
scVI and Seurat Alignment (Supplementary Figure 12).
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Cell type taxonomy and hierarchical classification with scANVI

Another subtle yet important variation of the annotation problem is when the labels are not
mutually exclusive but rather form a taxonomy of cell types or states. To effectively annotate
cells in this setting, we extended scANVI to perform hierarchical classification, which as before we
carry out from first principles, relying on probabilistic graphical models (Supplementary Note
4). To demonstrate this extended version, we use a dataset of the mouse nervous system [52]
that was annotated using a cell type taxonomy with several levels of granularity. At the lowest
(most granular) level, the cells are stratified into 265 sub-types. At the second lowest level of
granularity these 265 sub-types are grouped into 39 subsets, each corresponding to a coarser cell
type definition.

We evaluate the ability of scANVI as well as competing methods at inferring these granular
labels when provided with partial “seed” annotation — namely label information for 5 randomly
selected cells per label (which accounts for an overall of 0.8% of the cells). We first observe
that Seurat PCA followed by a k-nearest neighbors classifier provides a weighted accuracy of
23% (averaging over all cell types). scVI provides a substantially better, yet still lower level
of accuracy at 32%. Interestingly, when scANVT is used without accounting for hierarchy, its
performance is similar to the unsupervised scVI (at 32%), which might result from very large
number of labels that may require hyperparameter tuning (e.g., increasing the number of classifier
training epochs; see Supplementary Note 3). However, when we take the hierarchy of the
labels into account, the performance of scANVI increases to 37%, thus outperforming the other
methods. Notably, while we tested the extrapolation of seed labeling and the hierarchical mode
only in the context of a single dataset, this variation of the scANVI model can also be directly
applied in the context of multiple datasets (i.e., transferring hierarchical annotations between
datasets).

Hypotheses testing in harmonized datasets: the case of differential ex-
pression

With their probabilistic representation of the data, scVI and scANVI each provide a natural way
of performing various types of hypotheses testing (Online Methods). This is different from
other approaches [12, 13, 18, 19, 20] where the dataset alignment procedures do not carry direct
probabilistic interpretation, and the resulting harmonized data can thus not be directly used for
these purposes.

To demonstrate this, we focus on the problem of differential expression. As a case study,
we use two PBMC datasets (PBMC-8K and PBMC-68K) where we assume that only one of
the datasets (PBMC-8K) comes with prior annotation of cell types. We looked for differentially
expressed genes in two settings: comparing the subpopulation of B cells to that of dendritic cells,
and similarly for the CD4+ versus the CD8+ T cell subsets. For evaluation, we used reference
sets of differentially expressed genes that were obtained from published bulk-level analysis of
similar cell subsets [53, 54], as in [29].

To conduct a post-harmonization differential expression analysis with scVI, we first harmo-
nized the two PBMC datasets and transferred labels from the PBMC-8K to the PBMC-68K
using a k-nearest neighbors classifier on the joint latent space (k = 10). We then consider these
annotations (predicted and pre-labeled) as fixed and sample 100 cell pairs, each pair consisting of
one cell from each population. For each cell pair we sample gene expression values from the vari-
ational posterior, while marginalizing over the different datasets, to compute the probability for
differential expression in a dataset-agnostic manner. Aggregating across all selected pairs results
in Bayes factors that reflect the evaluated extent of differential expression (Online Methods).
Since scANVI assigns posterior probability for associating any cell to any label, it enables a more
refined scheme. Specifically, instead of sampling pairs of cells we are sampling pairs of points in
the latent space, while conditioning on the respective label. This approach therefore does not
assume a fixed label for each cell (or point in latent space) as in the scVI scheme, but rather
a distribution of possible labelsthus making it potentially more robust to mis-annotation. As
an additional benchmark method, we included edgeR [55], which was shown to perform well
on scRNA-seq data [56] and uses a log-linear model to control for technical sample-to-sample
variation.

For evaluation, we first defined genes as true positives if their adjusted p-values in the reference
bulk data were under 5% and then calculated the area under the ROC curve (AUROC) based
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on the Bayes factors (for scVI and scANVI) or the p-values (for edgeR). Since defining true
positives requires a somewhat arbitrary threshold, we also used a second score that evaluates
the reproducibility of gene ranking (bulk reference vs. single-cell; considering all genes), using
the Kendall rank correlation coefficient (Supplementary Figure 13). As a reference, we look
at the accuracy of differential expression analysis in each PBMC dataset separately (using their
prior annotations to define the sets of cells we are comparing), computed with scVI (as in [29])
and edgeR. Reassuringly, we find that the performance of scVI on the joint data is not lower
than it is in either dataset in isolation. We also find that in both case studies, scVI performs
moderately better than scANVI, which is to be expected as scANVI has a more complex model,
yet in our case studies this added complexity is not critical since the unobserved labels are
relatively easy to predict (Supplementary Figure 9). Importantly however, we observe that
both scANVI and scVI compare favorably to edgeR in their accuracy and are thus capable of
conducting differential expression effectively in the context of multiple datasets.

Discussion

In this study, we demonstrated that scVI provides a principled approach to scRNA-seq data
harmonization through joint probabilistic representation of multiple dataset, while accounting
for technical hurdles such as over-dispersion, variable library size and limited sensitivity. We have
demonstrated that scVI compares favorably to other methods in its accuracy and that it scales
well, not only in terms of the number of cells (as in [29]) but also the number of input datasets
(as opposed to other methods that work in a pairwise fashion and therefore scale quadratically
with dataset size [19]). We have also shown that the harmonization step of scVI provides an
effective baseline for automated transfer of cell type labels, from annotated datasets to new ones.

While the performance of scVI in the annotation problem compares favorably to other algo-
rithms, it does not make use of any existing cell state annotations during model training, but
rather after the latent space has been learned. To make better use of these annotations (which
may be available for only some of the input datasets or only some cells within a dataset), we
developed scANVI, a semi-supervised variant of scVI. While the latent space of scVI is defined
by a Gaussian vector with diagonal unit variance, sScANVI uses a mixture model, which enables
it to directly represent the different cell states (each corresponding to a mixture component;
see Online Methods) and provide a posterior probability of associating each cell with each
label. We have demonstrated that similar to scVI, scANVTI is capable of harmonizing datasets
effectively. In addition, scANVI provides a way to address a number of variants of the annota-
tion problem. Here, we have shown that it performs well in the most prevalent application of
transferring labels from a reference dataset to an unannotated one, and that spurious annota-
tions (when datasets do not overlap) are associated with low probability. We then demonstrated
that scANVI can be used in the context of a single unannotated dataset, where high confidence
(“seed”) labels are first inferred for a few cells (using marker genes) and then propagated to the
remaining cells. Finally, we showed that scANVT is especially useful in the challenging case where
the differences between cell states are too subtle to be captured clearly by a transcriptome-wide
similarity measure, as well as in the case where the labels are organized in a hierarchy.

One concern in applying methods based on neural networks [21, 57, 58, 59, 60] in single-cell
genomics and other domains is the robustness to hyperparameters choices [61]. This concern
has been addressed to some extent by recent progress in the field, proposing search algorithms
based on held-out log-likelihood maximization [59]. In this manuscript, we used an alternative
approach that is more conducive for direct and easy application of our methods - namely we fix
the hyperparameters and achieve state-of-the-art results on a substantial number of datasets and
case studies.

Another important consideration while designing statistical models is the trade-off between
goodness of fit and interpretability, which is still an open topic in machine learning research.
Simple models such as the latent Dirichlet allocation [62] might not be particularly suited for
scRNA-seq noise but are yet of interest, e.g., due to the immediate interpretation of word-level
(i.e., gene-level) contributions to topics (i.e., cell types) [63]. Further effort in the use of deep gen-
erative models for applications in computational biology should come with attempts to perform
model interpretation. For instance, SAUCIE [21] experimentally proposes to add an entropy
regularization to a hidden layer of its denoising auto-encoder in order to infer clustering. Fu-
ture principled efforts may focus on putting a suitable prior such as sparsity on neural networks
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weights (e.g., as in [64]). That way, individual neurons of the last hidden layer of the gener-
ative model would correspond to individual gene modules, directly readable from the weight
sparsity motifs. Finally, as recent preprints propose proof of concepts for integrating single cell
data across different data modalities such as Single molecule fluorescent in situ hybridization
(smFISH), RNA-seq, ATAC-seq and DNA methylation [18, 20], further work can utilize proba-
bilistic graphical models that quantify measurement uncertainties in each assay, as well as the
uncertainties of transferring information between modalities (e.g., predicting unmeasured gene
expression in smFISH data).

An important distinguishing feature of both scVI and scANVT is that they rely on a fully-
probabilistic model, thus providing a way to directly propagate uncertainties to any downstream
analysis. While we have demonstrated this for differential expression analysis and cell type
annotation, this can be incorporated to other tasks, such as differential abundance of sub-
populations in case-control studies, correlation between genes and more. We therefore expect
scVI, scANVI and similar tools to be of much interest as the field moves toward the goal of
increasing reproducibility and consistency between studies and converging on to a common
ontology of cell types. Both scVI and scANVI are available as an open-source software at
https://github.com/YosefLab/scVI. The code for reproducing the results in this manuscript
has been deposited at https://doi.org/10.5281/zenodo.2529945.
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Online Methods

scANVI: an extension to scVI for harmonization through semi-supervised
annotation

scVI is a hierarchical Bayesian model [29] for single-cell RNA sequencing data with conditional
distributions parametrized by neural networks. The graphical model of scVI (Figure 1c) is de-
signed to disentangle technical signal (i.e., library size discrepancies, batch effects) and biological
signal. We propose in this manuscript an extension of the scVI model to include information
about cell types in the generative model. We name this extension scANVI (single cell ANnotation
using Variational Inference). In our generative model, we assume each cell n is an independent
realization of the following generative process.

Let K be the number of datasets and C be the number of cell types across all datasets
(including cell types that are not observed). Let ¢ describe the expected proportion of cells for
each cell type. We use a non-informative prior ¢ = % for this parameter. Latent variable

¢n, ~ Multinomial(c)
describes the cell type of the cell n. Latent variable
up ~ N(0,1)

is a low-dimensional random vector describing cell n within its cell type. Conceptually, this
random variable could describe cell-cycles or sub-cell types. By combining cell type information
¢, and random vector u,,, we create a new low-dimensional vector

Zn N./\/'(ff(umcn),fz”(un,cn))

where f#' and fJ are two functions parametrized by neural networks. Given [, € Rf and
l, € RE specified per dataset as in [29], latent variable

l,, ~ LogNormal(l,,, [2)
encodes a cell-specific scaling factor. Let 6 € R(j encode a gene specific inverse dispersion

parameter (inferred as in [29]). Given the dataset information s,,, conditional distribution x, |
Zny ln, Cp is conform to the one from the scVI model

Wng ~ Gamma( fJ (zn,n), 0q)
Yng ~ Poisson(l,w,g)
hpg ~ Bernoulli( f7 (zn, 7))

S Yng i hpg =0,
" 0 otherwise.

where f,, and fj are functions parametrized by neural networks. f,, has a final softmax
layer to represent normalized expected frequencies of gene expression as in [29]. In this model,
annotation ¢, can be either observed or unobserved following [31, 65], which is useful in our
applications where some datasets would come partially labeled or unlabeled. Only the first part
of the generative model, as separated above, differs from the original scVI formulation. This
corresponds to the top part of the new representation of the graphical model in Figure 1d.

Posterior inference

Asin [29], we integrate the random variables {wng, Yng, lng } to simplify our model (zyg | 2n, ln, s
is zero-inflated negative binomial). We use variational inference, neural networks and the stochas-
tic gradients variational Bayes estimator [30] to perform efficient approximate inference over the
latent variable {2, un, ¢, ln}. We assume our variational distribution factorizes as

43 (Cns 2ns lns Un | Tny5n) = qa(2n | Tn)qa(cn | 20)qa (ln | 2n)qa (Un | Cn, 2n)

Following [31, 65], we derive two variational lower bounds: one £ in the case of ¢, observed
for po(xn, ¢y | sn) and a second U in the case of ¢, non-observed for pg(x, | $,) where O are
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all the parameters (neural networks and inverse-dispersion parameters). Equations to derive the
evidence lower bound (ELBO) are derived in Supplementary Note 2. We optimize the sum
ELBO = £ + U over the neural networks parameters and the inverse-dispersion parameters (in
a variational Bayesian inference fashion). We discuss the possible ways to train this composite
ELBO are referenced in Supplementary Note 3. Remarkably, the approximate posterior
go(cn | zn) can be used as a classifier, assigning cells to cell types based on the location on the
latent space.

We sample from the variational posterior using the reparametrization trick [30] as well as
“mini-batches” from the dataset to compute unbiased estimate of the objective gradients’ with
respect to the parameters. We use Adam [66] as a first-order stochastic optimizer to update the
model parameters.

Hyperparameters

For all harmonization tasks in this paper, we consistently use the same set of hyperparameters.
Each network has exactly 2 fully-connected layers, with 128 nodes each. The number of latent
dimensions is 10, the same as other algorithms for benchmarking purposes (e.g., the number
of canonical correlation vectors used in Seurat Alignment). The activation functions between
two hidden layers are all ReLU. We use a standard link function to parametrize the distribution
parameters (exponential, logarithmic or softmax). Weights for the first hidden layer are shared
between f,, and f,. We use Adam with 7 = 0.001 and € = 0.01. We use deterministic warmup [67]
and batch normalization [68] in order to learn an expressive model. When we train scANVI, we
therefore assume that the data comes from a set of Copserved + Cunobserved POpulations, each
generated by a different distribution of z,, values. This set includes the Cypserveq Populations for
which annotated cells are available, and C,,0pserved pOpulation that accounts for cell types for
which an annotation is not available to the algorithm. Ad-hoc training procedures for scANVI
inference are described in Supplementary Note 3. In the case of a one single dataset, we use
a 2 fully-connected layers with 256 hidden units classifier with ¢ = 1 epochs of classifier training
in between each variational update. In the case of transfer of labels, we use Algorithm 2 with 1
fully-connected layers with 128 hidden units classifier, with ¢ = 100 epochs of classifier training
in between each variational update.

Bayesian differential expression

scVI For each gene g and pair of cells (z,, 2z,) with observed gene expression (x,,x;) and
dataset identifier (s, sp), we can formulate two mutually exclusive hypotheses:

HY :=Esf9(2a,8) > EsfI(2p,8) vs. HY :=EsfI(2a,8) <EsfI(2,9),

where the expectation E; is taken with the empirical frequencies. Notably, we propose a hypoth-
esis testing that do not calibrate the data to one batch but will find genes that are consistently
differentially expressed. Evaluating which hypothesis is more probable amounts to evaluating a
Bayes factor [69] (Bayesian generalization of the p-value) which is expressed as

p(HY | Ta, 1)

K =log, .
p(H3 | za, o)

The sign of K indicates which of H{ and HJ is more likely. Its magnitude is a significance
level and throughout the paper, we consider a Bayes factor as strong evidence in favor of a
hypothesis if |K| > 3 [70] (equivalent to an odds ratio of exp(3) ~ 20). Notably, each of the
probabilities in the likelihood ratio for K can be approximated via the variational distribution

b8 L) = Y [ p70eass) < 2D p(oatza | 20)daCan | 20),

where p(s) designated the relative abundance of cells in batch s and all of the measures are
low-dimensional, so we can use naive Monte Carlo to compute these integrals. We can then use
a Bayes factor for the test.
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Since we assume that the cells are independently distributed, we can average the Bayes factors
across a large set of randomly sampled cell pairs, one from each subpopulation. The average
factor will provide an estimate of whether cells from one subpopulation tend to express g at a
higher frequency.

scANVI In the case of scANVI, we need not rely on specific cells since labels are given during
the training. We still use a generative model but with the following probability for p(H{ | ca, )
where ¢, (resp. ¢) is the first (resp. second) cell type of interest,

P | carer) = S / / P(F9 (70, 8) < 152, 8))P()da (20 | tar ca)dq(zs | b cn)dp(ua)dp(us).
s Uag;UbyZ2a,Rb

Scalability From a scalability perspective, our methods scales to a million cells in less than an
our as reported in our original manuscript [29]. Remarkably, our inference procedure is scalable
with respect to the number of batches (with number of floating point operations linear per dataset
per iterations) while even the most efficiently implemented method such as Scanorama needs to
compare each dataset pairs (quadratic). Our runtime on the large dataset from Scanorama is 42
min for 250 iterations over 100K cells from 26 datasets, still 30 min longer than their algorithm.
We expect that further work on implementation details such as GPU usage efficiency, memory
loading, data format and iteration monitoring will help close the computational gap between
these algorithms.

Gene Selection A common practice in data harmonization is to perform gene selection prior
to harmonization. This assumption is critical when the number of genes that can be taken into
account by the algorithm is small and potentially biological signal could be lost. scVI is however
designed for large datasets which do not fall into the high-dimensional statistics data regime.
Remarkably, there is no need for crude gene filtering as part of our pipeline and we adopt it as
part of this publication only for concerns of fairness in benchmarking.

Datasets

We report an extensive list of datasets at Supplementary Table 1. For all UMI based datasets
we took the raw counts without any normalization as input to scVI. For real datasets, we cal-
culated the dispersion (variance to mean ratio) for all genes using Seurat in each dataset and
selected g = 1,000 genes with the highest dispersion from each. The performance of scVI is not
as affected by gene set and we use the same gene selection scheme as in [13] to ensure fairness in
our comparison. We then took the union of these gene list as input to Seurat Alignment, MNN
and scANVI. One exception is the differential expression study for which we kept the gene set
(g = 3,346) to have it match the bulk reference as in [29)].

Normalization of SmartSeq2 data For the MarrowMT-ss2 dataset, we normalized the read
counts per gene by relative transcript length (average transcript lengths of a gene divided by
average gene length over all genes), and subsequently took the integer part of the normalized
count. This is different from standard normalization procedures in that we do not normalize by
cell size because cell size normalization can be performed by scVI. And we only keep the integer
part of the counts, due to the distributional assumptions made by scVI. The scVI model can to
be extended to fit data with amplification bias, however we have not done so for this paper and
thus have to perform this normalization heuristic.

Normalization of CITE-seq data Since we did not explicitly model the CITE-seq data in
our models, we normalized it by fitting a Gaussian mixture model to each individual protein
with two components. We then transformed each individual protein count as z — (z — %ﬂ
where p; and po designate the mean of the mixtures and . is the positive part of a real number.

Algorithms for benchmarking

Seurat Alignment We applied the Seurat Alignment procedure from the R package Seurat
V2.3.3. The number of canonical correlation vectors is 10 for all the datasets, which is also
identical to the number of latent dimensions used for scVI and scANVI.
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Seurat PCA We applied the Seurat PCA procedure from the R package Seurat V2.3.3. This
method is a simple PCA based after normalization by Seurat. Seurat PCA is used to obtain the
individual dataset latent space to evaluate the k-nearest neighbors purity for all non-scVI based
methods. The number of principal components is 10.

Matching Mutual Nearest Neighbors We used the mnnCorrect function from https:
//rdrr.io/bioc/scran/man/mnnCorrect.html with default parameters.

scmap We applied the scmap-cluster procedure from the R package scmap. As the scmap
manuscript insists heavily on why the M3Drop [71] gene filtering procedure is crucial to overcome
batch effects and yield accurate mapping, we let scmap choose its default number of genes
(9 = 500) with this method.

ComBat We used the R package sva with default parameters.

UMAP We used the umap class from the UMAP package with a default parameters and
spread=2.

DBSCAN We used the DBSCAN algorithm from the Python package from the python package
scikit-learn V0.19.1 and we searched for an optimal hyperparameter combination by a grid search
over eps and min_samples from the range of 0.1 — 2 and 5 — 100 respectively. Although some
combinations of parameters yield more than one clusters, the smaller clusters comprise of less
than 1% of the data. We then evaluated DBSCAN with eps=1.23, min\_samples=10 and
default values for all other hyper-parameters.

PhenoGraph We used the phenograph.cluster function from the Python package PhenoGraph
1.5.2 downloaded from https://github.com/jacoblevine/PhenoGraph with its default param-
eters.

Evaluations metrics

Batch Entropy Mixing Fix a similarity matrix for the cells and take U to be a uniform
random variable on the population of cells. Take By the empirical frequencies for the 50 nearest
neighbors of cell U being a in batch b. Report the entropy of this categorical variable and average
over T' = 100 values of U.

k-nearest neighbors purity Compute two similarity matrices for cells from the first batch,
one from the latent space obtained with only cells from the first batch and the other from the
latent space obtained using both batches of cells. We always rely on the euclidean distance on
the latent space. Take the average ratio of the intersection of the k-nearest neighbors graph
from each similarity matrix over their union. Compute the same statistic for cells from the other
batch and report the average of the two.

Weighted and unweighted accuracy We can evaluate accuracy of cell type classification
by comparing prediction to the previously published labels. The unweighted accuracy is the
percentage of cells that have the correct label. The weighted accuracy is when the accuracy is
calculated for each cell type first and averaged across cell types. The weighted accuracy assigns
the same weight to each cell type and thus weighs correct prediction of rare cell types more
heavily than the unweighted accuracy. All accuracies reported in this paper is the weighted
accuracy.

Maximum Posterior Probability We evaluate the performance of the scANVI classifier
at transferring labels from an annotated dataset to an unannotated dataset by looking at the
maximum posterior probability for the observed classes. By default scANVT classifier sets the
number of classes to the same number of cell types in the merged dataset. In the case of NV
observed labels from the annotated dataset and one unannotated dataset (thus the cell type
label is “Unlabeled”) scANVI assumes N + 1 classes. For each cell, scANVT assigns a posterior
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probability for each of the N + 1 classes. The maximum posterior probability for the observed
classes is the highest probability of a cell being assigned to one of the N observed classes.
Signature for sub-division of T cells in human PBMCs
Gene sets For ranking the cells, we used both positive and negative sets of genes:

e CD4 Regulatory: GITR+ CTLA}+ FOXP3+ CD25+ S100A4- CD45- CD8B-

e CD4 Naive: CCR7+ CDj/+ S100A4- CD45- FOXP3- IL2RA- CD69-

e CD4 Memory: S100A4+ CD25- FOXP3- GITR- CCR7-

e CD8 Naive: CD8B+ CCR7+ CDj-
Signature calculus To compute the signature of a cell, we followed the normalization pro-
cedure from [24] which consists in dividing by total numbers of UMIs, applying a entry-wise
transformation x — log(1 + 10%z) and z-score normalization for each gene. Then, we aggregated
over the genes of interest for each cell by applying the sign from the gene-set and averaging.
Software Availability

An open-source software implementation of scVI is available on Github (https://github.com/
YosefLab/scVI). All code for reproducing results and figures in this manuscript is deposited at
https://doi.org/10.5281/zenodo.2529945.

Data availability

All of the datasets analyzed in this manuscript are public and referenced at https://github.
com/chenlingantelope/HarmonizationSCANVI.
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Figure 1: Robustness analysis for harmonization of the pair of datasets MarrowMT-10x /
MarrowMT-ss2 with scVI. (a —c) We augment the number of hidden layers in the neural network
fw and track across n = 5 random initializations for the batch entropy mixing (a), the held-out
log likelihood (b) and the weighted accuracy of a nearest neighbor classifier on the latent space
(¢). (d— f) We increase the number of dimensions for the latent variable z and track across
n = 5 random initialization the batch entropy mixing (d), the held-out log likelihood (e) and the
weighted accuracy of a nearest neighbor classifier on the latent space (f)
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Harmonization

No correction

Over-correction

Adequate
correction

Datasets Cell-types

Figure 2: Schematic of the data harmonization problem. We are provided with two datasets
(orange and blue), each consisting of two cell types (red and green). Our evaluation for the
harmonization problem consists of two objectives: (1) mixing the two datasets well and (2)
retaining the original structure in each dataset. Scenario 1 (top) is the case of under correction
where objective (2) is achieved while objective (1) is not. Scenario 2 (middle) is the case of over
correction where objective (1) is improved while objective (2) becomes worse. The bottom panel
shows the desired scenario of mixing the datasets well while retaining the biological signal.
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Figure 3: Visualization of the benchmark PBMC-8K / PBMC-CITE. all positions for the scatter
plots are derived using UMAP on the latent space of interest.
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Figure 4: Visualization of the benchmark MarrowMT 10x / ss2. all positions for the scatter
plots are derived using UMAP on the latent space of interest.
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Figure 5: Visualization of the benchmark Pancreas InDrop / CEL-Seq2. all positions for the
scatter plots are derived using UMAP on the latent space of interest.
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Figure 9: Annotation results for the PBMC-8K / PBMC-CITE (a — b), the MarrowMT-10X /
MarrowMT-SS2 datasets datasets (¢ —d), Pancreas InDrop-CITESeq (e — f) and Dentate Gyrus
10X / Fluidigm C1 (g — h). Accuracies for transferring annotations from one dataset to another
from a k-nearest neighbor classifier on Seurat Alignment, k-nearest neighbor classifier on scVI
latent space, scANVI classifier and SCMAP classifier are shown. The aggregated results across
for cell types that are shared between the two datasets is shown in box plots.

35


https://doi.org/10.1101/532895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/532895; this version posted January 29, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

" : o ) e ¢ o o
5]
Eowt & 3 g o o0 8 scvi
Y [ ]
Z oo 06 SCANVI
5 o . 0n SCMAP
Y]
g Seurat
=
& oo 00 :
L Y s b s e e e e e Alignment
AR AR A L & & & F
& & ? & o &N L3 & & W
& S & S
o S 5 S NS 5 &
S & S S
& S 5 S
< PBMC-8K to PBMC-CITE < PBMC-CITE to PBMC-8K
o .
A oo i e . L] 09 + . . ° ]
N o 0
3
2 06 H 06 . 5
§ 03 < 03
> @8
9 £ 1
g 5§ oo 00 o
o N 2 AN > 2 N N > o N N @ 2
g 9 & & & P I & ¢ d & of & & & & &
P ¢ & $ © @ N & & @ N r & B K
< S < > & & N & <Q o <& &
L & & & S & & & & &
3 & & & K g
5 D € < i
3 & O
& S &
@ & &
& MarrowMT 10x to 552 & & MarrowMT ss2 to 10x
o
S
[
= T : . () S100 ? 87 e 2 @
g & oo ' - 09 3 . s ]
5 i .
g = .
(=] ST 0 S .
3 06 o0 2 L [ 06 .
5 Tlald [ ) ¢
Q .
£ o3 03 ‘
8 .
g
g 00 - 0.0
5
I R R R R T TR ) PN P RO @ L @ PP
RIS o@vy TP EEE & O TP (O o@vo Kot S S
& SESHSE S R
F & P2 TES P I R I O
< & < &
Pancreas InDrop - CEL-Seq2 @ Pancreas CEL-Seq2 - InDrop ©
o] : . " . [ . . .
é 09 ] 09 . : P s o
= o o O ([
3 .
S
[ 06
3 - :
= H
3 o3 & 03
g .
3 .
@ .
£ oo 00 . .
3 N S S S S S S S S S ¢ ® @ @ > @
& & S P P P P & & ® & & & P
0 g & & &@« FFESE S DR &@@ I g

Dentate Gyrus 10x to C1 Dentate Gyrus C1 to 10x

Figure 10: Annotation results for the PBMC-8K / PBMC-CITE (a — b), the MarrowMT-10X /
MarrowMT-SS2 datasets datasets (¢ — d), Pancreas InDrop-CITESeq (e — f) and Dentate Gyrus
10X / Fluidigm C1 (g — h). Accuracies for transferring annotations from one dataset to another
from a k-nearest neighbors classifier on Seurat Alignment, k-nearest neighbors classifier on scVI
latent space, scANVI classifier and SCMAP classifier are shown. The prediction accuracy for
each cell type that is shared between the two datasets is shown on the y-axis and the size of the
dots are proportional to the proportion of a cell type in the total population.
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Figure 11: (a) k-nearest neighbors purity of the merged latent space on the protein expression
space as a function of the size of the neighborhood. (b) Protein expression heatmap showing
consistency of PBMC-sorted labels and protein expression in PBMC-CITE. The protein expres-
sion per cell type is based on k-nearest neighbors imputation from the harmonized latent space
obtained from scANVI trained with pure population labels. (¢) We select individual cells that
were labeled as Dendritic cells or Natural Killer cells in the original publication of the respective
datasets, and compare the raw transcript count from cells inside the scANVI T cells cluster
(DC*, NK*) against cells outside the T cells cluster (DC, NK). The expression of marker genes
suggest that DC* and NK* is more likely to be T cells and thus the scANVI latent space is
more accurate. (d) The batch entropy mixing of the three datasets in scVI, scANVI and Seurat
Alignment merged space.
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Figure 12: Other methods of classifying T-cell subsets of the PBMC-Pure dataset. Coordinates
for the scatter plots are derived from UMAP embedding based on the latent space of scANVI.
(a) Ground truth labels from the purified PBMC populations (b) k-nearest neighbors classifica-
tion labels when applied on scVI latent space from the seed set of cells (¢) k-nearest neighbors
classification labels when applied on Seurat Alignment latent space (d) k-means clustering based
labels when applied to scVI latent space (¢) DBSCAN clustering based labels when applied to
scVI latent space. DBSCAN returns only one cluster but return some cells as unclassified. (f)
PhenoGraph clusters on scVI latent space
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Figure 13: Differential Expression on mulitple datasets with scVI. Evaluation of consistency with
the AUROC metric is shown for comparisons of CD4 vs CD8 T cells (a) and B cells vs Dendritic
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data to show robustness. (¢ — d) Same plots with the Kendall Tau metric.
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Dataset Name Tech. n cells Description Ref.
PBMC-8K 10x 8,381 peripheral blood mononuclear cells  [33]
(PBMCs) from a healthy donors;

labels extracted from [72]

PBMC-CITE 10x 7,667 PBMCs obtained from CITE-seq; [25]
labels generated manually by in-
spection of protein marker level on

Seurat clusters

PBMC-68K 10x 68,579  fresh PBMCs collected from [3]
healthy donor
PBMC-Sorted 10x 94,655  Bead-purified PBMCs collected [3]

from the same donor as PBMC68K

MarrowTM-10x 10x 4,112 Mouse bone marrow cells collected  [9]
from two female mice
MarrowTM-ss2 Smart-Seq2 5,351 FACS sorted cells (B cells, T cells, [9]

granulocytes and Kit (+), Sca-1
(4) and Lin (-) hematopoietic stem
cells) from 3 male and 2 female

mice,
Pancreas-InDrop inDrop 8,569 Human Pancreas [40]
Pancreas-CEL-Seq2 | CEL-Seq2 2,449 Human Pancreas [73]
DentateGyrus-10x 10x 5,454 Mouse Dentate Gyrus [41]
DentateGyrus-C1 Fluidigm C1 2,303 Mouse Dentate Gyrus [41]
CORTEX 10x 160,796 Mouse Nervous System [52]
HEMATO-Tusi inDrop 4,016 Hematopoeitic Progenitor Mouse [43]
Cells
HEMATO-Paul MARS-seq 2,730 Hematopoeitic Progenitor Mouse [44]
Cells
SCANORAMA Mixture 105,476 human cells from 26 diverse [19]

scRNA-seq experiments across 9
different technologies

Table 1: List of dataset used in this paper. Note that for the PBMC-Sorted 11 cell types were
collected according to the paper but only 10 are available from the 10x website. [33]
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PBMC-8K PBMC-CITE

cell-type proportion proportion
NK cells 0.036 0.178
CDS8 T cells 0.119 0.091
B cells 0.133 0.104
FCGR3A+ 0.028 0.029
Monocytes

CD14+

Monocytes 0.186 0.159
Cbh4 T 0.421 0.436
Dendritic Cells 0.026 0
Megakaryocytes 0.008 0
Other 0.043 0.004

Table 2: Compositions of cell-types in the PBMC-8K and the PBMC-CITE dataset

Cell Types # cells
B cells 10,085
CD14+4+ Monocytes 2,612
CD34+ cells 9,232
CD4 T cells 11,213
CD56 NK cells 8,385
CDS8 T cells 10,209
Memory T cells 10,224
Naive CD8 T cells 11,953
Naive T cells 10,479

Regulatory T cells 10,263

Table 3: Cell types present in the PBMC-sorted dataset.
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Supplementary Note 1 Statistical trade-offs in scRNA-seq
harmonization

Harmonization is a hard and ill-defined problem. Especially, it can be difficult to formulate
exactly its objective and at which level of granularity the “harmonization” is expected. Let
us take the example of two PBMCs datasets that are exact biological replicates with same
experimental conditions. In that case, the problem is well defined since we have a non-confounder
assumption. Removing in a principled way all the variation in the data that corresponds to
batches is reasonable. However, let’s take a slightly trickier case, one patient and one control
dataset. If we look at the exact same metrics for harmonization, the resulting algorithm could
discard any interesting biology that happens to the cells that get frozen. There is a confounder
and the problem is much more difficult (ill-posed).

Therefore, it is extremely important to state how different models perform harmonization and
what are their underlying hypothesis and modeling capabilities. For example, scmap [28] proposes
a new gene filtering method to select gene that are claimed to be invariant to batch-effects.
However, it is clear that over filtering can lead to ignoring biological information. MNNs [12] on
its end assumes that the topology of cell types can be easily resolved by a k-nearest neighbor
graph using a .2 normalization and distance scheme. This allows MNNs [12] and all the neighbor-
matching-based approaches [20, 19] to remarkably merge batches with the risk of also merging
cell types in the case where they are not detectable with this normalization scheme.

scVI and scANVI perform harmonization by learning a common generative model for a col-
lection of gene expression probability distributions [p(z | 2, s)], . (1, K} indexed by the dataset-
identifier 5. The statistical richness of the collection of conditional variables [p(z | z,5)] (1. .k}
dictates the flexibility of our model towards integrating datasets.

One notable factor that sensibly contributes to harmonization capabilities is the prior for cell-
specific scaling factor [,, that is dataset-specific. This helps probabilistically removing library-size
caused discrepancies in the measurements and is more principled than normalization of the raw
data [74]. Another important parameter is the parametrization of the neural network that maps
variables (z,7) to the expected frequencies E[w | z,s] = fu(z,s). Since our function f,, is
now potentially non-linear, our model can benefit from more flexibility and fit batch-specific
effects locally for each cell types or phenotypical condition. Especially, depending on how one
designs the neural architecture of f,,, it is possible to more flexibly correct dataset-specific ef-
fects. More specifically, we treat f,, as a feed-forward neural network for which at each layer
we concatenate the batch-identifier with the hidden activations. A consequence of this design
is that with more hidden layers in f,,, less parameters are shared and the family of distri-
butions [p(z | 2, 8)]c(;.... xy has more flexibility to fit batch-specific effects (Supplementary
Figure la-c). Conversely, when the latent dimension grows, the generative network has less
incentive to use the dataset covariate and might mildly duplicate the information in its latent
space (Supplementary Figure 1d-f). Throughout the paper, we fix those parameters (Online
Methods and show competitive performance for all our datasets.

Another insight comes from how the variational distribution ¢(z | z, s) is parametrized. Our
neural networks plays the role of an explicit stochastic mapping from the gene expression x,,
of a single-cell n to a location in a latent space z, (a standard theme in scRNA-seq analysis,
e.g LIGER [18], Seurat [13], scVI [29]). Via this map, we match an empirical distribution in
gene expression space (i.e a dataset) paata(,s) = Y2, d(z,.s,) (2, 5), with a certain distribution
on the latent space pgata(2) = D, 0 (z,,s,)(2). In certain cases, even though we designed this
latent space to represent biological signal, the transformed dataset might still be confounded by
technical effects [75]. In particular, this effect is susceptible to be severe when the generative
model is not flexible enough to fit the dataset-specific effects or has a model misfit (as in, to some
extent, the case with the CCA of [13] that assumes the data is log-normal). In this case, the go-to
method is to empirically constrain the mapping (i.e the variational network in our case or the la-
tent space itself in the case of SEURAT) to match the collections of variables paata(z, 8)sef1,-.. .k}
However, each of these correction approaches has underlying modeling assumptions. For exam-
ple, SAUCIE [21] and MMD ResNet [22] both propose to correct the variational distribution by
adding on their objective function a non-parametric measure of distance between distributions
(maximum mean discrepancy [76]). This approach specifically assumes that each dataset has the
same cell type composition and the same biological signal and which is not reasonable in other
cases than biological replicates. Seurat Alignment [13] on its end relies on a milder assumption
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that there is a common signal exactly reproducible between the two datasets and that CCA
capture most of the biological variation, which is not obvious true considering limited suitability
of linear Gaussian model for scRNA-seq. Seurat anchors [20] relies on CCA and suffer from the
same problems as MNNs with its specific normalization scheme. Finally, the recent LIGER [18]
method at first sight seems like a non-probabilistic version of scVI since it also learns a degen-
erate conditional distribution via its integrative non-negative matrix factorization [18] (NMF is
a noisy-less version of a Gamma-Poisson generative model). However, it has a further quantile
normalization of the latent spaces within clusters. First, the output of the clustering algorithm
is not necessarily correct and could perturb downstream analyses. Second, if a cell type would be
slightly different from one condition to another, this information would be lost in the final latent
space. Overall, all these correction methods can therefore potentially lead to over-correction and
statistical artifacts [32].
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Supplementary Note 2 Evidence Lower Bound decompo-
sition

For notational convenience, we do not write here that all the probabilities are conditioned on
the batch identifier s. We also report the evidence lower bound (ELBO) only for one sample (i.e
one cell) and drop the index notations by substituting {x,, zn, Un, cn,ln} by {z,z,u, c,1}. This
is without loss of generality since all the cells are independent and identically distributed under
our model. Bayesian inference aims at maximizing the marginal likelihood of our datapoints. We
also drop the parameters © (resp. ®) of the generative model (resp. the variational distribution)
for notational convenience. We will derive the ELBO in the case where ¢ is not observed (almost
same calculations resolve the case where ¢ is observed). Notably, we derive the ELBO using
Jensen inequality weighted by the variational distribution ¢(z,w,l,c¢ | ). Similar derivations
can be found in the variational autoencoder literature (eg. [65]). We assume our variational
distribution factorizes as:

q(c,z,u, b | ) = q(z [ z)q(c | 2)q(u | z,¢)q(l | z)

p(z |2, Op(z | u, c)p(c)p(u)p(l)
q(z,u,c,l| x)

p(l‘7 Z? u? C7 l)

:l = ]Eq(zm,,c,l | ) l:lOg
p(z | u, C)}

1 >E log ~————-—=
ng(l') Z8q(zu,c,l | x) |:Og q(z,’7u7 C,l | 1')

> Eq(z,u,c,l | ) [logp(x ‘ Z, l)] +]Eq(27U-,Cal | ) |:10g

, o= )
@ (ii)

p(c) p(u)

+ E zu,cl | x l:log :| + E z,u,cl | x |:10g N

wEe o) |78 g (o] z) | et [TE glu] 2, 0)
p(l)
E . 1
+ q(z,u,cl| x) |: og q(l | $):|

(v)
(1)

Then we simplify each individual term of the ELBO in 1 by recognizing KL divergence
terms. In particular, we use subscript notation KL (.||.), and KLy (.||.) to denote Gaussian and
multinomial KL divergences.

Eq(z,u,c,l | ) [logp(m | 2, Z)] = Eq(z | z)q(l | z) [logp(m | 2, Z)] (1)
p(z]u,c) [ p(z|uc) ,
IEq(z,u,c,l | z) |:10g q(z|x)} = II':':q(z | z) E q(u | z,c)q(c| 2) |:10g (Z | .Z') (11)
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K
p(c c
Eq(zuci | ) {10% © } =By (s | D_alc] 2)log o) (iii)

q(c|2) = (c]2)

—KLwm (g(c | 2)|p(c))

Eq(zuel|z) {bg (p(u))} =Eqz |0 i q(c ul z,e) {bg (p(u)} (iv)
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44


https://doi.org/10.1101/532895
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/532895; this version posted January 29, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Note 3 Training Information

In order to train scanVI properly, several options are possible to train all the parameters (¢
from the generative model, ¢ from the variational distribution and #¢ from the labels’ posterior
exclusively). In all cases, parameters 6 and ¢ should minimize the evidence lower bound J =
L + U (decomposed over the labeled samples £ and unlabeled samples I). Furthermore, [65]
suggests to optimize jointly a modified objective that penalize the ELBO by a classification loss
C on the labeled data so that the parameters 6¢ also benefits from the learned data. In [77], we
interpreted this extension of the ELBO as a correction term for noisy labels. In this manuscript,
we propose a specific training procedure for scANVI, based on alternating minimization on the
parameters (0, ¢) and 6°. A joint training, conform to the one suggested in [65] is described in
Algorithm 1. Instead, an alternate training procedure would perform alternating minimization
as described in Algorithm 2. The advantage of joint training is presumably that it shapes the
latent space directly, through the modification of the encoder’s weights. The advantage of the
alternate training, is that the learning of the cell type edge converges properly at the end of each
epoch, and improve indirectly the latent space quality, through the next steps of optimization.
We have noticed in practice that using the joint training in the case of transferring labels from
one dataset to another might break down the mixing in the latent space, as the loss C' has only
contributions from a unique dataset. Therefore, throughout the paper, we consistently used the
alternating procedure of Algorithm 2.

repeat

repeat
(90:90) + (55 5%)

define J, = J +a x C (0,0) + (0,9) +T(g0,9¢)

repeat .
0T 0T until 7 has converged (1 epochs)
(90, 99) < (555" 3¢") repeat
(0,¢) < (0,¢) + (g0, 9¢) 9C « € 1 OC
. 9C
until J, has converged (n epochs) until C has converged (c epochs)
Algorithm 1: Train jointly until J and C have converged (n epochs)

Algorithm 2: Train alternately (Default
scANVI)
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Supplementary Note 4 Hierarchical classification

In this note, we explain the modeling details for an extension of scANVI where the cell types
annotation can follow a two-level hierarchical structure. Let us note that this can in principle
be adapted to any arbitrary tree representation of cell types taxonomy. This taxonomy needs to
be hard-coded and known a priori.

We do not need to formally modify the graphical model but only how we structure the
variable ¢,,. Notably, we formally pose ¢,, = (yn,99) € {0,--- , K} x{0,---, K9} and consider the
original Bayesian network as an hypergraph. In the generative model, the conditional distribution
p(z | u,¢) = p(z|u,y). Since the cell type group indicator variable y9 is not as refined than the
cell type itself y.

However, what sensibly changes is the parametrization of the variational distribution g(c |
z) = q(y,y? | z). The prior taxonomy knowledge encapsulates whether the assignment (y9,y) =
(i,4) is biologically possible (i.e cell type i is a sub-population of group cell type j). We encode
this biological compatibility into a parent function 7 : {0,--- , K} — {0,---, K9} that maps a
cell type to its parent in the hierarchy. We note for simplicity q(y;,y] | 2) = q(y = i,y? =j | 2).
We then use two neural networks f and f, (with softmax non-linearities) that map the latent
space to the joint approximate posterior ¢(y,y? | z) with the following rules:

o R iRl =4,
q(yz,y? %) = {O otherwise. (2)

qa(yj | 2) = £7(2)

Then, we can derive the marginal probability over finer cell types classes using the chain rule
and Bayes rule:

Wil 2) = qi | Yr;» 2)a(yr, | 2)

— qWi, yx, | 2)

= q(yﬂj ) q(Yr, | 2)

 qWiym, | )

=TS qin 00 1P
j€c(m;)

_ fZ<Z) g

s e
j€c(mi)

where ¢(m;) denotes the set of children of node ¢ children.
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