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Abstract 7 

Remote sensing can transform the speed, scale, and cost of biodiversity and forestry surveys. 8 

Data acquisition currently outpaces the ability to identify individual organisms in high resolution 9 

imagery. We outline an approach for identifying tree-crowns in RGB imagery using a semi-10 

supervised deep learning detection network. Individual crown delineation has been a long-11 

standing challenge in remote sensing and available algorithms produce mixed results. We show 12 

that deep learning models can leverage existing lidar-based unsupervised delineation to create 13 

generated trees to train an initial RGB crown detection model. Despite limitations in the original 14 

unsupervised detection approach, this noisy training data may contain information from which 15 

the neural network can learn initial tree features. We then refine the initial model using a small 16 

number of higher-quality hand-annotated RGB images. We validate our proposed approach 17 

using an open-canopy site in the National Ecological Observation Network. Our results show 18 

that a model using 434,551 self-generated trees with the addition of 2,848 hand-annotated 19 

trees yields accurate predictions in natural landscapes. Using an intersection-over-union 20 

threshold of 0.5, the full model had an average tree crown recall of 0.69, with a precision of 21 

0.61 for visually-annotated data. The model had an average tree detection rate of 0.82 for field 22 

collected stems. The addition of a small number of hand-annotated trees improved 23 
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performance over the initial self-supervised model. This semi-supervised deep learning 24 

approach demonstrates that remote sensing can overcome a lack of labeled training data by 25 

generating noisy data for initial training using unsupervised methods and retraining the 26 

resulting models with high quality labeled data. 27 

Keywords: Deep Learning; Trees; Detection; Remote Sensing; LIDAR; RGB; NEON 28 

1. Introduction 29 

The cost of human observation limits our ability to understand the natural world. Image-based 30 

artificial intelligence can advance our understanding of individual organisms, species, and 31 

ecosystems by greatly increasing the scale and efficiency of data collection [1]. The growing 32 

availability of sub-meter airborne imagery brings opportunities for remote sensing of biological 33 

landscapes that scales from individual organisms to global systems. However, the use of this 34 

imagery remains limited by the laborious, non-reproducible, and costly annotation of these 35 

datasets [2].  36 

Tree detection is a central task in forestry and ecosystem research and both commercial 37 

and scientific applications rely on delineating individual tree crowns from imagery [3,4]. While 38 

there has been considerable research in unsupervised tree detection using airborne LIDAR 39 

(Light Detection and Ranging; a sensor that uses laser pulses to map three dimensional 40 

structure) [3,5,6], less is known about tree detection in RGB (red, green, blue) orthophotos. 41 

Compared to LIDAR, two dimensional RGB orthophotos are less expensive to acquire and easier 42 

to process but lack direct three-dimensional information on crown shape. Effective RGB-based 43 

tree detection would unlock data at much larger scales due to increasing satellite-based RGB 44 

resolution and the growing use of uncrewed aerial vehicles. Initial studies of tree detection in 45 
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RGB imagery focused on pixel-based methods and watershed algorithms to find local maxima 46 

among pixels to create potential tree crowns [7]. Combined with hand-crafted rules on tree 47 

geometries, these approaches separately performed tree-detection and crown delineation 48 

[8,9]. The need to hand-craft tree geometry rules makes it a challenge to create a single 49 

approach that encompass a range of tree types [10]. 50 

Deep learning is a well-established method for detecting and identifying objects in RGB 51 

images but has only recently been applied to vegetation detection [11,12]. Compared to 52 

previous rule-based approaches, deep learning has three features that make it ideal for tree 53 

detection. First, convolutional neural networks (CNNs) delineate objects of interest directly 54 

from training data rather than using hand-crafted pixel features. This reduces the expertise 55 

required for each use-case and improves transferability among projects [13]. Second, CNNs 56 

learn hierarchical combinations of image features that focus on object-level, rather than pixel-57 

level, representations of objects. Finally, neural networks are re-trainable to incorporate the 58 

idiosyncrasies of individual datasets. This allows models to be refined with data from new local 59 

areas without discarding information from previous training sets.  60 

The challenge for applying deep learning to natural systems is the need for large training 61 

datasets. A lack of training data is a pervasive problem in remote sensing due to the cost of 62 

data collection and annotation [14]. In addition, the spatial extent of training data often 63 

prohibits field-based verification of annotated objects. For tree detection, the high variation in 64 

tree crown appearance due to taxonomy, health status, and human management increases the 65 

risk of overfitting when using small amounts of training data [11]. One approach to addressing 66 

data limitation in deep learning is “self-supervised learning” (sensus [15]), which uses 67 
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unsupervised methods to generate training data that is used to train supervised models [16]. 68 

This approach has recently been applied to remote sensing for hyperspectral image 69 

classification [10]. Self-supervision, which relies only on unlabeled data, can be combined with 70 

labeled data in a semi-supervised framework (sensu Zu 2005), which may improve deep 71 

learning on limited training data by providing neural networks the opportunity to learn 72 

generalized features on a wider array of training examples, followed by retraining on a smaller 73 

number of high quality annotations [17]. Given the imperfect nature of existing unsupervised 74 

tree delimitation approaches, it is unknown whether moderate to low quality annotations can 75 

be used to generate trees for model training. 76 

In this paper, we propose a semi-supervised pipeline for detecting tree crowns based on 77 

RGB data. This pipeline is outlined in Fig. 1. In the proposed workflow, a LIDAR unsupervised 78 

algorithm generates initial tree predictions. The bounding box for each tree is extracted and the 79 

corresponding RGB crop is used to train an initial deep learning model. Then, using this self-80 

supervised model as a starting point, we retrain the model using a small number of hand-81 

annotations to correct errors from the unsupervised detection. The LIDAR data is used only to 82 

improve the initial training of the network. It is not used for the final prediction step. The result 83 

is a deep learning neural network that combines unsupervised and supervised approaches to 84 

perform tree delineation in new RGB imagery without the need for co-registered LIDAR data. 85 

This provides the potential for expanding the use of deep learning in remote sensing 86 

applications with limited labeled data by exploring whether generating hundreds of thousands 87 

of noisy labels will yield improved performance even though these labeled data are imperfect 88 

due to the limitations of the generative algorithm [18].  89 
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 90 

Figure 1. A conceptual figure of the proposed semi-supervised pipeline. A LIDAR-based 91 

unsupervised detection generates initial training data for a self-supervised RGB deep learning 92 

model. The model is then retrained based on a small number of hand-annotated trees to create 93 

the full model. 94 

2. Materials and Methods 95 

2.1. Study Site and Field Data 96 

We used data from the National Ecological Observatory Network (NEON) site at the San Joaquin 97 

Experimental Range in California to assess our proposed approach (Figure 2). The site contains 98 

open woodland of live oak (Quercus agrifolia), blue oak (Quercus douglasii) and foothill pine 99 

(Pinus sabiniana) forest. The majority of the site is a single-story canopy with mixed understory 100 

of herbaceous vegetation. All aerial remote sensing data products were provided by the NEON 101 

Airborne Observation Platform. We used the NEON 2018 “classified LiDAR point cloud” data 102 

product (NEON ID: DP1.30003.001), and the “orthorectified camera mosaic” (NEON ID: 103 
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DP1.30010.001). The LiDAR data consist of 3D spatial point coordinates (4-6 points/m2) which 104 

provides high resolution information about crown shape and height. The RGB data are a 1km x 105 

1km mosaic of individual images with a cell size of 0.1 meters. Both data products are 106 

georeferenced in the UTM projection Zone 11. In addition to airborne data, NEON field teams 107 

semi-annually catalog “Woody Plant Vegetation Structure” (NEON ID: DP1.10098.001), which 108 

lists the tag and species identity of trees with DBH > 10cm in 40m x 40m plots at the site. For 109 

each tagged tree, the trunk location was obtained using the azimuth and distance to the 110 

nearest georeferenced point within the plot. All data are publicly available on the NEON Data 111 

Portal (http://data.neonscience.org/). All code for this project is available on GitHub 112 

(https://github.com/weecology/DeepLidar) and archived on Zenodo (Weinstein and White 113 

2019). 114 

 115 

Figure 2. The San Joaquin, CA (SJER) site (C) in National Ecological Observation Network 116 

contains 148 1km2 tiles (B), each with a spatial resolution of 0.1m. For our analysis, we further 117 

divided each tile in 40x40m windows (A) for individual tree prediction (n=729 per 1km2 tile). 118 
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 For hand annotations, we selected two 1km x 1km RGB tiles and used the program 119 

RectLabel (https://rectlabel.com/) to draw bounding boxes around each visible tree. We chose 120 

not to include snags, or low bushes that appeared to be non-woody. In total, we hand-121 

annotated 2,848 trees for the San Joaquin site. In addition to the 1km tile, we hand-annotated 122 

canopy bounding boxes on the cropped RGB images for each NEON field plot (n=35), which 123 

were withheld from training and used as a validation dataset. 124 

2.2. Unsupervised LIDAR Detection  125 

We tested three existing unsupervised algorithms for use in generating trees for the self-126 

supervised portion of the workflow [19–21]. Existing unsupervised algorithms yield imperfect 127 

crown delineations in part because: 1) the algorithms are not designed to learn the specifics of 128 

different regions and datasets; 2) it is difficult to design hand-crafted features that are flexible 129 

enough to encompass the high variability in tree appearance; 3) distinguishing between trees 130 

and vertical objects such as boulders and artificial structures can be difficult with only three-131 

dimensional LIDAR data. We evaluated three available unsupervised LIDAR detection algorithms 132 

in order to choose the best performing algorithm to generate training labels [19–21]. We then 133 

used the best performing method ([21]) to create initial self-supervised tree predictions in the 134 

LIDAR point cloud. This algorithm uses a canopy height model and threshold of tree height to 135 

crown width to cluster the LIDAR cloud into individual trees (Figure 3). We used a canopy height 136 

model of 0.5m resolution to generate local tree tops, and a maximum crown diameter of 60% 137 

of tree height. A bounding box was automatically drawn over the entire set of points assigned 138 

to each tree to create the training trees. In total, we generated 434,551 unsupervised tree 139 

labels to use during model training. 140 
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 141 

Figure 3. Example results from the Silva et al. 2016 unsupervised lidar algorithm [21], as 142 

implemented in the R liDR package [22]. Two plots from the San Joaquin NEON site are shown 143 

(SJER_009, SJER_010). 144 

2.3. Deep Learning RGB detection 145 

Convolutional neural networks are often used for object detection, due to their ability to 146 

represent semantic information as combinations of image features. Early applications passed a 147 

sliding window over the entire image and treated each window as a separate classification 148 

problem. This approach was slow and enforced arbitrary decisions for window size and shape. 149 

This was improved by considering potential detection boxes generated by image segmentation 150 

techniques [23] or by combining the bounding box proposal and classification into a single deep 151 

learning framework [24]. We chose the retinanet one-stage detector [25,26], which allows pixel 152 

information to be shared at multiple scales, from individual pixels to groups of connected 153 

objects for learning both bounding boxes and image classes. We used a resnet-50 classification 154 

backbone pretrained on the ImageNet dataset [27]. We experimented with deeper 155 
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architectures (resnet-101 and resnet-152) but found no improvement that offset the increased 156 

training time. 157 

Since the entire 1km RGB tile cannot fit into GPU memory, we first cut the tile into 158 

smaller windows for model training. We experimented with a number of different window sizes 159 

and found optimal performance at 400 X 400 pixels due to a balance between memory 160 

constraints and providing the model sufficient spatial context for tree detection. This resulted 161 

in 729 windows per 1km tile. The order of tiles and windows were randomized before training. 162 

Using the pool of unsupervised tree predictions, we trained the network with a batch size of 6 163 

on a Tesla K80 GPU for 8 epochs. After prediction, we passed each image through a non-max 164 

suppression filter to remove predicted boxes that overlapped by more than 15%, maintaining 165 

only the box with the superior predicted score. One advantage of this neural network approach 166 

is that each predicted bounding box has an associated confidence score. We removed boxes 167 

within confidence scores less than 0.2.  168 

2.4. Model Evaluation 169 

We used the NEON woody vegetation data to evaluate model recall using field-collected points 170 

corresponding to individual tree stems. A field-collected tree point was considered correctly 171 

predicted if the point fell within a predicted bounding box. This is a more conservative 172 

approach than most over studies, where the field-collected tree point is considered correctly 173 

predicted if an edge of the bounding box falls within a horizontal search radius (e.g 3m in [28] 174 

to 8m in [29]). Due to these variations in accuracy measurement, it is difficult to establish state-175 

of-art performance, but 70-80% detection rate between predicted trees and field located trees 176 

is typical [5,10]. Given the variation in tree appearance and segmentation difficulty, there are 177 
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too few previous attempts at individual tree crown prediction to provide an expectation for 178 

accuracy. 179 

 To evaluate the hand-annotated crown areas, we computed recall and precision based 180 

on an intersection-over-union score of greater than 0.5 for each predicted crown. The 181 

intersection-over-union evaluation metric measures the area of overlap divided by the area of 182 

union of the ground truth bounding box and the predicted bounding box.  Direct comparisons of 183 

predicted and observed crown overlap are rarely performed due to the difficulty of collecting 184 

data for a sufficient number of validation examples. The most common approach is to compare 185 

the predicted crown area to a matched tree, such as in [30] or use per pixel overlap in visually 186 

annotated data [10,31]. Compared to previous works, our use of a minimum 0.5 intersection-187 

over-union sore is more stringent. We chose this value because it more closely resembles the 188 

required accuracy for forestry and ecological investigations [32]. 189 

3. Results 190 

Initial exploration of existing lidar-based tree detection tools showed that the best performing 191 

algorithm [21] was able to correctly recall the crown area of 14% of trees at intersection-over-192 

union score of 0.5 (Table 1). Challenges included over-segmentation of large individual trees, 193 

erroneous predicted tree objects based on imperfections in the ground model, and inclusion of 194 

non-tree vertical objects (Figure 3).   195 
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Table 1. Exploratory analysis of lidar-based unsupervised algorithms. Recall and precision 196 

statistics are shown for intersection-over-union with a threshold of 0.5 overlap for the hand 197 

annotated trees on the NEON field plots (n=271 trees). 198 

LIDAR Algorithm Recall Precision 

Li et. al (2012) 0.107 0.021 

Dalponte et al. (2016) 0.138 0.083 

Silva et al. (2016) 0.142 0.071 

 199 

Using the bounding boxes from the Silva et al. (2016) predictions, we extracted RGB crops and 200 

pretrained the RGB neural network. This self-supervised network had a field collected stem 201 

recall of 0.83, and a hand-annotated crown area recall of 0.53 with a precision of 0.32. 202 

Retraining the self-supervised model with hand-annotated trees increased the recall of the 203 

hand annotated tree crowns to 0.69 with a precision of 0.61 (Table 2, Figure 4). The field 204 

collected stem recall did not meaningfully change among models.  205 
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 206 

Figure 4. Predicted individual tree crowns for the unsupervised lidar (A, B), self-supervised RGB 207 

(C, D) and full (semi-supervised) model (E, F) for two NEON tower plots, SJER_015 (A, C, E), and 208 

SJER_053 (B, D, F) at the San Joaquin, CA site. For each tree prediction, the detection 209 

probability is shown in white.  210 
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Table 2. Evaluation metrics for each of the models. All evaluation was conducted on the 34 211 

NEON field plots. Stem recall was calculated using the field-collected tree stem locations (n=111 212 

trees). Precision and recall for crown overlap was calculated on hand-annotated bounding 213 

boxes around each tree crown (n=271 trees) with a minimum predicted probability threshold of 214 

0.5.  215 

Model Hand-annotated crown 

overlap (>50%) 

Stem Recall 

 Recall Precision  

Silva et al. 2016 

Hand-annotation only 

0.14 

0.38 

0.07 

0.60 

0.79 

0.79 

Self-supervised RGB 0.53 0.32 0.83 

Full Model 0.69 0.61 0.81 

 216 

 By comparing images of the predictions from the unsupervised lidar detection, the self-217 

supervised RGB deep learning model, and the combined full model, we can learn about the 218 

contributions of each stage of the pipeline. The LIDAR unsupervised detection does a good job 219 

of identifying trees versus background based on height. Most small trees are well segmented, 220 

but there is consistent over-segmentation of the large trees, with multiple crown predictions 221 

abutting together. Visual inspection shows that these predictions represent multiple major 222 

branches of a single large tree, rather than multiple small trees (Figure 4a). In the self-223 

supervised RGB model, these large trees are more accurately segmented, but there is a 224 
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proliferation of bounding boxes, and overall lower confidence scores for even well-resolved 225 

trees (Figure 4d). This is shown in the precision-recall curves for the hand-annotated validation 226 

data, in which the self-supervised model more rapidly declines in precision at higher score 227 

thresholds (Figure 5).  228 

 229 

Figure 5. Precision-recall curves for the hand-annotated NEON plots. For each model, we 230 

calculated the proportion of correctly predicted boxes for score thresholds [0,0.1,..,0.7]. An 231 

annotation was considered correctly predicted if the intersection-over-union (IoU) score was 232 

greater than 0.5. The recall and precision scores for the initial lidar-based unsupervised 233 

algorithm is shown in black X.  234 

 By combining the self-supervised and the hand annotated datasets, the full model 235 

reduces the extraneous boxes and improves the segmentation of large trees (Figure 6). The full 236 

model has optimal performance in areas of well-spaced large trees (Figure 6b) but tends to 237 

under-segment small clusters of trees (Figure 6c).  238 
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 239 

Figure 6. Predictions from the full model on the validation 1km2 tile. Canopy complexity 240 

increases from a) well-defined large trees to B) mixed-species canopies to c) tightly packed 241 

clusters of trees. As canopy complexity increases, the full model tends to under-segment small 242 

tree clusters.  243 

4. Discussion 244 

Using recent developments in deep learning, we built a neural network-based pipeline for 245 

identifying individual trees in RGB imagery. Commercial high resolution RGB data is increasingly 246 

available at near global scales, meaning that accurate RGB based crown delineation methods 247 

could be used to detect overstory trees at unprecedented extents. To address the long-standing 248 

challenge of a lack of labeled training data, we used an unsupervised LIDAR tree detection 249 

algorithm to generate labels for initial training. This self-supervised approach allows the 250 

network to learn the general features of trees even if the LIDAR-based unsupervised detection 251 

is imperfect. The addition of only 2,848 hand-annotated trees generated a final model that 252 

performed well when applied to a large geographic area. This approach opens the door for the 253 

use of deep learning in airborne biodiversity surveys, despite the persistent lack of annotated 254 

data in forestry and ecology datasets.  255 
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 Many of the false positives in our evaluation dataset were due to disagreements 256 

between the hand annotations, unsupervised LIDAR pretraining and RGB prediction in what 257 

defines a tree. For example, small trees were often considered too low for inclusion in the 258 

LIDAR algorithm (Figure 4a), whereas they were included in the full model based on the hand-259 

annotations (Figure 2b). Similarly, large bushes were sometimes included in hand annotations 260 

due to the difficulty of determining overall woody structure. When deploying these models to 261 

applied problems, it will be important to have strict quantitative guidelines that define class 262 

definitions. Where LIDAR data is available, draping the 2D boxes over the 3D point cloud to 263 

filter out points based on vertical height should be useful for improving precision. It should be 264 

noted that the quantitative results are likely biased toward the RGB model, since the hand-265 

annotations were made by looking at the RGB, and not the LIDAR data. However, the good 266 

recall rate for the field-collected stems suggests that hand annotations were useful in capturing 267 

field conditions. An unexpected benefit of the RGB model was the ability to discriminate trees 268 

from other vertical objects, such as houses or poles, despite a lack of distinction in the 269 

unsupervised LIDAR training data (Figure 7). This may be useful in urban tree detection and 270 

other non-forested sites.   271 
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 272 

 273 

Figure 7. Improvement in prediction quality during the training pipeline. A) Bounding boxes 274 

from the lidar-based unsupervised detection erroneously identified artificial structures as trees. 275 

B) Predictions from the self-supervised RGB model showed that the addition of RGB data 276 

diminished the effect of incorrectly labeled training data, with only edges of the artificial 277 

structures maintained as tree predictions. C) In the full semi-supervised model, combining the 278 

self-supervised RGB data with hand-annotations eliminated the influence of the original 279 

misclassification in the training data, while still capturing the majority of trees in the image. 280 

It is likely that accurate tree detection will be region specific, and that the best model will 281 

vary among environments. This will require training a new model for each geographic area 282 

using both RGB and LIDAR training data. The proposed approach could save resources by 283 

allowing a smaller scale LIDAR flight to generate training data, and then cover a much larger 284 

area with less expensive RGB orthophotos. Uncrewed aerial vehicles (UAVs) can be used for 285 

capturing LIDAR at high resolution, but at a limited spatial extent. In combination with our 286 

method, these UAVs may allow cost effective development of custom regional tree detection 287 

models. In addition, the National Ecological Observatory Network, which provided the data for 288 
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this analysis, has 45 forested NEON sites selected to cover the major ecoclimatic domains in the 289 

United States. These sites could serve as pools of LIDAR and RGB data at 10,000 ha scales for 290 

regional model training. Combining these two detectors together could produce accurate 291 

individual level tree maps at broad scales, with potential applications to forest inventory, 292 

ecosystem health, post-natural disaster recovery, and carbon dynamics.  293 

While the semi-supervised deep learning method performed well at the open-canopy test 294 

site, geographic areas with complex canopy conditions will be more challenging. The current 295 

model only uses LIDAR in the pretraining step. Where available, directly incorporating a LIDAR 296 

canopy height model into the deep learning approach should allow the model to 297 

simultaneously learn the vertical features of individual trees in addition to the two-dimensional 298 

color features in the RGB data. Recent applications of three-dimensional CNNs [33], as well as 299 

point-based semantic segmentation [34], provide new avenues for joint multi-sensor modeling. 300 

These developments will be crucial in segmenting complex canopies that overlap in the two-301 

dimensional RGB imagery. In addition, recent extensions of region-proposal networks refine 302 

bounding boxes to identify the individual pixels that belong to a class [35]. This will provide a 303 

better estimate of tree crown area, as trees typically have a non-rectangular shape.  304 

5. Conclusions 305 

Applying deep learning models to natural landscapes opens new opportunities in ecology, 306 

forestry, and land management. Despite a lack of high-quality training data, deep learning 307 

algorithms can be deployed for tree prediction using unsupervised detection to produce 308 

generated trees for pretraining the neural network. Although the lidar-based algorithm used to 309 

generate the pretraining data achieved less than 20% recall of hand-annotated tree crowns, the 310 
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deeply learned RGB features from those data achieved greater than 50% recall. When 311 

combined with a small number of hand-annotated images, recall increased to 69% with 60% 312 

precision. As shown by the comparison with field-collected stems, the majority of the remaining 313 

predictions represent valid trees (>80%), but the overlap with hand-estimated crown area was 314 

less than the desired 50%. Many previous papers have used a lower overlap threshold (e.g., 315 

20% overlap in [36]), and we expect this value to improve with a combination of better 316 

validation data and more hand-annotated training samples.   317 

In addition to scaling tree detection at much lower costs, there is the potential for this 318 

method to provide additional important information about natural systems. The current model 319 

could be expanded from a single class, “Tree”, to one that provides more detailed classifications 320 

based on taxonomy and health status. For example, splitting the “Tree” class into living and 321 

dead trees would provide management insight when surveying for outbreaks of tree pests and 322 

pathogens [37], as well as post-fire timber operations [38]. With the addition of hyperspectral 323 

data, dividing the tree class into species labels yields additional insights into the economic 324 

value, ecological habitat, and carbon storage capacity for large geographic areas [39]. As such, 325 

deep learning-based approaches provide the potential for large scale actionable information on 326 

natural systems to be derived from remote sensing data. 327 
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