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Abstract 29 
 30 

Macrophages are heterogeneous multifunctional leukocytes which are regulated in a tissue- and disease-31 

specific context. Many different studies have been published using in vitro macrophage models to study 32 

disease. Here, we aggregated public expression data to define consensus expression profiles for eight 33 

commonly-used in vitro macrophage models. Altogether, we observed well-known but also novel markers 34 

for different macrophage subtypes. Using these data we subsequently built the classifier macIDR, capable 35 

of distinguishing macrophage subsets with high accuracy (>0.95). This classifier was subsequently applied 36 

to transcriptional profiles of tissue-isolated and disease-associated macrophages to specifically define 37 

macrophage characteristics in vivo. Classification of these in vivo macrophages showed that alveolar 38 

macrophages displayed high resemblance to interleukin-10 activated macrophages, whereas 39 

macrophages from patients with chronic obstructive pulmonary disease patients displayed a drop in 40 

interferon-γ signature. Adipose tissue-derived macrophages were classified as unstimulated macrophages, 41 

but resembled LPS-activated macrophages more in diabetic-obese patients. Finally, rheumatoid arthritic 42 

synovial macrophages showed characteristics of both interleukin-10 or interferon-γ signatures. Altogether, 43 

our results suggest that macIDR is capable of identifying macrophage-specific changes as a result of 44 

tissue- and disease-specific stimuli and thereby can be used to better define and model populations of 45 

macrophages that contribute to disease. 46 

  47 
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MAIN TEXT 48 
 49 
Introduction 50 
Macrophages are multifunctional innate immune cells that play a central role in the spatiotemporal 51 

regulation of tissue homeostasis between pro-inflammatory defense and anti-inflammatory tissue repair. 52 

Dysregulation of macrophages has been implicated in a variety of disorders. As in vivo macrophages are 53 

often difficult to obtain and study, in vitro peripheral blood monocyte derived macrophages (MDMs) have 54 

been used extensively as model systems for assessing the transcriptional and functional regulation in 55 

response to various stimuli.  56 

To mimic in vivo macrophages encountering different microenvironmental signals (1, 2), MDMs, 57 

differentiated with for example macrophage- (M-CSF), or granulocyte-macrophage stimulating factor (GM-58 

CSF), are activated in vitro with bacterial lipopolysaccharides (LPS) or Th1 cytokine interferon gamma 59 

(IFNγ) to generate pro-inflammatory macrophages (M1). Anti-inflammatory macrophages (M2) are often 60 

generated by activating the cells with Th2 cytokines, interleukin-4 (IL4), or other anti-inflammatory stimuli, 61 

such as interleukin-10 (IL10), tumor growth factor (TGF) and glucocorticoids (1-6). By applying these pro- 62 

or anti-inflammatory stimuli to the MDMs, researchers sought to obtain proper models for studying the 63 

transcriptomic alteration associated with inflammation, infection, wound healing, and tumor growth. 64 

However, compared to in vitro MDM activation, in vivo macrophage activation represents a complex and 65 

dynamic process driven by multiple local factors. The most comprehensive study to date on gene 66 

expression profiling of in vitro macrophages was performed by Xue et al., where the authors activated 67 

MDMs under various conditions and identified distinct stimulus-specific transcriptional modules (5). Their 68 

results suggested a broader view of how macrophages react upon divergent stimulation, thereby extending 69 

the classical dichotomous pro- and anti-inflammatory model to an activation spectrum. While there have 70 

been attempts to summarize published studies in an effort to attain consensus (4), a proper integrative 71 

analysis has thus far not been performed. Furthermore, it remains unclear to what extent the in vitro 72 

macrophage-models resemble their in vivo counterparts and which specific subtypes associate with 73 

disease.  74 

In this study, we integrated 206 microarray and RNA-sequencing (RNA-seq) datasets from 19 75 

different studies (7-24) (Table 1) to systematically characterize eight different human MDM activation 76 

states. First, we identified consistently differentially expressed genes (cDEGs) by comparing activated with 77 

unstimulated macrophages using a random effects meta-analysis (25). Next, we implemented penalized 78 

multinomial logistic regression to construct a classification model, macIDR (macrophage identifier), 79 

capable of distinguishing specific MDM activation states, independent of the macrophage differentiation 80 

factor used. Finally, we used macIDR to project in vivo tissue- and disease-associated macrophages onto 81 

the eight in vitro MDMs (26-34) and to identify expression signatures derived from the tissues and specific 82 

for the patient groups. 83 
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 84 
 85 
Results  86 

Meta-analysis defines both well-known and novel transcriptional markers of macrophage 87 

activation states 88 

We searched the public repositories Gene Expression Omnibus and ArrayExpress for MDMs differentiated 89 

with macrophage colony-stimulating-factor (M-CSF) and activated with commonly used stimuli. To be 90 

included in the analysis, each activated MDM alongside an unstimulated control had to be represented by 91 

at least 4 different studies, with each study containing at least 2 biological replicates per activation state. In 92 

total, we assembled a cohort for eight macrophage activation states: unstimulated macrophages (M0) and 93 

macrophages activated by: short exposure (2 to 4 hours) to LPS (M-LPSearly) or long exposure (18 to 24 94 

hours) to LPS (M-LPSlate), LPS with IFNγ (M-LPS+IFNγ), IFNγ (M-IFNγ), IL-4 (M-IL4), IL-10 (M-IL10), and 95 

dexamethasone (M-dex) (Table 1). To find consistent transcriptional differences, we performed a random 96 

effects meta-analysis where we calculated the standardized effect size per study by comparing each 97 

macrophage activation state with M0.  98 

We identified consistent differentially expressed genes (cDEGs) that were previously observed to 99 

be characteristic for certain in vitro macrophage subsets (Table S1). For example, interleukin-1 beta 100 

(IL1B), C-C Motif Chemokine Ligand 17 (CCL17) and Cluster of Differentiation 163 (CD163) were 101 

consistently upregulated when comparing M-LPSlate, M-IL4, and M-dex with M0, respectively (4). Notably, 102 

we also identified several novel genes that were not widely considered as activated macrophage markers. 103 

Consistent upregulation of interleukin 7 receptor (IL7R) and CD163 Molecule Like 1 (CD163L1) was 104 

observed when comparing M-LPSearly and M-IL10 with M0, respectively. On the other hand, consistent 105 

downregulation of Nephroblastoma Overexpressed (NOV, also known as CCN3) and Adenosine A2b 106 

receptor (ADORA2B) was observed when comparing M-IFNγ, M-LPSlate, and M-LPS+IFNγ with M0, 107 

respectively. 108 

Correlation and enrichment analyses display classical pro- and anti-inflammatory clustering 109 

Pairwise correlation analysis of the standardized effect sizes across studies showed that M-LPSearly, M-110 

LPSlate, M-IFNγ, and M-LPS+IFNγ formed one cluster, whereas M-IL4, M-IL10 and M-dex formed a second 111 

cluster (Fig. 1A). Other activation states could not be discerned easily, which was attributed to study-112 

specific effects. This observation agrees with previous studies where transcriptional alterations induced 113 

with these conventional pro- and anti-inflammatory stimuli were found to cluster according to the M1-M2 114 

dichotomy (2, 5). Further sub-clustering appeared to divide the macrophages according to the stimuli. The 115 

separation between the M1 and the M2 was also apparent as the first principal component (PC1), which 116 

displayed a clear separation between M1 and M2 associated stimuli on the left and right, respectively (Fig. 117 

1B). Relative to the M1 subsets, the M2 subsets appeared to display a stronger diversity along PC2, 118 

suggesting a more distinctive transcriptional programming of the individual subsets.  119 

Next, we performed canonical pathway analysis using the Ingenuity Pathway Analysis (IPA) 120 

software package. While the clusters were slightly different among individual macrophage subsets, the 121 
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overall separation between M1 and M2 was still apparent with hierarchical clustering revealing two sets of 122 

pathways that appeared to be responsible for the separation (Fig. 1C and Table S1). Pathways known for 123 

their pro- and anti-inflammatory responses, such as interferon signaling and LXR/RXR activation, 124 

displayed a clear and distinct pattern for the M1 and M2 subsets, respectively. 125 

A multinomial elastic net classifier distinguishes macrophage activation states with high accuracy 126 

Subsequently, we sought to perform feature selection to identify genes capable of distinguishing 127 

macrophage activation states. We merged the data from different microarray and RNA-seq platforms and 128 

performed multinomial elastic net regression on the 5986 overlapping genes present in all datasets. The 129 

expression data was randomly split into a training (2/3) and a test (1/3) set whereupon the training set was 130 

used to build a model through ten-fold cross-validation. We repeated the cross-validation procedure 500 131 

times and took the median thereof to stabilize the log odds ratios (35). Genes were considered stable 132 

predictors if their log odds ratio was non-zero in more than 50% of the iterations (Fig. S1). Subsequent 133 

classification was performed using the median log odds ratio per gene across all iterations (Fig. 2A). 134 

Altogether, our classifier was composed of 97 median-stabilized predictor genes, and was compiled as an 135 

R package called macIDR (https://github.com/ND91/macIDR).  136 

To validate our model, we tested macIDR against the previously withheld test set, which included 137 

a newly-generated RNA-seq experiment containing all included activation states. Classification of the test 138 

set revealed an accuracy above 0.95 with both high sensitivity (>0.98) and specificity (> 0.83; Table 2). In 139 

total, 75 out of 79 test samples were correctly classified (Fig. 2B). Notably, for three of the four 140 

misclassified samples, the second-best prediction was the subset as reported by the authors. Investigation 141 

of the four misclassified samples revealed that most errors were made regarding M0: two M0 datasets 142 

were classified as M-IL10 (GSM151655) and M-IFNγ (GSM1338795), and one M-dex dataset (d54D) as 143 

M0. The fourth misclassification pertained a M-LPSlate (GSM464241) dataset classified as M-LPS+IFNγ 144 

(Fig. 2C).  145 

Pathway analysis of the predictor genes revealed a clear enrichment for inflammatory pathways, 146 

such as TNFα signaling, inflammatory response and interferon gamma signaling, confirming the 147 

importance of inflammation regulation in macrophage activation (Fig. 2D, Table S3). A follow-up 148 

transcription factor motif analysis on the promoters of the predictor genes showed significant enrichment 149 

for macrophage transcription factors, the E26 transformation-specific PU.1 (Spi1) and SpiB (Fig. 2E).  150 

MacIDR generalizes to granulocyte-macrophage colony-stimulating-factor differentiated 151 

macrophages  152 

Besides M-CSF, granulocyte-macrophage colony-stimulating-factor (GM-CSF) is often used to differentiate 153 

monocytes to macrophages, where it is thought to evoke a more pro-inflammatory phenotype (36-38). We 154 

investigated whether macIDR was capable of discerning GM-CSF-differentiated MDMs (GM-MDMs) 155 

exposed to various stimuli. In total, we obtained 31 datasets from three microarray studies (5, 16, 39) 156 

where GM-MDMs were activated with LPS (GM-LPSearly, GM-LPSlate), IFNγ (GM-IFNγ), and IL4 (GM-IL4), 157 

or remained unstimulated (GM0). These studies were selected based on their similarity in activation 158 
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duration with the M-CSF differentiated macrophages used in the training set. We observed that all GM-159 

MDMs were classified as their M-CSF counterparts (Fig. 3B) despite the fact that some predictive genes 160 

were absent from two studies (Table S4). Our results indicate that the predictor genes for M-LPSearly, M-161 

LPSlate, M-IFNγ and M-IL4 are representative for the activation regardless of whether M-CSF or GM-CSF 162 

was used for differentiation.  163 

Non-macrophage cells classify as M0 whereas monocyte-derived dendritic cells classify as M-IL4 164 

To understand the limitations of macIDR, we investigated its performance on non-MDM cells. Datasets 165 

were obtained of monocyte-derived dendritic cells (MoDC) (5, 39), various T lymphocyte subtypes (T), B 166 

lymphocytes (B), neutrophils (NP), and natural killer cells (NK) (16, 40), as well as fibroblast-like 167 

synoviocytes (FLS) (27).  168 

The MoDCs were primarily recognized as M-IL4 regardless of subsequent LPS maturation or other 169 

pro-inflammatory stimulation (Fig. 3C). Spurious classification was ruled out as GM0 and GM-LPSlate 170 

datasets from the same studies were correctly classified as described previously. Investigation of the M-171 

IL4 predictor genes revealed that concordant expression of monoamine oxidase A (MAOA) and lower 172 

discordant expression of C-X-C motif chemokine 5 (CXCL5) of MoDCs were likely the main contributing 173 

factors towards the M-IL4 classification (Table S4). By contrast, we found that the FLS, T, B, NP and NK 174 

cells were all classified as M0 (Fig. 3A), suggesting that the M0 class is used as a label for expression 175 

profiles of non-monocyte-derived cells. By looking at the distribution of the log odds we observed that true 176 

M0 classifications generally displayed higher log odds than the M0 classifications of most non-macrophage 177 

cells, but found this not to be definite (Fig. 3D). The increased variance for the M0 signal observed for GM-178 

MDMs and MoDCs was due to the different GM-MDMs activation and DC maturation states, as GM0 and 179 

up to some extent DC0, depicted M0 log odds similar to true M0 samples. 180 

Alveolar macrophages from COPD and smoking individuals show a reduced M-IFNγ signal 181 

We next attempted to classify macrophages derived from patient tissues to study their semblance to in 182 

vitro generated MDMs. We investigated alveolar macrophages (AMs) obtained through bronchioalveolar 183 

lavage from smoking individuals, COPD patients, asthma patients (31), and healthy control (HCs). Overall, 184 

we found that the AMs were classified primarily as M-IL10 (Fig. 4A and Table S10), which appears to be 185 

driven by the MARCO signal. This corroborates the observation that lung tissue, specifically AMs, display 186 

significantly higher gene expression of MARCO relative to surrounding cells and other tissues (41, 42). 187 

Moreover, MARCO was found to be necessary in AMs for mounting a proper defense response (41-43). 188 

Further comparisons of the AMs derived from different patient groups, we found that the macrophage 189 

signal could be stratified according to health status where COPD- and smoker-derived AMs displayed a 190 

higher M-IL4, M-IL10 and M-dex signal and a reduced M-IFNγ and M-LPS+IFNγ signal compared to AMs 191 

obtained from HCs. This observation indicates a stronger M2- and lesser M1-like phenotype, which was 192 

also noted in previous studies (5, 31). This difference in classification signal was found to be driven by a 193 

decreased log odds for CXCL9 (M-IFNγ and M-LPS+IFNγ) and CXCL5 (M-IL4) and increased log odds for 194 

TNFAIP6 (M-IL10), and ADORA3 (M-dex; Fig. S2).  195 
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Furthermore, while no clear differences were observed when comparing AMs from asthma 196 

patients to HCs, AMs from steroid-sensitive asthma patients displayed a decreased M-dex signal and 197 

increased M-LPSearly, M-IFNγ and M-LPS+IFNγ signal relative to steroid resistant asthma AMs (Fig. 4A). 198 

The apparent difference in steroid sensitivity appeared to be caused by a difference in TNF and CXCL9 199 

signals contributing to the M-IFNγ and M-LPS+IFNγ classification respectively (Fig. S2). This observation 200 

corroborates previous studies where IFNγ signaling was found to suppress glucocorticoid-triggered 201 

transcriptional remodeling in macrophages leading to the macrophage-dependent steroid-resistance, 202 

thereby reflecting a higher level of IFNγ in steroid-resistant relative to steroid-sensitive asthma patients. 203 

Adipose macrophages show a M0 and M-IL4 classification 204 

We next investigated visceral adipose tissue macrophages (ATM) derived from diabetic and non-diabetic 205 

obese patients (34). Classification analysis suggested visceral ATMs showed most similarity with M0 206 

followed by M-IL4 (Fig. 4B). While we were not capable of defining a set of genes responsible for the M0 207 

classification, we observed that the concordant expression of MAOA and C-C chemokine ligand 18 208 

(CCL18) contributed the most to the M-IL4 signal (Fig. S3). MAOA encodes a norepinephrine degradation 209 

enzyme and is expressed more in sympathetic neuron-associated macrophages isolated from the 210 

subcutaneous adipose tissue. In these cells, MAOA’s norepinephrine clearance activity has been linked to 211 

obesity (44). Interestingly, when comparing ATMs from diabetic obese with non-diabetic obese patients, 212 

we observed a stronger signal of M-IL10 and M-LPSearly driven by CCL18 and TNF respectively (Fig. S3). 213 

Notably, CCL18 expression in both visceral and subcutaneous adipose tissue has been associated with 214 

insulin-resistant obesity (45, 46). Furthermore, several studies have demonstrated that ATMs could be 215 

divided into CD11C+CD206+ and CD11C-CD206+ subpopulations (47, 48). Specifically, an increased 216 

density of the IL10 and TNFα-secreting CD11C+CD206+ ATMs in adipose tissue was associated with 217 

insulin resistance (47), which coincides with the observed increase of M-IL10 and M-LPSearly signals while 218 

the M-IL4 signal remained unaltered. Altogether, this observation shows the diverse roles of macrophages 219 

in obesity and highlights the complex crosstalk between neural signaling, immune system and metabolism.  220 

Synovial macrophages from rheumatoid arthritis patients display similarity to M- IFNγ and M-IL10 221 

Finally, we analyzed synovial macrophages (SMs) from RA patients and MDMs from HCs (26-29). 222 

Whereas unstimulated MDMs were successfully classified as M0, SMs from RA patients were classified as 223 

either M-IL10 or M-IFNγ (Fig. 4C). Specifically, RA-derived synovial macrophages (RA-SMs) from 3 224 

studies (26, 28, 29) were classified as M-IL10, whereas samples from one study (27) were classified as M-225 

IFNγ. Comparison of the classification signal of the RA-SMs with the HC MDMs displayed a higher signal 226 

for M-IFNγ and M-IL10 (Fig. 4C). Concordantly, a previous study reported an increased gene expression 227 

of IFNG and IL10 in RA synovial fluid mononuclear cells compared with PBMCs from both RA patients and 228 

HCs (49). Further investigation of the M-IFNγ and M-IL10 classification revealed dominant signals for M-229 

IFNγ predictor gene C-X-C Motif Chemokine Ligand 9 (CXCL9) and for M-IL10 predictor gene Macrophage 230 

Receptor With Collagenous Structure (MARCO; Fig. S4). This observation agrees with previous studies 231 

where elevated gene and protein expression of CXCL9 was found in the synovium of RA patients 232 
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compared with that of osteoarthritis patients (50, 51). Similarly, an increased presence of MARCO was 233 

detected in the inflamed joints, particularly in RA patients (52). 234 

 235 
 236 
Discussion  237 
In this study, we performed a macrophage characterization study by integrating public datasets of eight in 238 

vitro macrophage activation states. Our meta-analysis returned both well-known and novel markers for 239 

activated macrophages. At a genome-wide level, we observed separation according to the conventional 240 

pro- and anti-inflammatory macrophages. We subsequently built a classification model capable of 241 

discriminating macrophage activation states based on their transcriptomic profile and made this available 242 

as an R package called macIDR. By applying macIDR to in vivo macrophages, we projected the latter onto 243 

the eight in vitro macrophage models providing insights in how disease and tissue of origin affected the 244 

predicted composition.  245 

 Previous macrophage characterization studies focused primarily on gathering large cohorts. Xue et 246 

al. adopted an inclusive strategy by categorizing genes into different activation states through self-247 

organizing maps and correlation analyses (5). Instead, we sought to find consensus from published data 248 

by implementing a descriptive and an exclusive strategy representing the meta-analysis and the elastic net 249 

classification analysis respectively. Where the meta-analysis identified genes that were consistently 250 

differentially expressed across studies when comparing stimulated with unstimulated MDMs, elastic net 251 

classification analysis represented a rigorous feature selection approach that yielded predictor genes 252 

capable of classifying the eight in vitro MDMs with high accuracy. We implemented an additional layer of 253 

robustness by performing repeated cross-validation to ensure that the final output of the elastic net 254 

regression was stable.  255 

Many of the observed cDEGs and predictor genes have been recognized as bona fide markers for 256 

different activation states, such as TNF (M-LPSearly), IDO1 (M-LPS+IFNγ), CXCL9 (M-IFNγ), and ADORA3 257 

(M-dex) (4) (Table S1 and Fig 2A). Pathway and transcription factor motif analyses of the predictor genes 258 

revealed enrichment for inflammatory pathways and macrophage transcription factors PU.1 and SpiB. As 259 

both PU.1 and SpiB are key transcription factors that drive macrophage differentiation (53), our 260 

observation suggests that activation is determined by the regulation of macrophage-specific inflammation.  261 

To test the limits of the classification model, we classified non-MDM cells. Classification of MoDCs 262 

indicated that they were most similar to M-IL4, even after treatment with pro-inflammatory agents such as 263 

LPS. This observation is likely due to the method to generate MoDCs, where monocytes are differentiated 264 

with GM-CSF and IL4. Notably, while the MoDCs were classified primarily as M-IL4, some MoDCs 265 

matured with LPS for 24 hours displayed a mildly increased signal towards M-LPS+IFNγ and M-LPSlate. 266 

Similarly, immature MoDCs (DC0) displayed a slightly higher response for M0. All other non-macrophage 267 

cells were classified as M0. While the log odds of proper M0 classifications were slightly higher than 268 

improper M0 classifications, we acknowledge that no clear threshold could be defined. We are unsure why 269 

M0 was predicted as a class for non-MDM and non-MoDC datasets, but we speculate that it might be 270 

related to the M0 class being represented by most predictor genes relative to the other classes. We 271 

therefore recommend potential users of macIDR to determine a priori that their dataset of interest 272 
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represents macrophages either experimentally or using in silico cell-composition estimation methods, such 273 

as CIBERSORT (54) or xCell (55).  274 

As macIDR was capable of properly classifying differentially differentiated in vitro MDMs, we 275 

applied it to in vivo macrophages with the goal of extracting subpopulation information. When comparing 276 

tissue-derived macrophages among different patient groups and healthy donors, we observed differences 277 

in predictions, such as reduced signals of M-IFNγ and M-LPS+IFNγ and increased signals of M-IL4, M-278 

IL10 and M-dex when comparing AMs from COPD patients with HCs. Moreover, we observed that the 279 

tissue of origin had a large impact on the macrophage classification with in vivo macrophages obtained 280 

from HCs not always being classified as M0 as was observed for the AMs. Since some in vivo 281 

macrophages obtained from healthy tissue were classified as in vitro activated MDMs, unstimulated in vitro 282 

MDMs likely do not reflect the basal state of all tissue-resident macrophages underpinning the importance 283 

of how multiple factors in the microenvironment shape the transcriptome. Our results suggest that for 284 

some in vitro models, using activated MDMs might achieve a more comparable phenotype to the in vivo 285 

tissue macrophages that express the tissue transcriptomic signatures.  286 

Unlike the AMs, no transcriptomic data was available of SMs from healthy donors. We were 287 

therefore unable to conclude whether the M-IL10 and M-IFNγ predictions observed for the samples from 288 

RA patients were tissue-specific or disease-associated. Though samples from different studies were 289 

classified as M-IL10 or M-IFNγ, these two activation states appeared to be the highest two predicted 290 

classes for SMs from RA patients among all recruited datasets. Notably, M-IL10 and M-IFNγ represent 291 

predictions on opposite sides of the conventional inflammatory spectrum. Characterization studies on RA-292 

SMs suggested that they represent multiple subpopulations, such as the CD163+ anti-inflammatory tissue-293 

resident macrophages and the S100A8/9+ pro-inflammatory macrophages recruited from peripheral 294 

monocytes (56). 295 

As in vivo macrophages likely represent a more heterogeneous population compared to the in vitro 296 

MDMs used in building the classifier, prediction of macrophage mixtures using bulk RNA-seq or microarray 297 

returns signals from multiple different subsets. The classification therefore mainly reflects altered subset 298 

proportions due to disease progression or association. It is likely that some in vivo macrophage 299 

subpopulations do not share transcriptomic signatures with any of the eight in vitro MDMs preventing the 300 

exact characterization thereof. Future studies using single cell RNA-sequencing should aim at defining 301 

novel additional in vivo macrophage subsets. Nonetheless, we were capable of extracting signals from the 302 

in vivo macrophage classifications that not only corroborated previous findings, but also provided novel 303 

features for future research. It is essential to analyze macrophage subsets within the context of their in 304 

vivo environment and therefore we provide this quantitative method to aid researchers in better defining 305 

and modelling macrophages in tissue and disease. 306 

 307 
Materials and Methods 308 

Data selection 309 

Datasets were found through an extensive search of the National Center for Biotechnology Information 310 

(NCBI) Gene Expression Omnibus (GEO) and European Bioinformatics Institute (EBI) ArrayExpress (AE). 311 
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For our search, we used the keywords “(macrophage) OR (monocyte) OR (MDM) OR (HBDM) OR 312 

(MoDM) OR (MAC) OR (dendritic cell) AND "Homo sapiens” [porgn:__txid9606]”. Our search yielded 1,851 313 

and 175 experiments for GEO and AE respectively at the time of writing (May 2018).  314 

The initial screen was limited to studies that investigated primary macrophages and excluded the 315 

stem cell derived macrophages or immortalized cell lines. Then we categorized macrophage subsets 316 

based on the stimuli and the treatment time. For each subset, we sought to obtain at least 4 studies 317 

including at least 2 biological replicates. Further, as a background control, only studies including 318 

unstimulated control macrophages were selected. After this screening, we investigated macrophages 319 

stimulated with control medium, LPS (either for 2 to 4 hours or 18 to 24 hours), LPS with IFNγ, IFNγ, IL4, 320 

IL10 or dexamethasone for 18 to 24 hours. Microarray datasets generated on platforms other than 321 

Illumina, Affymetrix or Agilent were excluded to ensure comparability. As we only investigated genes that 322 

were measured in every single study, datasets that displayed limited overlap in the measured genes with 323 

the other studies were removed. The in vivo macrophage datasets were samples obtained from clinical 324 

specimen. In total, we obtained 206 datasets belonging to 19 studies for the meta-analysis and 325 

classification. 326 

Meta-analysis 327 

A random effects meta-analysis was performed on the normalized data using the GeneMeta (v1.52.0) (57) 328 

package, which implements the statistical framework outlined by Choi et al. (25). In short, the standardized 329 

effect size (Cohen d adjusted using Hedges and Olkin’s bias factor) and the associated variance were 330 

calculated for each study by comparing each activated macrophage with the unstimulated macrophage 331 

within each study. The standardized effect sizes were then compared across studies by means of random 332 

effects model to correct for the inter-study variation, thereby yielding a weighted least squares estimator of 333 

the effect size and its associated variance. The estimator of the effect size was then used to calculate the 334 

Z-statistic and the p-value, which was corrected for multiple testing using the Benjamini-Hochberg 335 

procedure. We modified the GeneMeta functions to incorporate the shrunken sample variances obtained 336 

from limma (58) for calculating the standardized effect sizes. 337 

Classification 338 

Raw microarray and RNA-seq data were log2 transformed where necessary after which the data was 339 

(inner) merged and randomly divided into a training (2/3) and test set (1/3). As the test set should remain 340 

hidden from the training set, raw microarray and RNA-seq data was used instead of normalized data to 341 

prevent data leakage (59). Elastic net regression was subsequently performed using the R glmnet (v2.0) 342 

(60) package. As penalized regression approaches are sensitive to the magnitude of each feature, we 343 

investigated the use of standardization. As the lowest deviance appeared to be higher in the inter-fold 344 

standardized training set relative to raw data, we did not include any standardization (Fig. S1). We also 345 

investigated the optimal alpha for minimizing the deviance by means of an initial grid search approach, 346 

which was found to be 0.8.  347 

The training set was subjected to ten-fold cross-validation for tuning the penalty regularization 348 

penalty parameter lambda. This process was subsequently repeated 500 times to stabilize the 349 
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randomness introduced during the splitting step for cross-validation (35). We considered genes to be 350 

stable classifiers if they displayed a non-zero log odds ratio in at least 50% of the 500 iterations. The final 351 

log odds ratio was selected by taking the median of each stable predictor gene across the 500 iterations. 352 

We subsequently validated our classifier on the withheld test set.  353 

In addition to the training and test data, we downloaded and imported additional datasets from 354 

GM-MDMs, non-macrophage cells, and in vivo macrophages. Subsequent classification was performed 355 

using the macIDR package. Unlike the studies included for training and testing, some of the included 356 

studies were performed on platforms that did not measure the expression of some of the predictor genes. 357 

To that end, the relative log odds ratios were calculated, which represent the log odds ratio present relative 358 

to the total log odds ratio had all predictor genes been present. 359 

Human monocyte-derived macrophage differentiation and stimulation 360 

Buffy coats from three healthy anonymous donors were acquired from the Sanquin blood bank in 361 

Amsterdam, the Netherlands. Monocytes were isolated through density centrifugation using Lymphoprep™ 362 

(Axis-Shield) followed by human CD14 magnetic beads purifcation with the MACS® cell separation 363 

columns (Miltenyi). The resulting monocytes were seeded on 24-well tissue culture plates at a density of 364 

0.8 million cells/well. Cells were subsequently differentiated to macrophages for 6 days in the presence of 365 

50ng/mL human M-CSF (Miltenyi) with Iscove's Modified Dulbecco's Medium (IMDM) containing 10% heat-366 

inactivated fetal bovine serum, 1% Penicillin/Streptomycin solution (Gibco) and 1% L-glutamine solution 367 

(Gibco). The medium was renewed on the third day. After differentiation, the medium was replaced by 368 

culture medium without M-CSF and supplemented with the following stimuli: nothing, 10ng/mL LPS 369 

(Sigma, E. coli E55:O5), 10ng/mL LPS plus 50ng/mL IFNγ (R&D), 50ng/mL IFNγ, 50ng/mL IL4 370 

(PeproTech), 50ng/mL IL10 (R&D), 100nM dexamethasone (Sigma) for 24 hours. LPSearly macrophages 371 

were first cultured with culture medium for 21 hours and then stimulated with 10ng/mL LPS for 3 hours 372 

prior to harvest. 373 

RNA isolation and sequencing library preparation and analyses 374 

Total RNA was isolated with Qiagen RNeasy Mini Kit per the manufacturer's recommended protocol. RNA 375 

sequencing libraries were prepared using the standard protocols of NuGEN Ovation RNA-Seq System V2 376 

kit. Size-selected cDNA library samples were sequenced on a HiSeq 4000 sequencer (Illumina) to a depth 377 

of 16M per sample according to the 50 bp single-end protocol at the Amsterdam University Medical 378 

Centers, location Vrije Universiteit medical center. Raw fastq files were subsequently processed in the 379 

same manner as the public datasets to maintain consistency. 380 

 381 
 382 
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Figures and Tables 555 
 556 

 557 

Fig. 1. Summary meta-analysis. (A) Heatmap of the Cohen d pairwise Spearman correlation coefficients. 558 

(B) Principal component analysis of the Z-values obtained from the meta-analysis. (C) Heatmap of the 559 

canonical pathways with the intensity representing the activation z score. Two most defining clusters have 560 

been enlarged and annotated on the right. 561 
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 563 

Fig. 2. Classification results. (A) Heatmap of the median-stabilized log odds ratios per macrophage 564 

activation state for each of the 97 predictor genes. (B) Confusion matrix representing the number of 565 

correctly classified samples (entries on the diagonal) versus the misclassified samples (entries on the off-566 

diagonal). Classes on the y-axis represents the reported class while classes on the x-axis represent the 567 

predicted class. (C) Bar plots of the misclassified samples depicting the classification signal on a scale of 0 568 

to 1 where the class with the largest signal represents the predicted class. Blue bars represent the 569 

incorrectly predicted class and orange bars represent the reported class. (D) Pathway overrepresentation 570 

analysis of the predictor genes ranked by p-value. (E) Motif overrepresentation analysis of the predictor 571 

genes ranked by p-value. Columns represent the consensus sequence, the motif name, the p-value, the 572 

median-stabilized log(OR)
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BH-adjusted p-value (q-value), the percentage of provided genes with the motif, and the percentage genes 573 

in the background with the motif. 574 

 575 

 576 

Fig. 3. Classification of cells not included in training set. (A) Boxplots representing the classification 577 

signal on a scale of 0 to 1 where classes with the largest signal represents the predictions. Colors 578 

represent GM-CSF differentiated macrophages (GM-MDMs), monocyte-derived dendritic cells (MoDCs), 579 

fibroblast-like synoviocytes (FLS), B lymphocytes (B), T lymphocytes (T), natural killer cells (NK), and 580 

neutrophils (NP). (B) GM-MDMs and (C) MoDCs colored by stimulation. (D) Visualization of the log odds 581 

distribution of the M0 signal for the M0s from training and test set and the non-macrophage immune cells. 582 

Further separation across different stimulations for the GM-MDMs and the MoDCs was plotted below. 583 

 584 
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Fig. 4. Classification of in vivo macrophages. Summarized classification results per dataset with cross-586 

bars representing the mean and the standard errors of the log odds colored by the macrophage in vivo 587 

type. Dots above represent the log odds ratio (log(OR)) relative to the sum of the log odds ratios if all 588 

predictor genes were measured. (A) Alveolar macrophages obtained from smoking individuals, chronic 589 

obstructive pulmonary disease (COPD), asthma patients, as well as healthy controls. (B) Adipose tissue 590 

macrophages obtained from diabetic obese and non-diabetic obese patients. (C) Synovial macrophages 591 

obtained from rheumatoid arthritis (RA) patients and MDMs from healthy controls (HCs). 592 

 593 

Table 1. Included datasets. An overview of the datasets and the associated studies included in the in the 594 

meta-analysis and the classification analysis. 595 

Reference Type Dataset ID Purpose 

Fuentes-Duculan et al. 
2010 Microarray GSE18686 Meta-analysis, training & test 

Schroder et al. 2012 Microarray GSE19765 Meta-analysis, training & test 

Benoit et al. 2012 Microarray GSE30177 Meta-analysis, training & test 

Chandriani et al. 2014 Microarray GSE47538 Meta-analysis, training & test 

Martinez et al. 2005 Microarray GSE5099* Meta-analysis, training & test 

Derlindati et al. 2014 Microarray GSE57614 Meta-analysis, training & test 

Jubb et al. 2016 Microarray GSE61880 Meta-analysis, training & test 

Steiger et al. 2016 Microarray GSE79077 Meta-analysis, training & test 

Fujiwara et al. 2016 Microarray GSE85346 Meta-analysis, training & test 

Corbi et al. 2017 Microarray GSE99056 Meta-analysis, training & test 

Tsang et al. 2009 Microarray E-MEXP-2032 Meta-analysis, training & test 

Przybyl et al. 2016 Microarray E-MTAB-3309 Meta-analysis, training & test 

Turner et al. 2017 Microarray E-MTAB-5095 Meta-analysis, training & test 

Surdziel et al. 2017 Microarray E-MTAB-5913 Meta-analysis, training & test 

  RNAseq BLUEPRINT Meta-analysis, training & test 

Park et al. 2017 RNAseq GSE100382 Meta-analysis, training & test 

Zhang et al. 2015 RNAseq GSE55536 Meta-analysis, training & test 

Martins et al. 2017 RNAseq GSE80727 Meta-analysis, training & test 

Realegeno et al. 2016 RNAseq GSE82227 Meta-analysis, training & test 

Own RNAseq E-MTAB-7572 Test 

Riera-Borull et al. 2017 Microarray GSE99056 GM-CSF verification 

Vento-Tormo et al. 2016 Microarray GSE75938 GM-CSF verification, non-MDM 
verification 

Xue et al. 2014 Microarray GSE46903 GM-CSF verification, non-MDM 
verification 

Tasaki et al. 2018 Microarray GSE93776 GM-CSF verification, non-MDM 
verification 

Yarilina et al. 2008 Microarray GSE10500 Synovial macrophage test 

You et al. 2014 Microarray GSE49604 GM-CSF verification, Synovial 
macrophage test 

Shaykhiev et al. 2009 Microarray GSE13896 Alveolar macrophage test 

Woodruff et al. 2005 Microarray GSE2125 Alveolar macrophage test 

Madore et al. 2010 Microarray GSE22528 Alveolar macrophage test 

Goleva et al. 2008 Microarray GSE7368 Alveolar macrophage test 
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Dalmas et al. 2014 Microarray GSE54350 Adipose tissue macrophage test 

Kang et al. 2017 Microarray GSE97779 Synovial macrophage test 

Asquith et al. 2013 Microarray E-MEXP-3890 Synovial macrophage test 
 *The GSE5099 dataset was composed of two Affymetrix microarray datasets: U133A and U133B. Due to 596 

the limited overlap in genes between U133B with the rest, we only included the U133A dataset.  597 

 598 

Table 2. Classification testing. A confusion matrix representing the classifier performance on the test 599 

set. TP: True positives, FP: False positives, TN: True negatives, FN: False negatives, TNR: True negative 600 

rate/specificity, TPR: True positive rate/sensitivity. 601 

Macrophage TP FP TN FN TNR TPR Accurac
y 

M0 26 1 50 2 0.98 0.93 0.96 

M-LPSearly 6 0 73 0 1.00 1.00 1.00 

M-LPSlate 6 0 72 1 1.00 0.86 0.99 

M-LPS+IFNγ 7 1 71 0 0.99 1.00 0.99 

M-IFNγ 8 1 70 0 0.99 1.00 0.99 

M-IL4 11 0 68 0 1.00 1.00 1.00 

M-IL10 6 1 72 0 0.99 1.00 0.99 

M-dex 5 0 73 1 1.00 0.83 0.99 

  602 
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Supplementary Materials 603 
 604 
Supplemental methods: 605 

Microarray data preparation 606 

 All analyses were performed in the R statistical environment (v3.5.0). Download of the raw and 607 

processed GEO and AE microarray was performed using the GEOquery (v2.48.0) and the ArrayExpress 608 

(v1.40.0) packages respectively. Raw data was normalized in a platform-specific fashion: Affymetrix 609 

microarrays were normalized using the rma function from the affy (v1.54.0) and oligo (v1.40.2) packages, 610 

whereas Illumina and Agilent microarrays were normalized using the neqc function from the limma 611 

(v3.31.14) package. Quality control of the log2 transformed expression values was performed using 612 

WGCNA (v1.51) and arrayQualityMetrics (v3.32.0) to remove unmeasured samples, genes, and studies of 613 

insufficient quality. Microarray probes were reannotated to the Entrez ID according to the annotation files 614 

on Bioconductor. Probes that associated to multiple Entrez IDs were removed and multiple probes 615 

associating to the same Entrez ID were summarized by taking the median. 616 

RNA sequencing data preparation 617 

Public raw sequencing reads were sourced from the NCBI Sequence Read Archive (SRA) and 618 

converted to fastq files using the fastq-dump function from the SRA-tools package (v2.9.0). All raw fastq 619 

files were first checked for quality using FastQC (v0.11.7) and MultiQC (v1.4). The sequencing reads were 620 

aligned against the human genome GRCh38 using STAR (v2.5.4). Post-alignment processing was 621 

performed using SAMtools (v1.7) after which reads overlapping gene features obtained from Ensembl 622 

(v91) were counted using the featureCounts program in the Subread (v1.6.1) package. Gene annotations 623 

were converted from Ensembl IDs to Entrez IDs using biomaRt.  624 

macIDR package 625 

The macIDR package for R comprises a set of functions for performing macrophage classification 626 

analyses and visualization thereof using the log odds ratios learned from the aggregated datasets and can 627 

be downloaded from https://github.com/ND91/macIDR. Included in this package are the log odds ratios of 628 

the 500 repetitions and the logistic regression function necessary to perform classification. By default, the 629 

log odds ratios for each predictor gene were defined as described before, namely by taking the median of 630 

the log odds ratios for the stable genes across all 500 iterations. We acknowledge that some users might 631 

prefer different methods and have therefore provided the option for users to define their own stability 632 

threshold and method for aggregation when defining the input log odds ratios for classification analysis. 633 

The logistic regression approach implemented in macIDR ignores missing values as we reasoned that 634 

missing predictor genes should not prevent classification. Nonetheless, we provide functions such that the 635 

user can assess which genes and what relative proportion of log odds ratio is missing by calculating the 636 

relative log odds ratios. To that end, we leave it up to the user’s discretion to decide their own threshold for 637 

continuing with the classification analysis.  638 
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Functional analyses 639 

Pairwise gene correlations were generated by calculating the Spearman correlation to minimize 640 

the effect of outliers. Pathway and regulator analyses were performed using the Canonical Pathways and 641 

Ingenuity Upstream Regulator found in the Ingenuity Pathway Analysis software package (QIAGEN Inc., 642 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis) and Metascape 643 

(http://metascape.org/gp/index.html). Transcription factor motif analysis was performed by using HOMER 644 

(v4.10) using the following parameters: -start -200 -end 100 -len 8, 10, 12.  645 

 646 
Supplemental figures: 647 
 648 

649 
Fig. S1. Median-stabilization. Plot representing the log odds ratio distribution as obtained from the 500 650 

iterations of ten-fold cross-validation. Red and blue represent stable predictor genes with positive and 651 

negative coefficients respectively. Grey represents unstable predictor genes. 652 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/532986doi: bioRxiv preprint 

https://doi.org/10.1101/532986


Page 22 of 23 
 

  653 

654 
Fig. S2. Log odds per gene for alveolar macrophage classification. Plots of the log odds per gene for 655 

the studies facetted by the different macrophage class for studies: (a) GSE13896, (b) GSE2125, (c) 656 

GSE22528, and (d) GSE7368.  657 

 658 

659 
 660 

Fig. S3. Log odds per gene for adipose tissue macrophage classification. Plots of the log odds per 661 

gene for the studies facetted by the different macrophage class for study: GSE54350.  662 

 663 

664 
Fig. S4 Log odds per gene for the synovial macrophage classification. Plots of the log odds per gene 665 
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for the studies facetted by the different macrophage class for studies: (a) GSE10500, (b) GSE49604, (c) 666 

GSE97779, and (d) E-MEXP3890. 667 

  668 

Supplemental tables: 669 
 670 
Table S1 meta-analysis results. A table containing the unbiased estimator of the effect size and the 671 

variance as calculated by the meta-analysis ranked by the p-value. Separate tabs contain the results for 672 

the different comparisons of the meta-analysis. Columns “Entrez” and “Gene” represent the Entrez gene 673 

ID and the HGNC symbol respectively. The column “mu” represents the unbiased estimator of the effect 674 

size and the “mu_var” represents the unbiased estimator of the variance. The columns “Z”, “Z_pval”, and 675 

“Z_pval”BH” represent the Z-statistic, the associated p-value and the Benjamini-Hochberg adjusted p-676 

value.  677 

  678 

Table S2 meta-analysis pathway analysis. A table containing the aggregated results of the enriched 679 

canonical pathways for each comparison made for the meta-analysis. 680 

  681 

Table S3 predictor gene pathway analysis. A table containing the aggregated results of the enriched 682 

canonical pathways from IPA (Tab 1) and pathway analysis from metascape (Tab 2) for all predictor 683 

genes.  684 

  685 

Table S4 Log odds for the verification datasets. An Excel file where each tab represents the 686 

classification signal as depicted in log odds for each individual study. Each tab contains a table 687 

representing the log odds separated by predictor genes to depict the contribution of each gene to the 688 

classification. Each row represents a predictor gene for a particular class and each column represents a 689 

sample. Missing values for particular rows indicates that these genes were not present in the study. The 690 

last three columns represent the Entrez gene ID, HGNC gene symbol and the class to which the weights 691 

belong. 692 
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