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ABSTRACT 1 

Genome-wide chromatin accessibility and nucleosome occupancy profiles have been widely 2 

investigated, while the long-range dynamics remains poorly studied at the single-cell level. 3 

Here we present a new experimental approach MeSMLR-seq (methyltransferase treatment 4 

followed by single-molecule long-read sequencing) for long-range mapping of nucleosomes 5 

and chromatin accessibility at single DNA molecules, and thus achieve 6 

comprehensive-coverage characterization of the corresponding heterogeneity. We applied 7 

MeSMLR-seq to haploid yeast, where single DNA molecules represent single cells, and thus 8 

we could investigate the combinatorics of many (up to 356) nucleosomes at long range in 9 

single cells. We illustrated the differential organization principles of nucleosomes 10 

surrounding transcription start site for silently- and actively-transcribed genes, at the 11 

single-cell level and in the long-range scale. The heterogeneous patterns of chromatin 12 

statuses spanning multiple genes were phased. Together with single-cell RNA-seq data, we 13 

quantitatively revealed how chromatin accessibility correlated with gene transcription 14 

positively in a highly-heterogeneous scenario. Moreover, we quantified the openness of 15 

promoters and investigated the coupled chromatin changes of adjacent genes at single DNA 16 

molecules during transcription reprogramming. 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 29, 2019. ; https://doi.org/10.1101/533158doi: bioRxiv preprint 

https://doi.org/10.1101/533158
http://creativecommons.org/licenses/by-nd/4.0/


 3 
 

INTRODUCTION 1 

In eukaryotic organisms, cells are faced with genetic information storage and packaging 2 

problems. As the carrier of genetic information, instead of folding into a disorganized yarn 3 

ball, DNA strands wrap around thousands of protein cores like "beads on a string". As the 4 

fundamental unit of chromatin, nucleosome consists of ~147 bp DNA wrapping around a 5 

histone octamer composed of four core histones (H2A, H2B, H3 and H4) (1). Nucleosomes 6 

are connected by stretches of "linker DNA". Dynamic packaging of nucleosomes results in 7 

two different chromatin accessibility statuses: open (accessible and active genomic regions 8 

with sparse nucleosome occupancy) and closed (inaccessible and inactive genomic regions 9 

with dense nucleosome occupancy). Positioning of nucleosomes and dynamic changes of 10 

chromatin status play important regulatory roles in DNA-templated processes such as 11 

transcription, DNA replication and repair (2). 12 

Current genome-wide methods of nucleosome positioning and/or chromatin accessibility 13 

mapping are mainly based on three types of assays followed by short-read sequencing 14 

technologies: 1) nucleosome’s protection of nucleosomal DNA sequences from endogenous 15 

and exogenous enzymes (e.g., MNase-seq, DNase-seq, ATAC-seq, NOMe-seq and MPE-seq) 16 

(3-7); 2) chromatin immunoprecipitation using a specific histone antibody (e.g., ChIP-seq 17 

with H3) (8); and 3) solubility differences between nucleosomal DNA and naked linker DNA 18 

(e.g., FAIRE-seq) (9). In particular, NOMe-seq treats target sample with exogenous 19 

methyltransferase to detect nucleosome positioning and chromatin accessibility: the 20 

nucleosome protects nucleosomal DNA from being methylated by exogenous 21 

methyltransferase, while cytosines in naked linker DNA sequences are methylated to 22 

5-methylcytosine (5mC) (6). The following bisulfite sequencing identifies this methylation 23 

profile as bisulfite can convert unmethylated cytosine to uracil, which discriminates 5mC 24 

from unmethylated cytosine. 25 

These methods can map averaged patterns of nucleosome positioning and chromatin 26 

accessibility in a population of cells, failing in precise identification at the single-cell level. 27 

Although the single-cell versions of the methods have been recently developed (10-16), the 28 

corresponding sparse sequencing coverage and short read length lack information for 29 

addressing complex long-range chromatin status and nucleosome positioning. Therefore, 30 

the heterogeneity of nucleosome positioning and chromatin accessibility is rarely studied. 31 

Moreover, it is even more challenging to define nucleosome positioning patterns and 32 

dynamics and chromatin accessibility at single DNA molecules, so it is hard to detect subtle 33 

but meaningful differences between seemingly identical cells. This is a critical gap of 34 

understanding the mechanism of how nucleosomes assemble, disassemble and slide. 35 
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The emerging single-molecule long-read sequencing technology (i.e., Oxford Nanopore 1 

Technologies, ONT) provides unique data features that are possible to fill the gap: 1) 5mC 2 

can be directly detected at the single-base resolution at the single-molecule level based on 3 

ONT electrolytic current signal dynamics without bisulfite conversion (17, 18); 2) unlike the 4 

other sequencing platforms (such as Sanger sequencing and Second Generation Sequencing 5 

(SGS, e.g., Illumina)), PCR amplification is not required for ONT sequencing, so each ONT 6 

read can reveal the genomic events at the single-molecule level; 3) ONT reads are ultra-long 7 

(up to 2.3 Mb) (19) so that they can cover combinatorics of many nucleosomes and different 8 

chromatin statuses spanning multiple genomic elements. Leveraging the informative ONT 9 

sequencing technology, we developed an experimental approach MeSMLR-seq 10 

(methyltransferase treatment followed by ONT single-molecule long-read sequencing) and 11 

the corresponding bioinformatics method, so as to investigate heterogeneous and dynamic 12 

insight of long-range chromatin status and nucleosomes. Instead of bisulfite conversion 13 

(with PCR amplification) and short-read sequencing, the footprint of exogenous 5mCs from 14 

GpC-specific methyltransferase treatment is detected at single DNA molecules (without any 15 

PCR amplification) by ONT sequencing in the MeSMLR-seq protocol, and is next used to 16 

detect nucleosome positioning and chromatin accessibility computationally. 17 

We applied MeSMLR-seq to haploid Saccharomyces cerevisiae cells, where single DNA 18 

molecules represent single cells, so it allows the “one-to-one” link between sequencing read 19 

(i.e., sequencing molecule) and haploid cell. Thus, each single MeSMLR-seq read can be used 20 

to mimic single cell in a given genomic region and the heterogeneity can be investigated 21 

without single-cell sequencing. We showed consistent and comparable bulk-level 22 

nucleosome occupancy profiles generated by MeSMLR-seq and MNase-seq, and 23 

demonstrated the accuracy and robustness of MeSMLR-seq on single-molecule long-range 24 

mapping of nucleosomes, and investigated the organization principle of nucleosomes 25 

surrounding transcription start site (TSS). Next, we evaluated the performance of 26 

MeSMLR-seq on chromatin accessibility mapping and showed the heterogeneity of 27 

combinatorial chromatin statuses over multiple genomic regions. In addition, with the 28 

unique MeSMLR-seq output, the relationship between chromatin accessibility and gene 29 

transcription was investigated quantitatively. Moreover, we revealed the coupled chromatin 30 

changes of adjacent genes during transcription reprogramming. 31 

 32 

RESULTS 33 

Overview of MeSMLR-seq 34 
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In brief, the experimental approach MeSMLR-seq (Methyltransferase treatment followed by 1 

Single-Molecule Long-Read sequencing) contains two main steps: 1) methyltransferase 2 

(M.CviPI) treatment to convert cytosine to 5mC at GpC sites at naked linker DNA and open 3 

chromatin; and 2) ONT sequencing to detect 5mC profile that is subsequently used to 4 

identify nucleosome positioning and chromatin accessibility (Fig. 1). The first step has been 5 

shown feasible at both bulk-cell and single-cell level by NOMe-seq and the other previous 6 

studies (13-16). In addition, ONT has been reported to detect 5mC at CpG sites (17, 18), 7 

based on which an in-house tool was developed to map 5mC profile at GpC sites for 8 

MeSMLR-seq data (see “Nucleosome positioning detection at the single-molecule level”). 9 

In the proof-of-concept application of MeSMLR-seq to haploid Saccharomyces cerevisiae 10 

(BY4741 strain), an additional step was applied to digest cell wall that serves as a barrier 11 

against methyltransferase treatment to genomic DNA: yeast cells were treated with 12 

Zymolyase to generate spheroplasts (Fig. 1 and SI Appendix, Fig. S1). After the subsequent 13 

methyltransferase treatment, extracted genomic DNA without any PCR amplification was 14 

directly submitted to library preparation and ONT sequencing. The genomic DNA that 15 

undergoes in vivo spheroplast methylation was referred as target sample of MeSMLR-seq. In 16 

addition, we prepared negative control and positive control samples as training data for 5mC 17 

detection (see the below section “Nucleosome positioning detection at the single-molecule 18 

level”, and SI Appendix, Fig. S1). Native genomic DNA extracted from yeast without M.CviPI 19 

treatment was used as negative control (all cytosines at GpC sites were unmethylated) since 20 

there is no endogenous 5mC on yeast genome as previously reported (20). Genomic DNA 21 

treated by M.CviPI (without spheroplast methylation) was used as positive control (all 22 

cytosines at GpC sites were converted to 5mCs). 23 

As the efficiency of M.CviPI methylation served a critical role in the whole protocol, it was 24 

evaluated at selected genomic regions by bisulfite sequencing as previously described (16). 25 

The methylation efficiency of positive control sample was 99.37% and 13 single colonies of 26 

the selected region from target sample were all successfully-methylated, indicating the high 27 

methylation efficiency. 28 

Using ONT GridION platform with R9.4.1 chemistry, we sequenced one flow cell per sample 29 

and generated 0.9 million (positive control), 1.2 million (negative control) and 1.3 million (on 30 

average for six target samples) reads (i.e., sequencing molecules), separately, which were 31 

uniquely aligned to yeast genome (SI Appendix, Table S1). The longest sequencing molecule 32 

was 63.1 kb. In particular, from the target sample where yeast was grown in rich media (1% 33 

yeast extract, 2% peptone and 2% glucose) we generated 1.4 million sequencing molecules 34 

with the median length of 7.2 kb, covering 821X of yeast genome. 35 

 36 
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Detection and phasing of nucleosome positioning at single DNA molecules  1 

We first identified 5mC methylation status for every GpC site on each DNA molecule based 2 

on the ONT sequencing current signal (referred as event level). Since the previous studies 3 

(17, 18) showed the event level depended on the context sequence (e.g., 6-mer), our 4 

positive and negative control data were used to train signal distributions for each 6-mer 5 

containing target GpC dinucleotide under the occasions of methylation and unmethylation. 6 

The event levels of a given 6-mer from the target sample were compared with the 7 

corresponding trained distributions to obtain a posterior of methylation for every GpC site 8 

on each molecule, which we denoted as the methylation score (SI Appendix, Fig. S2A). There 9 

was no obvious bias of 5mC methylation calling between the molecules that were aligned to 10 

forward and reverse strands, and the areas under the receiver operating characteristic curve 11 

(AUC) were both 0.86 (Fig. 2A). Correlation analysis of methylation status of paired GpC sites 12 

at single molecules showed a remarkable pattern with period distance of 170-180 bp, which 13 

was the same as the length of nucleosomal DNA (147 bp) plus regular linker DNA (20-30 bp) 14 

(Fig. 2B). Therefore, we can identify nucleosome positioning at single molecules from the 15 

methylation profiles by developing the bioinformatics method NP-SMLR (Nucleosome 16 

Positioning detection by Single-Molecule Long-Read sequencing) as below. 17 

Let 𝑋𝑋1𝑋𝑋2⋯𝑋𝑋𝑙𝑙  be a molecule, where 𝑋𝑋𝑖𝑖  is the 𝑖𝑖-th base. Denote 𝑠𝑠𝑖𝑖 as the methylation 18 

score of 𝑋𝑋𝑖𝑖, if 𝑋𝑋𝑖𝑖  is the cytosine of the GpC dinucleotide. Suppose that the methylation 19 

scores of all GpC sites are independent. Nucleosome positioning detection refers to finding a 20 

path 𝜋𝜋 = 𝜋𝜋1𝜋𝜋2⋯𝜋𝜋𝑙𝑙 that maximizes the likelihood of signals: 21 

𝜋𝜋∗ = argmax𝜋𝜋 ∏ Pr�𝑠𝑠𝑖𝑖𝑡𝑡�𝜋𝜋𝑖𝑖𝑡𝑡�
𝑛𝑛
𝑡𝑡=1 . 22 

𝜋𝜋𝑖𝑖  takes the value from {𝐿𝐿,𝑁𝑁1,𝑁𝑁2,⋯ ,𝑁𝑁147} . 𝐿𝐿  represents the linker region; 𝑁𝑁𝑚𝑚 23 

represents the 𝑚𝑚-th base within a nucleosome; 𝑖𝑖1, 𝑖𝑖2,⋯ , 𝑖𝑖𝑛𝑛 are the positions of cytosines 24 

that belong to GpC dinucleotides. The elements of path 𝜋𝜋 are restricted that: 1) 𝑁𝑁𝑚𝑚 is 25 

followed by 𝑁𝑁𝑚𝑚+1 (1 ≤ 𝑚𝑚 ≤ 146); 2) 𝑁𝑁147 is followed by 𝐿𝐿; and 3) 𝐿𝐿 is followed by 𝐿𝐿 26 
or 𝑁𝑁1. The problem is essentially an alignment between a sequence of nucleotides and a 27 

sequence of nucleosomal statuses. NP-SMLR adopts dynamic programming algorithm (21) 28 

for solution: a matrix regarding the nucleotide sequence and nucleosomal statuses is made, 29 

entries are updated iteratively, and the optimal path is obtained through backtracking (Fig. 30 

2C and SI Appendix, Fig. S2B). 31 

Due to the lack of more advanced experimental technology to generate gold standard, we 32 

evaluated the accuracy of nucleosome positioning detection at the single-molecule level by 33 

simulation tests. The tests were performed under different settings of nucleosome coverage 34 

(proportion of bases covered by nucleosomes, ranges from 30-90%) and GpC frequency 35 
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(ranges from 1-10%) (Fig. 2D). The accuracy increased with GpC frequency, while the effect 1 

of nucleosome coverage was mild. In case of yeast genome with 3.75% density of GpC sites, 2 

NP-SMLR was very robust to reach the accuracy of 80% regardless different nucleosome 3 

coverage, which represented different scenarios of chromatin status (Fig. 2D). 4 

 5 

Performance of nucleosome positioning detection at the bulk-cell level 6 

In terms of nucleosome positioning at the bulk-cell level, MeSMLR-seq provided comparable 7 

results with the widely-used method MNase-seq (SI Appendix, section 1 and section 2) (22, 8 

23). The averaged Pearson’s correlation coefficient between three MeSMLR-seq data 9 

(forwardly, reversely aligned molecules and their combination) and three MNase-seq 10 

replicates was 0.75 (Fig. 3A). 77% nucleosomes called by MeSMLR-seq were also detected by 11 

MNase-seq (Fig. 3C). For example of the DAL (degradation of allantoin) gene cluster, the 12 

nucleosome peaks called by MeSMLR-seq and MNase-seq were generally well aligned (Fig. 13 

3B). In long-range scale, single MeSMLR-seq reads can phase a number of nucleosomes 14 

(median number was 37 and maximal number was 356 in our data), so it captures the 15 

dynamics and heterogeneity of nucleosome positioning among DNA molecules (Fig. 3D and 16 

SI Appendix, Table S2). For instance, 35 to 61 nucleosomes (median number 58) were 17 

phased at the single molecules covering the DAL gene cluster across a 10 kb genomic region 18 

(Fig. 3E), which illustrated large-range variation as well as local subtle difference of 19 

nucleosome positioning. 20 

 21 

Direct long-range evidence of differential nucleosome organization  22 

A few single-cell epigenome sequencing approaches have revealed the heterogeneity of 23 

chromatin status and nucleosome positioning within a cell population (10-16). Notably, Lai 24 

et al. recently reported the differential nucleosome organization principles for silent and 25 

active genes using single-cell MNase-seq (12) (Fig. 4A). However, these studies lacked a 26 

long-scale nucleosome positioning scene at the single-cell resolution due to short 27 

sequencing length and sparse data coverage within single cells. As shown above, 28 

MeSMLR-seq can determine the heterogeneous long-range phasing of nucleosomes, so we 29 

can investigate nucleosome organization logic in a comprehensive way (Fig. 3E). 30 

We focused on the nucleosome organization surrounding TSS, which plays important role in 31 

transcription regulation (24). For each gene, we measured the heterogeneity of nucleosome 32 

positioning by the standard deviation of the distances between +1 nucleosome and TSS over 33 

all single cells. Compared to active genes, silent genes showed larger heterogeneity of 34 
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nucleosome positioning among different cells (Fig. 4B and SI Appendix, Fig. S3A). Next, we 1 

evaluated the uniformity of nucleosome spacing within single cells by the variation of the 2 

distance between adjacent nucleosomes. In contrast to active genes, the nucleosomes 3 

surrounding TSS of silent genes were more uniformly spaced (Fig. 4C and SI Appendix, Fig. 4 

S3B). For instance, at the bulk-cell level, nucleosomes surrounding TSS of the 5 

lowly-expressed gene AUA1 (FPKM=0) were poorly positioned (Fig. 4D), while there were 6 

well-positioned nucleosomes (including -1, +1, +2, +3 and +4 nucleosomes) surrounding TSS 7 

of the active gene EMW1 (FPKM=77) and a pronounced nucleosome-depletion region (NDR) 8 

in the upstream of TSS (Fig. 4E). At the single-cell level, the positioning of +1 nucleosome of 9 

AUA1 had a remarkable continuous shift pattern across different cells, whereas it was 10 

relatively steady for EMW1 (Fig. 4D, E). Compared with EMW1, the distances between +1 11 

nucleosomes and TSS for AUA1 were more approximate to a uniform distribution (SI 12 

Appendix, Fig. S4A, B), which represented the ideal occasion for continuous shift pattern. In 13 

addition, the spacing of nucleosomes surrounding of TSS of AUA1 was relatively uniform 14 

within single cells (Fig. 4D and SI Appendix, Fig. S4C), while there was a pronounced NDR in 15 

the upstream of TSS of EWM1, which disrupted the uniformity of nucleosome spacing (Fig. 16 

4E and SI Appendix, Fig. S4D). MeSMLR-seq resolves these differential nucleosome 17 

organization principles with direct and convincing evidence at a long-range scale from single 18 

molecules/cells that are hard to be obtained by the bulk-cell and short-read sequencing 19 

approaches. 20 

 21 

Single-molecule long-range measurement of chromatin accessibility 22 

Based on the methylation profiles of MeSMLR-seq data, we also mapped the chromatin 23 

accessibility of yeast genome at both bulk-cell level and single-molecule level. To assess the 24 

performance on the bulk-cell chromatin accessibility mapping, we compared MeSMLR-seq 25 

with two widely-used methods, ATAC-seq (25) and DNase-seq (26) (SI Appendix, section 1 26 

and section 3). Genome-wide chromatin accessibility profile revealed by MeSMLR-seq data 27 

was highly consistent with ATAC-seq (averaged Pearson’s r=0.80) and DNase-seq (averaged 28 

Pearson’s r=0.82) (Fig. 5A, B and SI Appendix, Fig. S5). In addition, >83% (1,615/1,934) 29 

significantly-accessible regions called by MeSMLR-seq were also supported by either 30 

ATAC-seq or DNase-seq (Fig. 5C). These results indicate that MeSMLR-seq provides 31 

comparable results with the existing methods on the bulk-cell level chromatin accessibility 32 

mapping. 33 

At the single-molecule level, a MeSMLR-seq read can fully cover multiple adjacent genes 34 

(median number was 4 and maximal number was 40 in our data), therefore we could 35 

examine the long-range chromatin accessibility at the single-molecule/-cell level (Fig. 5D and 36 
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SI Appendix, Table S3). For example, 34 MeSMLR-seq molecules fully covered the 9 kb 1 

genomic region ChrII:370000-379000 that encompasses four genes (NRG2, TIP2, BAP2 and 2 

TAT1). Based on the 5mC footprint, we identified the chromatin status (“open” or “closed”) 3 

of the promoters for four genes on each molecule and thus defined and quantified the 4 

coupled chromatin status patterns. In total, these molecules detected 13 out of 16 (42, four 5 

genes with binary status “open” or “closed”) possible combinatorial patterns of the coupled 6 

chromatin statuses of four gene promoters (Fig. 5E). For instance, four genes in Pattern 1 7 

(supported by 2 molecules) all had “open” promoters, whereas the promoters of four genes 8 

were all closed in Pattern 6 (supported by 14 molecules). Therefore, MeSMLR-seq is 9 

applicable to analyze the coupled chromatin statuses of adjacent genes and to investigate 10 

the heterogeneity of chromatin status within a cell population, which is challenging for the 11 

existing methods. 12 

 13 

Heterogeneous openness of gene promoter  14 

Leveraging the single-molecule and long-range information of MeSMLR-seq data, we can 15 

discover and measure different levels of promoter openness instead of binary status. In the 16 

promoter region (ChrXVI:66400-67550) of the cell cycle regulation gene CLN2, the bulk-level 17 

chromatin accessibility profiles generated by the existing methods and MeSMLR-seq all 18 

showed a significant openness (Fig. 6A), while it was not clear if the promoters of CLN2 19 

among all cells were open, or if the open regions were similar in size. Based on the 20 

single-molecule nucleosome positioning profiles in the promoter region, 304 molecules that 21 

fully covered this region were clustered into three groups with different levels of promoter 22 

openness: closed (Cluster 1 with 176 molecules), narrowly-open (Cluster 2 with 75 molecules) 23 

and widely-open (Cluster 3 with 53 molecules) (Fig. 6B, right panel). The 5mC profiles at the 24 

molecules from three clusters also showed the remarkable difference of the widths of 25 

openness (Fig. 6B, left panel). This unique output of MeSMLR-seq is bringing new 26 

opportunities to perform quantitative analysis of the heterogeneous and dynamic promoter 27 

status. 28 

 29 

Promoter openness and gene transcription 30 

Using the MeSMLR-seq data, we generated the nucleosome occupancy profiles surrounding 31 

the TSSs of all protein-coding genes. Consistent with previous studies (22, 27), MeSMLR-seq 32 

data showed that highly-expressed genes had more pronounced nucleosome-depletion 33 

region in the upstream of TSS and well-positioned nucleosome array across gene body (Fig. 34 

7A, B). Nucleosome occupancy of the genes with high expression levels showed an obvious 35 
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drop at TSS and distinct peaks within gene body, while such tendency was mild for the genes 1 

with the lower 25th percentile expression level (Fig. 7B).  2 

In addition to nucleosome occupancy, the chromatin accessibility profiles by MeSMLR-seq 3 

showed that the promoter regions of the highly-expressed genes were more accessible than 4 

the lowly-expressed genes (Fig. 7C). It indicates the critical role of promoter accessibility on 5 

gene transcription regulation. We further examined the chromatin statuses of the binding 6 

regions of several important transcriptional regulators, including RNA polymerase II (Pol2), 7 

five general regulatory factors (Abf1, Cbf1, Mcm1, Rap1 and Reb1) and two mediators 8 

(Med8 and Med17) (SI Appendix, section 1) (28-30). The enrichment signal of Pol2 in gene 9 

body was positively correlated with chromatin accessibility of gene promoter (SI Appendix, 10 

Fig. S6A). The binding regions of the other regulatory factors and mediators were relatively 11 

accessible and nucleosome-evicted, which allows the assembly of transcription initiation 12 

complex (SI Appendix, Fig. S6B-E). 13 

 14 

Dynamic change of chromatin status in response to different carbon sources 15 

We next sought to investigate the dynamics of chromatin status during transcription 16 

changes in response to different nutrition conditions. Carbon source is the basic nutrition 17 

and is essential for yeast growth (31). In addition to glucose (Glu), which is the preferred 18 

carbon source for S. cerevisiae, we grew yeast cells separately using galactose (Gal) and 19 

raffinose (Raf) carbon sources, and generated both MeSMLR-seq and RNA-seq data. 20 

Compared with those under Gal and Raf conditions, yeast cells under Glu showed more 21 

accessible promoter (Fig. 8A). 21.62% (1,384 of 6,713) of protein-coding genes were 22 

differentially expressed between Glu and Gal, and 20% (1,332 of 6,713) between Glu and Raf, 23 

which indicated significant transcription reprogramming in response to different carbon 24 

sources (Fig. 8B). The up-regulated genes in Glu compared to Gal or Raf were mainly located 25 

in cytoplasm and involved in the biogenesis of ribosomes (Fig. 8C). In contrast, the 26 

up-regulated genes in both Gal and Raf conditions compared to Glu were significantly 27 

related to oxidation-reduction process, carbon metabolism, and located in mitochondrion. 28 

Those significantly up-regulated genes in Glu underwent more remarkable difference of 29 

chromatin accessibility in their promoters (p-value=1.2e-14 for Glu vs. Gal, p-value=3.6e-11 30 

for Glu vs. Raf, Wilcoxon rank sum test, Fig. 8D), which contributed the overall high 31 

chromatin accessibility in preferred carbon source (Glu) over Gal and Raf (Fig. 8A). 32 

 33 

Quantitative relationship between gene expression and chromatin accessibility in 34 

cell population 35 
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Though the analyses above showed that the promoters of the highly-expressed genes over a 1 

cell population were generally more accessible than the low-expressed genes (Fig. 7), the 2 

quantitative relationship between promoter openness and gene transcription in a cell 3 

population remained unclear. Based on unique MeSMLR-seq data, we were able to calculate 4 

the fraction of cell subpopulation with open promoter of a given gene. With single-cell 5 

RNA-seq data for 2,812 yeast cells generated in this study (SI Appendix, section 4), we also 6 

calculated the fraction of cells with expression (read count ≥1) of a given gene (referred as 7 

expression frequency). The expression frequency within a cell population was positively 8 

correlated with the fraction of cells with open promoter (Fig. 9A). For example, the genes 9 

with open promoter in ≥40% cells had significantly larger expression frequency than the 10 

ones with open promoter in <10% cells (p-value <2.2e-16, Wilcoxon rank sum test, Fig. 9A). 11 

When grouping the genes based on expression frequency, we observed similar positive 12 

correlation (Fig. 9B). In addition, considering the bulk-cell expression, the highly-expressed 13 

genes had relatively large fractions of cell subpopulation with open promoter in comparison 14 

to the lowly-expressed ones (p-value <2.2e-16, Wilcoxon rank sum test, Fig. 9C). These 15 

results suggest that chromatin accessibility of promoter at the single-molecule/-cell level 16 

detected by MeSMLR-seq data can contribute to the prediction of gene expression level and 17 

frequency in a cell population. 18 

 19 

Coupled chromatin accessibility changes of adjacent genes during transcription 20 

reprogramming 21 

Making full use of the single-molecule and long-range advantages of MeSMLR-seq data, we 22 

explored the coupled chromatin status changes of two adjacent glucose transporter genes, 23 

HXT3 and HXT6 during transcription reprogramming. The transport of glucose across the 24 

plasma membrane is the first step of glucose metabolism, and the glucose (also called 25 

hexose) transporter genes play essential regulatory roles in glucose sensing, signaling and 26 

utilization in a yeast cell (32). HXT3 and HXT6 have different affinities to glucose (low-affinity 27 

for HXT3 and high-affinity for HXT6) and thus respond differently to the change of glucose 28 

concentration. With the decrease of glucose concentration, the expression of HXT3 29 

decreased whereas HXT6 increased, which corresponded to their low- and high-affinity of 30 

glucose (Fig. 10A, B).  31 

For each glucose concentration (2%, 1%, 0.5% and 0.125%), we counted MeSMLR-seq 32 

molecules to estimate the fractions of cell subpopulations with two opposite coupled 33 

chromatin accessibility patterns: “Open-HXT3 and Closed-HXT6” and “Closed-HXT3 and 34 

Open-HXT6”. The fraction of cell subpopulation with the coupled pattern “Open-HXT3 and 35 

Closed-HXT6” decreased along with the reduction of glucose concentration, whereas 36 
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“Closed-HXT3 and Open-HXT6” increased (Fig. 10C, D). The changes of two coupled patterns 1 

matched the expression dynamics of two genes in response to glucose concentration change 2 

(Fig. 10A-D). These proof-of-concept results highlight the promising utility of MeSMLR-seq 3 

on studying complex epigenetic changes during transcription reprogramming. 4 

 5 

DISCUSSION 6 

A large number of studies have demonstrated key regulatory roles for nucleosome 7 

positioning and chromatin accessibility in eukaryotic gene expression (33-36) as well as DNA 8 

repair, recombination and other DNA-dependent processes (37-42). The relationship 9 

between nucleosome positioning, chromatin accessibility and gene expression has been 10 

studied most extensively (43). However, unlike the well-studied heterogeneity of gene 11 

expression based on single-cell analyses, the heterogeneity of nucleosome positioning and 12 

chromatin accessibility is poorly studied due to limitations in experimental and sequencing 13 

techniques. Previous bulk-cell studies based on the well-developed experimental techniques 14 

established the fundamental knowledge base, while their corresponding versions at the 15 

single-cell platforms have not yet lead to more details. This is largely due to the sparse 16 

sequencing coverage and short read length. MeSMLR-seq provides an alternative way to 17 

address this bottleneck: long read length guarantees the full length of genomic region of 18 

interest (e.g., whole gene body together with the flanking neighborhood) can be covered by 19 

many single reads (that is, single DNA molecules). In the application to haploid organisms, 20 

MeSMLR-seq read population represents cell population, so the heterogeneity at the cell 21 

level can be investigated. In this study, MeSMLR-seq provides a long-range chromatin status 22 

landscape and nucleosome positioning detection at the single-molecule/-cell level. The 23 

investigation of coupled chromatin changes and differential nucleosome organization 24 

principles in response to nutrition changes underline the unique MeSMLR-seq output on 25 

exploring these complex epigenetic events.  26 

However, it should be noted that the molecule-cell link does not hold in diploid or polyploid 27 

organisms, as the molecule populations is a mix of allele-specific and cell-specific events. It 28 

leads to challenges yet opportunities in the further development of new experimental (e.g., 29 

single-cell barcoding) and statistical (e.g., data deconvolution) approaches. Once cell 30 

subpopulations can be reconstructed from a molecule population, we could distinguish the 31 

allele-specific epigenome precisely from different cell subpopulations and achieve more 32 

accurate investigation of how epigenetics events behave differently at alleles. Regardless of 33 

the wide interest on the cell-level study, the characterization of nucleosome positioning and 34 

chromatin status at single DNA molecules by MeSMLR-seq will also bring very unique and 35 
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informative data to reveal the dynamic nucleosome positioning mechanism, such as 1 

assembly, disassembly, and sliding.  2 

Besides the single-molecule information, the long length of MeSMLR-seq reads, which allows 3 

correlation analysis of exogenous and endogenous methylation statuses over different 4 

positions, could be informative for some research topics: 1) correlation of exogenous 5mC 5 

events has shown the nucleosome positioning pattern in this study (Fig. 2B), and thus DNA 6 

loops or other larger spatial chromatin domain that affects exogenous methylation could be 7 

also identified, which would require specific library preparation to generate even longer ONT 8 

reads; 2) As endogenous 5mC can be also detected, MeSMLR-seq can be applied to other 9 

higher organisms (e.g., human) to study how methylation status at different genomic region 10 

coordinates, but it could also provide direct evidence to address the controversial topics 11 

about how methylation status and nucleosome positioning and chromatin openness 12 

correlates.  13 

On a technical view, there is relatively few application of ONT data at epigenetics research, 14 

as the corresponding experimental approaches or bioinformatics methods are rarely 15 

developed, although numerous applications of ONT data have been published rapidly with 16 

improved data quality and cost efficiency. In addition to the previously reported studies of 17 

identifying methylation and three-dimensional spatial organization of chromatin (44), 18 

MeSMLR-seq contributes a new technique in the toolkit of single-molecule long-read 19 

sequencing to obtain the first-hand details of epigenetics at single DNA molecules. More 20 

other innovative studies with single-molecule long-read sequencing should be explored and 21 

expected to advance our studies to discover novel and complex biological insights. 22 

 23 

MATERIALS AND METHODS 24 

Yeast strain and growth 25 

Saccharomyces cerevisiae BY4741 strain was used in this study. Yeast cells were separately 26 

grown at 30℃ in the media including 1% yeast extract, 2% peptone and different carbon 27 

sources. Yeast cells were collected in the mid-log phase (OD600 of 0.3-0.6) and subjected to 28 

MeSMLR-seq, bulk-cell RNA-seq and single-cell RNA-seq experiments (SI Appendix, section 4, 29 

section 5 and Table S4). 30 

 31 

MeSMLR-seq experiment 32 
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Preparation and methylation of yeast spheroplasts were performed as previously described 1 

(16) (Fig. 1 and SI Appendix, Fig. S1). Briefly, yeast cells were treated with Zymolyase (amsbio, 2 

final conc. = 0.25 mg/mL) in 1 M sorbitol and 50 mM Tris (pH7.4) and 10 mM 3 

β-mercaptoethanol. Spheroplasts were washed using 1 M sorbitol twice before 4 

methyltransferase treatment. GpC-specific methyltransferase M.CviPI (NEB) supplemented 5 

with 160 μM SAM S-adenosylmethionine was used to methylate spheroplasts at 37℃ for 45 6 

min. Genomic DNA was extracted using PCI (Phenol:chloroform:isoamyl alcohol, 25:24:1) 7 

and purified by Genomic DNA Clean & ConcentratorTM-10 Kit (Zymo Research).  8 

We denote the above mentioned genomic DNA that undergoes in vivo spheroplast 9 

methylation as target sample of MeSMLR-seq. Native genomic DNA extracted from yeast 10 

without M.CviPI treatment was used as negative control (all cytosines at GpC sites are 11 

unmethylated). There is no endogenous 5mC in yeast genome as reported in previous study 12 

(20). Genomic DNA treated by M.CviPI (without spheroplast methylation) was used as 13 

positive control (all cytosines at GpC sites are 5mCs). 14 

The efficiency of M.CviPI methylation was evaluated using bisulfite sequencing as previously 15 

described (16). Firstly, bisulfite conversion was performed using EZ DNA Methylation 16 

Lighting Kit (Zymo Research). Secondly, PCR amplification targeted to specific genomic 17 

regions was performed by ZymoTaq PreMix (Zymo Research). CHA1 gene region 18 

(ChrIII:15713-16074), CYS3 gene region (ChrI:130966-131117), GAL10 gene region 19 

(ChrII:278464-278738) and PHO5 gene region (ChrII:430248-430388) were amplified for 20 

evaluating the methylation efficiency of positive control. The PHO5 gene region 21 

(ChrII:430843-431498), which was shown in the Figure 1 of the previous study (16), was used 22 

to estimate the efficiency of spheroplast methylation (i.e., target sample of MeSMLR-seq). 23 

Thirdly, TA cloning was performed by TOPOTM TA Cloning Kit (Life Technologies). Single 24 

colonies were picked up and plasmids were extracted by QIAprep Spin Miniprep Kit 25 

(QIAGEN). Finally, plasmids were sequenced by Sanger sequencing. For positive control, we 26 

estimated the efficiency of methylation as the percentage of 5mC over all GpC sites (totally 27 

53 GpC sites for four target gene regions). Three single colonies were sequenced per gene 28 

region; and the methylation efficiency of positive control was ((53x3)-1)/(53x3) = 99.37%. 29 

For target sample of MeSMLR-seq, we considered it as successfully-methylated if the single 30 

colony included at least one 5mC. In total, 13 colonies were sequenced; and the methylation 31 

success rate of target sample was up to 100% (13/13). 32 

Native genomic DNA (negative control), methylated genomic DNA (positive control) and 33 

extracted genomic DNA after spheroplast methylation (target sample) were directly 34 

submitted to ONT sequencing. In brief, the genomic DNA was fragmented (size = 8 kb) using 35 
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Megaruptor. Sequencing library was prepared using the 1D Ligation Sequencing Kit 1 

(SQK-LSK108). ONT sequencing was performed using GridION platform with R9.4.1 flow cells. 2 

 3 

MeSMLR-seq data preprocessing 4 

The base-called ONT sequencing data were aligned to sacCer3 reference genome using BWA 5 

software (version 0.7.17-r1188) (45) with the “mem” mode and the “-x ont2d” parameter. 6 

Nanopolish (version 0.8.5) (18) with the “eventalign” mode and the “--scale-events” 7 

parameter was used to generate the alignments between event levels and 6-mers for each 8 

sequencing molecule, which were utilized for the following GpC-specific 5mC detection.  9 

Since we used ONT 1D sequencing strategy in this study, a DNA molecule from yeast cell 10 

might be sequenced twice (i.e., forward and reserve strands). Thus, to achieve the 11 

“one-to-one” link between ONT sequencing molecule and haploid yeast cell, we classified all 12 

molecules into two groups based on their aligned genomic strands: forward and reverse.  13 

The MeSMLR-seq data was summarized in SI Appendix, Table S1. 14 

 15 

GpC-specific 5mC detection at the single-molecule level and single-base resolution 16 

by MeSMLR-seq 17 

For every unique 6-mer (46=4096 in total), we modeled the event level for unmethylated 18 

cytosine by a Gaussian distribution, and the event level for methylated cytosine 5mC at GpC 19 

site by a Gaussian mixture distribution considering the fact the efficiency of exogenous 20 

methylation was not always 100% (99.37% in our experiment) (SI Appendix, Fig. S2A, right 21 

panel). Based on the native and positive control data, the corresponding distribution 22 

parameters were estimated by the sample mean and standard variation, and by the EM 23 

algorithm (for the Gaussian mixture model), respectively. The area of the overlapped region 24 

under the two probability density functions was calculated. The discrimination of a given 25 

6-mer was defined as (1 - the area of overlap). 26 

Given a GpC site on the reference genome and a sequencing molecule from target sample, 27 

we listed all the 6-mers that covered the cytosine at GpC dinucleotide (SI Appendix, Fig. S2A, 28 

left panel). The 6-mer with >1 GpC site or >10 aligned event levels from the molecule was 29 

excluded for 5mC detection. Among the remaining 6-mers, the one with the maximal 30 

discrimination was chosen for the calculation of methylation score.  31 

Denote 𝑘𝑘 as the selected 6-mer, and 𝑒𝑒 as the event level that is aligned to 𝑘𝑘. Let 𝑓𝑓𝑃𝑃(𝑒𝑒; 𝑘𝑘) 32 

and 𝑓𝑓𝑁𝑁(𝑒𝑒; 𝑘𝑘) be the values of probability density functions for 5mC and unmethylated 33 
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cytosine, respectively. The event level 𝑒𝑒  was filtered out if one of log𝑓𝑓𝑃𝑃(𝑒𝑒; 𝑘𝑘)  or 1 

log𝑓𝑓𝑃𝑃(𝑒𝑒;𝑘𝑘) was <-10; otherwise, the methylation score of the GpC site is calculated as 2 

𝑠𝑠 = 𝑓𝑓𝑃𝑃(𝑒𝑒;𝑘𝑘)
𝑓𝑓𝑃𝑃(𝑒𝑒;𝑘𝑘)+𝑓𝑓𝑁𝑁(𝑒𝑒;𝑘𝑘). 3 

The score 𝑠𝑠 is essentially the posterior of methylation given a non-informative prior. If 4 

multiple event levels were aligned to 𝑘𝑘, then 𝑓𝑓𝑃𝑃(𝑒𝑒;𝑘𝑘) and 𝑓𝑓𝑃𝑃(𝑒𝑒; 𝑘𝑘) were replaced by the 5 

product of the multiple likelihood. 6 

To evaluate the performance of 5mC detection, we plot receiver operating characteristic 7 

(ROC) curve (Fig. 2A). In detail, the negative control and positive control data were randomly 8 

split into two sets with equal size, respectively. One of them was used for training, and the 9 

other for test. 10 

 11 

Nucleosome positioning detection at the single-molecule level by MeSMLR-seq 12 

We developed a bioinformatics method, named NP-SMLR (Nucleosome Positioning 13 

detection by Single-Molecule Long-Read sequencing), to detect and phase nucleosomes at 14 

the single-molecule level (Fig. 2C).  15 

Let 𝑋𝑋1𝑋𝑋2⋯𝑋𝑋𝑙𝑙  be a molecule, where 𝑋𝑋𝑖𝑖  is the 𝑖𝑖-th base. Denote 𝑠𝑠𝑖𝑖 as the methylation 16 

score of 𝑋𝑋𝑖𝑖, if 𝑋𝑋𝑖𝑖  is the cytosine of the GpC dinucleotide. Suppose that the event levels of 17 

all GpC sites are independent. Nucleosome positioning detection refers to finding a path 18 

𝝅𝝅 = 𝜋𝜋1𝜋𝜋2⋯𝜋𝜋𝑙𝑙 that maximizes the likelihood of signals: 19 

𝝅𝝅∗ = argmax𝝅𝝅∏ Pr�𝑠𝑠𝑖𝑖𝑡𝑡�𝜋𝜋𝑖𝑖𝑡𝑡�
𝑛𝑛
𝑡𝑡=1 . 20 

𝜋𝜋𝑖𝑖  takes the value from {𝐿𝐿,𝑁𝑁1,𝑁𝑁2,⋯ ,𝑁𝑁147} . 𝐿𝐿  represents the linker region; 𝑁𝑁𝑚𝑚 21 

represents the 𝑚𝑚-th base within a nucleosome; 𝑖𝑖1, 𝑖𝑖2,⋯ , 𝑖𝑖𝑛𝑛 are the positions of cytosines 22 

that belong to GpC dinucleotides. The elements of path 𝝅𝝅 are restricted that: 1) 𝑁𝑁𝑚𝑚 is 23 

followed by 𝑁𝑁𝑚𝑚+1 (1 ≤ 𝑚𝑚 ≤ 146); 2) 𝑁𝑁147 is followed by 𝐿𝐿; and 3) 𝐿𝐿 is followed by 𝐿𝐿 24 
or 𝑁𝑁1. 25 

Based on the methylation scores of all GpC sites from all molecules in negative and positive 26 

control training data, we can fit two density curves using the “density” command in R 27 

(version 3.3.0), respectively. The two density functions are denoted as 𝑞𝑞𝑁𝑁(∙) and 𝑞𝑞𝑃𝑃(∙), 28 

respectively (SI Appendix, Fig. S2B). A dummy methylation score 𝑠𝑠𝑖𝑖 = −1 is added for 𝑋𝑋𝑖𝑖  if 29 

it is not a cytosine of GpC dinucleotide. Define 30 

𝑝𝑝𝑖𝑖(𝜋𝜋𝑖𝑖) ≜ 1{𝑠𝑠𝑖𝑖=−1} + 1{𝑠𝑠𝑖𝑖≠−1} ∙ Pr�𝑠𝑠𝑖𝑖𝑡𝑡�𝜋𝜋𝑖𝑖𝑡𝑡� = 1{𝑠𝑠𝑖𝑖=−1} + 1{𝑠𝑠𝑖𝑖≠−1} ∙ 𝑞𝑞𝑃𝑃(𝑠𝑠𝑖𝑖)
1�𝜋𝜋𝑖𝑖=𝐿𝐿� ∙ 𝑞𝑞𝑁𝑁(𝑠𝑠𝑖𝑖)

1�𝜋𝜋𝑖𝑖≠𝐿𝐿�. 31 
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Let 𝑎𝑎𝜋𝜋𝑖𝑖,𝜋𝜋𝑖𝑖+1  be the compatibility indicator of two adjacent states such that 1 

𝑎𝑎𝜋𝜋𝑖𝑖,𝜋𝜋𝑖𝑖+1 = 1{𝜋𝜋𝑖𝑖=𝑁𝑁𝑚𝑚,𝜋𝜋𝑖𝑖+1=𝑁𝑁𝑚𝑚+1,1≤𝑚𝑚≤146} + 1{𝜋𝜋𝑖𝑖=𝐿𝐿,𝜋𝜋𝑖𝑖+1=𝑁𝑁1} + 1{𝜋𝜋𝑖𝑖=𝐿𝐿,𝜋𝜋𝑖𝑖+1=𝐿𝐿}. 2 

The objection function can therefore be expressed as 3 

ℒ = 𝑝𝑝1(𝜋𝜋1)∏ 𝑝𝑝𝑖𝑖(𝜋𝜋𝑖𝑖)𝑎𝑎𝜋𝜋𝑖𝑖−1,𝜋𝜋𝑖𝑖
𝑛𝑛
𝑖𝑖=2 . 4 

Define 5 

ℓ𝑘𝑘,𝜁𝜁 = max𝜋𝜋1⋯𝜋𝜋𝑘𝑘,𝜋𝜋𝑘𝑘=𝜁𝜁 𝑝𝑝1(𝜋𝜋1)∏ 𝑝𝑝𝑖𝑖(𝜋𝜋𝑖𝑖)𝑎𝑎𝜋𝜋𝑖𝑖−1,𝜋𝜋𝑖𝑖
𝑘𝑘
𝑖𝑖=2 . 6 

Then the maximum of objection function can be obtained by iteration: 7 

ℓ𝑘𝑘+1,𝜉𝜉 = max𝜁𝜁 ℓ𝑘𝑘,𝜁𝜁 ∙ 𝑝𝑝𝑘𝑘+1(𝜉𝜉) ∙ 𝑎𝑎𝜁𝜁,𝜉𝜉, 8 

max𝝅𝝅 ℒ = max𝜉𝜉 ℓ𝑛𝑛,𝜉𝜉. 9 

Accordingly, 𝝅𝝅∗ can be obtained through dynamic programming (Fig. 2C). We start by 10 

building an 𝑙𝑙 × 148 matrix 𝑉𝑉. Line 𝑖𝑖 corresponds to 𝑋𝑋𝑖𝑖, the 𝑖𝑖-th base of the molecule. 11 

Column 1 corresponds to the linker; and the other columns (from Column 2 to Column 148) 12 

correspond to 𝑁𝑁1,𝑁𝑁2,⋯ ,𝑁𝑁147 , separately. Initialize 𝑉𝑉[1,1] = 𝑝𝑝1(𝐿𝐿) , and 𝑉𝑉[1, 𝑗𝑗] =13 

𝑝𝑝1�𝑁𝑁𝑗𝑗−1�, 2 ≤ 𝑗𝑗 ≤ 148. Elements in Line 𝑖𝑖(2 ≤ 𝑖𝑖 ≤ 𝑛𝑛) are then calculated iteratively. For 14 

Column 1, the element 𝑉𝑉[𝑖𝑖, 1]  is set as max{𝑉𝑉[𝑖𝑖 − 1,1],𝑉𝑉[𝑖𝑖 − 1,147]}𝑞𝑞𝑃𝑃(𝑠𝑠𝑖𝑖)  if 𝑋𝑋𝑖𝑖  is 15 

cytosine of GpC, or max{𝑉𝑉[𝑖𝑖 − 1,1],𝑉𝑉[𝑖𝑖 − 1,147]} otherwise. For Column 𝑗𝑗 (2 ≤ 𝑗𝑗 ≤ 148), 16 

𝑉𝑉[𝑖𝑖, 𝑗𝑗] is set as 𝑉𝑉[𝑖𝑖 − 1, 𝑗𝑗 − 1]𝑞𝑞𝑁𝑁(𝑠𝑠𝑖𝑖), or 𝑉𝑉[𝑖𝑖 − 1, 𝑗𝑗 − 1] otherwise. When updating an 17 

element, we record the position of the previous element that leads to the maximal value, 18 

and store the position as a pointer. After updating all elements, the maximal element in the 19 

last line is found (elements that equal to one are not considered), and the nucleosome 20 

positioning detection is completed through the backtracking of pointers. All calculations are 21 

performed in log scale to avoid rounding error.  22 

We evaluated the accuracy of nucleosome positioning detection (NP-SMLR) through 23 

simulation tests under different nucleosome coverage and GpC frequency (Fig. 2D). In detail, 24 

DNA sequence (3-kb length) was simulated with randomly assigned GpC sites at given 25 

frequency. Lengths of linkers between nucleosomes were sampled independently and 26 

sequentially. At each time, the linker length was sampled from the normal distribution 27 

𝑁𝑁(𝜇𝜇1,𝜎𝜎12) with probability 𝜏𝜏 , and 𝑁𝑁(𝜇𝜇2,𝜎𝜎22) with probability 1 − 𝜏𝜏 , corresponding to 28 

regular nucleosome array and open region with specific biological functions, respectively. 29 

We set 𝜇𝜇2 > 𝜇𝜇1 and 𝜎𝜎22 > 𝜎𝜎12. Nucleosomes were then placed on the DNA sequence, with 30 

their distance being set as the above simulated linker length. Methylation scores for GpC 31 

sites occupied by nucleosomes were generated based on the score distribution of negative 32 

control data, whose density function was 𝑞𝑞𝑁𝑁(∙). For GpC sites within linkers, 𝑞𝑞𝑃𝑃(∙) was 33 
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used instead. NP-SMLR was applied on the simulated sequence. Denote 𝑍𝑍𝚤𝚤�  and 𝑍𝑍𝑖𝑖  as the 1 

predicted and real indicators of whether the 𝑖𝑖-th base locates in nucleosome or not, 2 

respectively. The accuracy was defined as 3 

𝐴𝐴 = 1
𝑙𝑙
∑ 1{𝑍𝑍𝚤𝚤�=𝑍𝑍𝑖𝑖}
𝑙𝑙
𝑖𝑖=1 , 4 

where 𝑙𝑙 is the length of the simulated DNA sequence. In simulation tests, we set 𝜇𝜇1 = 15, 5 

𝜎𝜎1 = 5, 𝜎𝜎2 = 10, 𝜏𝜏 = 0.1. We set 𝜇𝜇2 as 15, 50, 100, 200, 300, 400, 500, 600, respectively 6 

to achieve different nucleosome coverage (defined as the proportion of bases covered by 7 

nucleosomes). For each parameter setting, the above simulation was carried out for 1,000 8 

times. 9 

 10 

Bulk-cell level nucleosome occupancy analyses based on MeSMLR-seq data 11 

The genomic coordinates of all nucleosomes predicted by NP-SMLR at the single-molecule 12 

level were pooled and subjected to iNPS software (version 1.2.2) (46) with default 13 

parameters to generate bulk-cell level nucleosome occupancy profile and to call nucleosome 14 

peaks. 15 

The nucleosome occupancy profiles were used to generate Fig. 3A, B; Fig. 4D, E (upper 16 

panel); Fig. 7A, B; and SI Appendix, Fig. S6D, E. The nucleosome peaks called by iNPS were 17 

used for the comparison with MNase-seq (Fig. 3C). 18 

 19 

Measurement of nucleosome positioning heterogeneity 20 

The heterogeneity of nucleosome positioning was measured by the variation of the +1 21 

nucleosome positioning relative to TSS across different cells (Fig. 4B and SI Appendix, Fig. 22 

S3A). For each molecule/cell, we first defined the nucleosome whose center was located in 23 

the downstream of TSS and closest to TSS as the +1 nucleosome. Next, we sorted the 24 

distances between +1 nucleosomes and TSS, and removed the upper 10% values for 25 

robustness. The standard variance of the remaining values was used to represent the 26 

heterogeneity of nucleosome positioning for each gene. 27 

 28 

Measurement of nucleosome spacing uniformity 29 

The uniformity of nucleosome spacing was measured by the variation of the distance 30 

between adjacent nucleosomes (i.e., the length of linker region) (Fig. 4C and SI Appendix, Fig. 31 
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S3B). For each gene, the molecules that fully covered the region (from upstream 500 bp to 1 

downstream 100 bp of TSS) were chosen. For each molecule, we calculated the lengths of all 2 

linker regions that were located in the region “-500, +100”. Then, we calculated the absolute 3 

deviation of linker length pair-wisely. The sum of the deviation values was divided by the 4 

number of linker pairs. The obtained value, which described the variation of nucleosome 5 

distance, was namely the nucleosome spacing uniformity. 6 

 7 

Chromatin accessibility mapping at the single-molecule level based on 8 

MeSMLR-seq data 9 

Based on the methylation scores of all GpC sites per molecule, we detected accessible 10 

chromatin regions along the molecule. Given a single molecule 𝑋𝑋1𝑋𝑋2⋯𝑋𝑋𝑙𝑙 , , where 𝑋𝑋𝑖𝑖  is 11 

the 𝑖𝑖-th base, we defined the interval from 𝑋𝑋𝑖𝑖  to 𝑋𝑋𝑗𝑗 as an accessible region if: 1) 𝑋𝑋𝑖𝑖  and 12 

𝑋𝑋𝑗𝑗 were adjacent GpC sites; 2) the corresponding methylation scores 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 were >0.5; 13 

and 3) the distance between 𝑋𝑋𝑖𝑖  and 𝑋𝑋𝑗𝑗 was <100 bp. The continuous accessible regions 14 

were merged. Given an accessible region, the chromatin accessibility score was defined as 15 

the median methylation score among all GpC sites within this region. 16 

In this study, we only considered the accessible regions with the length ≥100 bp for each 17 

molecule. Genome-wide chromatin accessibility profile was generated through merging 18 

accessible regions of all molecules. The chromatin accessibility profile was used to generate 19 

the Fig. 5A, B; Fig. 6 (upper panel); Fig. 7C; Fig. 8A; SI Appendix, Fig. S5A, B, and SI Appendix, 20 

Fig. S6B, C. 21 

 22 

Chromatin accessibility peak calling at the bulk-molecule/-cell level based on 23 

MeSMLR-seq data 24 

We defined significantly-accessible genomic regions as described in the previous study (30). 25 

Let 𝐺𝐺𝑖𝑖 be the 𝑖𝑖-th base of the genome. Denote 𝑋𝑋𝑖𝑖
(1), 𝑋𝑋𝑖𝑖

(2),⋯ ,𝑋𝑋𝑖𝑖
(𝑀𝑀) as the bases from 𝑀𝑀 26 

sequencing molecules that covered 𝐺𝐺𝑖𝑖 , and 𝑠𝑠𝑖𝑖
(1), 𝑠𝑠𝑖𝑖

(2),⋯ , 𝑠𝑠𝑖𝑖
(𝑀𝑀)  as the corresponding 27 

methylation scores if 𝐺𝐺𝑖𝑖 is a GpC site. Define 𝑟𝑟𝑖𝑖 = 1
𝑀𝑀
∑ 1�𝑠𝑠𝑖𝑖

(𝑗𝑗)>0.5�
𝑀𝑀
𝑗𝑗=1 , which is the ratio of 28 

methylated bases (methylation score >0.5), and denote 𝑟𝑟� as the average of ratios of all GpC 29 
sites. We defined the interval between 𝐺𝐺𝑖𝑖 and 𝐺𝐺𝑗𝑗 as a significantly-accessible region if: 1) 30 

𝐺𝐺𝑖𝑖 and 𝐺𝐺𝑗𝑗 were adjacent GpC sites; 2) 𝑟𝑟𝑖𝑖 > 1.5𝑟𝑟�, and 𝑟𝑟𝑗𝑗 > 1.5𝑟𝑟�; and 3) the distance 31 
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between 𝐺𝐺𝑖𝑖  to 𝐺𝐺𝑗𝑗  was <100 bp. The continuous accessible regions were merged to 1 

generate a longer accessible genomic region (referred as "chromatin accessibility peak").  2 

In this study, we only considered the peaks with the length ≥100 bp. For sequencing 3 

molecules aligned to forward and reverse genomic strands, we defined chromatin 4 

accessibility peaks, separately. The overlapped peaks between the forward and reverse 5 

strands were used for the comparison with two existing methods (i.e., ATAC-seq and 6 

DNase-seq) (Fig. 5C). 7 

 8 

Definition of gene promoter region and measurement of gene accessibility 9 

To quantitatively measure the accessibility of genes, we first defined the promoter region for 10 

each gene. Briefly, chromatin accessibility peaks (including both forward and reverse strands) 11 

were called using MeSMLR-seq data for each biological sample. For each biological sample, 12 

the overlapped peaks between forward and reverse strands for MeSMLR-seq were merged 13 

together. Next, we combined the merged peaks of MeSMLR-seq from all biological samples 14 

and the overlapped peaks between two biological replicates of DNase-seq. For each gene, 1) 15 

if there was only one peak that was located within the upstream 500 bp and downstream 16 

100 bp of TSS (named “-500, +100” region), the peak was defined as the promoter region; or 17 

2) if there were multiple peaks that were located in the “-500, +100” region, the peak that 18 

had the longest overlap was defined as the promoter region; or 3) if there was no peak 19 

locating in the region “-500, +100”, the region “-500, +100” was defined as the promoter 20 

region. 21 

At the single-molecule level, the accessibility score of a gene was calculated as the median 22 

methylation score among all GpC sites within the promoter region. For all molecules 23 

covering the promoter of a given gene, we categorized them into two chromatin statuses: 24 

“open” if the accessibility score was >0.5; “closed” otherwise. The defined promoter region 25 

and the corresponding accessibility score were used to generate the Fig. 5E; Fig. 6 (upper 26 

panel); Fig. 8D; Fig. 9; Fig. 10C, D; and SI Appendix, Fig. S6A. 27 

 28 

Analyses of dynamic gene expression and chromatin accessibility among three 29 

carbon sources 30 

Differentially-expressed genes were identified using Cuffdiff (q-value <0.01) between 31 

glucose (Glu) and other two carbon sources, galactose (Gal) and raffinose (Raf). Overall, 32 

there were 700 up-regulated and 682 down-regulated genes in Gal (Glu vs. Gal); 605 33 

up-regulated and 727 down-regulated genes in Raf (Glu vs. Raf). These 34 
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differentially-expressed genes were used to generate the Fig. 8B-D. Gene enrichment 1 

analyses in Fig. 8C was performed using DAVID (version 6.8) (50). 2 

For the differential chromatin accessibility analyses, we first calculated the bulk-cell-level 3 

chromatin accessibility as the ratio of those with “open” status among the molecules that 4 

fully covered the gene promoter. For each gene, the differential chromatin accessibility 5 

score was computed as the difference of bulk-cell-level chromatin accessibility between two 6 

carbon sources (Glu minus Gal for “Glu vs. Gal”; Glu minus Raf for “Glu vs. Raf”). 7 

 8 
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Fig. 1 Overview of MeSMLR-seq 

Experimental approach (methyltransferase treatment plus ONT sequencing) in yeast and the corresponding bioinformatics 

analyses (5mC detection, chromatin accessibility mapping and nucleosome phasing). 
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Fig. 2 5mC detection and nucleosome positioning by MeSMLR-seq data 

A. ROC curve of 5mC detection on GpC sites. The molecules that were aligned to forward (fwd) and reverse (rev) genomic 

strands were analyzed separately. 

B. Correlation coefficients between methylation scores of mutually paired GpC sites from the same molecules with respect 

to their corresponding distances. 

C. Dynamic programming algorithm for nucleosome positioning detection (NP-SMLR). A matrix regarding the nucleotide 

sequence (row) and nucleosomal statuses (column) is made, followed by initialization, iterative update for entries, and 

backtrack search for optimal path (see Materials and Methods for details). 

D. Accuracy of nucleosome positioning under different nucleosome coverage and GpC frequencies. 
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Fig. 3 Performance evaluation of MeSMLR-seq on bulk-level nucleosome occupancy, and single-molecule long-range 

phasing of nucleosomes 

A. Correlation of nucleosome occupancy profiles generated by MeSMLR-seq and MNase-seq. For MeSMLR-seq, the 

molecules that were aligned to forward (fwd) and reverse (rev) genomic strands were analyzed separately. 

B. Nucleosome occupancy profiles at the bulk-cell level provided by MeSMLR-seq and MNase-seq. 

C. Overlap of nucleosomes detected by MeSMLR-seq and MNase-seq at the bulk-cell level. 

D. Number of nucleosomes phased at single sequencing molecules of MeSMLR-seq data under 2% glucose condition. 

E. Detection and phasing of nucleosomes at the single-molecule level by NP-SMLR. Each grey line represents a molecule. 

Green oval represents nucleosome. 
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Fig. 4 Differential nucleosome organization principles for silent and active genes 

A. Previous studies revealed nucleosome organization patterns surrounding TSS of silent (left) and active (right) genes 

(12). Nucleosome positioning in promoter regions of silent genes showed large variation among cells but was highly 

uniformly spaced within each cell. In contrast, nucleosome positioning surrounding TSS of active genes showed little 

variation among cells but relatively non-uniformly spacing within each cell. 

B. Heterogeneity of nucleosome positioning for silent (FPKM=0) and active (FPKM>50) genes. The heterogeneity of 

nucleosome positioning was measured by the standard deviation (SD) of the distances between +1 nucleosomes and TSS. 

The p-value was calculated by Wilcoxon rank sum test. 

C. Uniformity of nucleosome spacing for silent (FPKM=0) and active (FPKM>50) genes. See Materials and Methods for the 

definition of uniformity. The p-value was calculated by Wilcoxon rank sum test. 

D. Long-range nucleosome positioning patterns for the silently-transcribed gene AUA1 across different cells. Each row 

represents a cell and nucleosome is labeled as blue bar. 

E. Long-range nucleosome positioning patterns for the actively-transcribed gene EWM1 across different cells. 
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Fig. 5 Performance evaluation of MeSMLR-seq on bulk-level chromatin accessibility mapping, and single-molecule long-

range mapping of chromatin accessibility 

A. Correlation of chromatin accessibility profiles generated by MeSMLR-seq, ATAC-seq and DNase-seq. 

B. Chromatin accessibility profiles at the bulk-cell level provided by MeSMLR-seq, ATAC-seq and DNase-seq.  

C. Overlap of the significantly-accessible regions (peaks) called by MeSMLR-seq, ATAC-seq and DNase-seq. 

D. Number of genes covered by single sequencing molecules of MeSMLR-seq data under 2% glucose condition. 

E. Single-molecule long-range mapping of chromatin accessibility by MeSMLR-seq. Each line represents a molecule. GpC 

site is labeled as rainbow-color dot, with methylation score from 0 (blue) to 1.0 (red). Thirteen combinatorial patterns of 

the promoter status of four genes are shown with different numbers of supporting sequencing molecules/cells. A 

promoter was defined as “open” (highlighted by red box) if the methylation scores of the including GpC sites had a median 

value greater than 0.5, and “closed” (highlighted by blue box) otherwise. 
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Fig. 6 Heterogeneous promoter openness of CLN2 in a cell population revealed by MeSMLR-seq 
The bulk-level chromatin accessibility profiles (upper panel) were provided by ATAC-seq, DNase-seq, and MeSMLR-seq. 
MeSMLR-seq molecules were clustered into three groups with different promoter openness (by k-means clustering of the 
nucleosome positioning profiles, bottom right panel): closed, narrow open and wide open. Each row represents a molecule 
(i.e., a cell) and nucleosome is labeled as blue bar. The corresponding methylation profiles at GpC sites on each molecule 
are shown on the bottom left panel. Each line represents a molecule (i.e., a cell). GpC site is labeled as rainbow-color dot, 
with methylation score from 0 (blue) to 1.0 (red).  30
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Fig. 7 Relationship between nucleosome occupancy, chromatin accessibility and gene expression 

A. Nucleosome occupancy profiles across all protein-coding genes with the ascending order of gene expression level from 

top to bottom. 

B. Nucleosome occupancy profiles at the bulk-cell level for protein-coding genes with different expression levels. 

C. Chromatin accessibility profiles at the bulk-cell level for protein-coding genes with different expression levels. 
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Fig. 8 Differential chromatin accessibility and gene expression under different carbon sources 

A. Differential chromatin accessibility patterns under glucose, galactose and raffinose. 

B. Differential gene expression patterns under different growth conditions. Fold change = (the FPKM value of the 

sample)/(the averaged FPKM under glucose condition). 

C. Gene enrichment analyses for differentially-expressed genes. 

D. Difference of chromatin accessibility between up- and down-regulated genes under different carbon sources. 

Glu, glucose; Gal, galactose; and Raf, raffinose. 
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Fig. 9 Quantitative relationship between chromatin accessibility and gene expression 

A, B. Quantitative relationship between chromatin accessibility and gene expression in a cell population. The former was 

measured by the fraction of cells with open promoter, and the latter by the fraction of cells with expression (based on 

single-cell RNA-seq data). Genes were binned by one of the indices and the distribution of the other is shown. The gene 

was considered as “expressed” in a cell if the corresponding UMI (unique molecular identifier) count was ≥1.  

C. Quantitative relationship between the bulk-cell gene expression and the cell population ratio of open promoter. Genes 

were binned based on the bulk-cell gene expression level (RNA-seq data). 
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Fig. 10 Relationship between chromatin accessibility and co-expression of HXT3 and HXT6 

A, B. Expression levels of HXT3 and HXT6 in response to glucose concentration change. FPKM (Fragment Per Kilobase 

Million) from bulk-cell RNA-seq data was taken as the expression level. 

C, D. Change of the coupled chromatin statuses of HXT3 and HXT6 in response to different glucose concentration (C: open-

closed; D: closed-open). Chromatin accessibility in promoters of HXT3 and HXT6 at the single-cell level is shown. Each line 

represents a molecule (i.e., cell). GpC site is labeled as rainbow-color dot, with methylation score from 0 (blue) to 1.0 

(red). A promoter was defined as “open” (highlighted by red box) if the methylation scores of the including GpC sites had a 

median value greater than 0.5, and “closed” (highlighted by blue box) otherwise. Cells are shown in four groups that 

corresponded to four glucose concentrations. The cell fractions are also shown on the bar charts. 
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Supplementary Information 1 
 2 
Section 1: Analyses of ATAC-seq, DNase-seq, MNase-seq, ChIP-seq, ChIP-exo and ChEC-seq data 3 

The information (including yeast strain, growth condition, GEO accession number, data format and 4 
reference) of public sequencing data used in this study was summarized in SI Appendix, Table S6. 5 

Quality control of raw sequencing data (FASTQ format) was performed using FastQC and cutadapt; and 6 
alignment was performed using Bowtie2 software (version 2.2.5) (1) with default parameters. 7 

For ATAC-seq (2) and ChIP-seq (Pol2) (3) data, MACS2 software (version 2.2.1) (4) with default 8 
parameters was used to call significantly-enriched peaks (q-value <0.05). 9 

For MNase-seq data (5), iNPS with default parameters was used for nucleosome calling. 10 

For DNase-seq data (6), F-Seq software (version 1.85) (7) with default parameters was used to call 11 
significantly-enriched peaks (peak length ≥100 bp).  12 

For ChIP-exo (Abf1, Cbf1, Mcm1, Rap1 and Reb1) data, the called peak files were directly downloaded 13 
from the original study (8). 14 

For ChEC-seq (Med8 and Med17) data (9), chec-seq script (https://github.com/zentnerlab/chec-seq) was 15 
used to call significantly-enriched peaks (signal-noise ratio ≥10 and peak length ≥100 bp). 16 

 17 

Section 2: Correlation and overlapping analyses between MeSMLR-seq and MNase-seq 18 

For correlation analysis of the bulk-cell level nucleosome occupancy results, we used iNPS to generate 19 
nucleosome occupancy profiles (BigWig format) for MNase-seq and MeSMLR-seq, respectively. Pearson 20 
correlation coefficient of nucleosome occupancy profiles (across whole genome and bin size as 10 bp) 21 
was calculated between two methods (Fig. 3A). 22 

For overlapping analysis of nucleosomes, we only considered the two nucleosome peaks (from 23 
MeSMLR-seq and MNase-seq, respectively) as overlapped if ≥50% region of one peak was covered by 24 
another peak (Fig. 3C). 25 

 26 

Section 3: Correlation and overlapping analyses among MeSMLR-seq, ATAC-seq and DNase-seq 27 

For correlation analysis of the bulk-cell level chromatin accessibility results, we generated genome-wide 28 
chromatin accessibility profiles (BigWig format) for three methods, separately. Pearson correlation 29 
coefficient of chromatin accessibility profiles (across the whole genome and bin size of 10 bp) were 30 
calculated among three methods (Fig. 5A). 31 
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36 
 

For MeSMLR-seq data, we separately called significantly-enriched peaks for molecules aligned to 1 
forward and reverse strands. Only the overlapped peaks between the forward and reverse strands for 2 
MeSMLR-seq data, and the overlapped peaks between two biological replicates for ATAC-seq and 3 
DNase-seq were used for overlapping analysis (Fig. 5C). 4 

 5 
 Section 4: Single-cell RNA-seq experiment and data analysis 6 

Yeast cells growing in YPD (1% yeast extract, 2% peptone and 2% glucose) medium were collected and 7 
spheroplasts were prepared as described above. Cell viability was measured using Trypan blue exclusion 8 
method and cell number was counted by hemocytometer. Of note, considering the fragility of 9 
spheroplasts, we modified the loading strategy of buffer before running the 10X ChromiumTM Controler 10 
(10X Genomics). Firstly, Single Cell Master Mix (10X Single Cell 3’ Reagent Kit v2) was prepared and 11 
added into Single Cell A Chip. Next, instead of nuclease-free water, sorbitol was added (final conc. = 1 M) 12 
and mixed well. Finally, spheroplasts suspended in 1 M sorbitol were added. In total, 318 million read 13 
pairs (2 x 150 bp) were generated by Illumina HiSeq 4000 platform.  14 

The quality of single-cell RNA-seq (scRNA-seq) data was evaluated by FastQC software. Cellranger 15 
software (version 2.1.1) with default parameters was used to process scRNA-seq data and generate 16 
gene-cell matrix. For quality control of scRNA-seq data, we excluded the cells with >10,000 UMI (unique 17 
molecular identifier) counts as they were potentially from artificial cell or cell duplets (10). After quality 18 
control, 2,812 single cells with 4,335 UMI counts (median value) per cell and 103,002 read pairs (median 19 
value) per cell were used in the following analyses. The number of expressed genes (≥1 UMI) per cell 20 
was 1,572 (median value). DESeq2 package (11) was used to normalize scRNA-seq UMI count data for 21 
2,812 cells. 22 

 23 
Section 5: Bulk-cell RNA-seq experiment and data analysis 24 

Total RNA was extracted using Quick-RNA Fungal/Bacterial Miniprep Kit (Zymo Research). Sequencing 25 
library was prepared using TruSeq Stranded mRNA Library Prep Kit and 10 million read pairs (2 x 150 bp) 26 
on average per sample were generated using Illumina HiSeq 4000 platform. Three biological replicates 27 
per biological condition were performed. 28 

The quality of bulk-cell RNA-seq data was evaluated by FastQC software (version 0.11.3, 29 
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and sequencing adaptors were trimmed 30 
by Cutadapt software (version 1.8.1) (12). Processed reads were aligned to reference genome (version 31 
UCSC sacCer3) by Hisat2 software (version 2.0.0-beta) (13) with default parameters. Cufflinks (version 32 
2.2.1) (14) with default settings were separately used for quantifying gene expression, normalizing gene 33 
expression and analyzing differential gene expression. The cutoff of statistical significance of differential 34 
gene expression was q-value < 0.01. 35 

The bulk-cell RNA-seq data was summarized in the SI Appendix, Table S5. 36 
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Fig. S2 5mC methylation calling at GpC sites and distribution of methylation scores 

A. An example showing the difference on event level distribution of a 6-mer with unmethylated cytosine or 5mC at GpC 

site (right panel). Among all 6-mers covering a GpC site, the one with the largest degree of difference was chosen for 

methylation detection (left panel). 

B. The probability distribution of methylation scores for negative and positive control data. The figure was drawn based on 

the data that were used for 5mC detection test. 
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Fig. S3 Heterogeneity of nucleosome positioning and uniformity of nucleosome spacing 

A. Heterogeneity of nucleosome positioning for five growth conditions. The heterogeneity of nucleosome positioning 

was measured by the standard deviation of the distances between +1 nucleosome and TSS. SD, standard deviation. The 

p-value was calculated by Wilcoxon rank sum test. 

B. Uniformity of nucleosome spacing for five growth conditions. The p-value was calculated by Wilcoxon rank sum test. 
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Fig. S4 Differential nucleosome organization between silent (AUA1) and active (EMW1) genes 

A, B. Q-Q plot illustration of the heterogeneity of nucleosome positioning. Each cross mark represents a molecule/cell. The 

x-axis is the distance between +1 nucleosome and TSS. The y-axis is the equant under the assumption that all distance 

values are evenly distributed. 

C, D. Uniformity of nucleosome spacing. Smaller variation (x-axis) indicates that nucleosomes are more likely to be 

uniformly spaced. 
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Fig. S5 MeSMLR-seq chromatin accessibility signal distribution surrounding the peak summits called by ATAC-seq (A) or 
DNase-seq (B) 
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Pearson’s r=0.55 

Fig. S6 Chromatin accessibility and nucleosome occupancy profiles at the binding sites of transcription-related factors 

A. Correlation between chromatin accessibility in promoter and Pol2 binding signal in gene body. Each point represents 

one gene. 

B, D. Chromatin accessibility (B) and nucleosome occupancy (D) profiles at the binding sites of five general regulatory 

factors. 

C, E. Chromatin accessibility (C) and nucleosome occupancy (E) profiles at the binding sites of two mediators. 
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Table S1 

Sample Aligned strand 

Number 

of aligned 

reads 

Genome 

coverage 

(X) 

Length of sequencing reads 

(kb) 

Maximal Median Mean 
Standard 

derivation 

Positive control 

Forward 456833 278.902 55.921 7.449 7.369 3.176 

Reverse 455786 278.18 42.876 7.442 7.367 3.169 

Forward+Reverse 912619 557.082 55.921 7.446 7.368 3.172 

Negative control 

Forward 619320 371.088 59.3 7.373 7.232 2.959 

Reverse 619326 370.998 46.872 7.364 7.231 2.958 

Forward+Reverse 1238646 742.086 59.3 7.369 7.232 2.958 

2% Glu 

Forward 711608 410.095 42.968 7.181 6.956 3.232 

Reverse 713840 411.011 38.448 7.172 6.95 3.228 

Forward+Reverse 1425448 821.105 42.968 7.177 6.953 3.23 

1% Glu 

Forward 640276 360.594 45.753 7.111 6.798 3.519 

Reverse 642098 361.885 35.517 7.119 6.803 3.512 

Forward+Reverse 1282374 722.48 45.753 7.115 6.8 3.515 

0.5% Glu 

Forward 597399 331.818 43.479 6.947 6.704 3.311 

Reverse 599093 332.727 34.258 6.947 6.704 3.317 

Forward+Reverse 1196492 664.545 43.479 6.947 6.704 3.314 

0.125% Glu 

Forward 734748 417.953 50.804 7.021 6.866 3.151 

Reverse 733380 417.042 52.59 7.01 6.864 3.15 

Forward+Reverse 1468128 834.996 52.59 7.016 6.865 3.151 

2% Gal 

Forward 527214 272.92 63.144 6.424 6.248 2.827 

Reverse 528143 273.481 59.1 6.428 6.25 2.824 

Forward+Reverse 1055357 546.401 63.144 6.426 6.249 2.825 

2% Raf 

Forward 697945 308.829 40.112 5.189 5.341 3.349 

Reverse 698648 309.814 36.327 5.217 5.353 3.35 

Forward+Reverse 1396593 618.643 40.112 5.203 5.347 3.35 

Statistics of MeSMLR-seq data 
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Table S2 

Sample Aligned strand 

Number of genes covered by single molecules 

Maximal Median Mean 
Standard 

derivation 

2% Glu 

Forward 244 37 35 18 

Reverse 226 37 36 18 

Forward+Reverse 244 37 35 18 

1% Glu 

Forward 271 36 34 19 

Reverse 207 36 34 19 

Forward+Reverse 271 36 34 19 

0.5% Glu 

Forward 256 36 34 19 

Reverse 177 36 34 19 

Forward+Reverse 256 36 34 19 

0.125% Glu 

Forward 294 37 36 18 

Reverse 258 37 36 18 

Forward+Reverse 294 37 36 18 

2% Gal 

Forward 306 32 31 16 

Reverse 356 32 31 16 

Forward+Reverse 356 32 31 16 

2% Raf 

Forward 208 26 27 18 

Reverse 199 26 28 18 

Forward+Reverse 208 26 27 18 

Number of nucleosomes phased by single molecules of MeSMLR-seq 
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Table S3 

Sample Aligned strand 

Number of genes covered by single molecules 

Maximal Median Mean 
Standard 

derivation 

2% Glu 

Forward 29 4 3 2 

Reverse 24 4 3 2 

Forward+Reverse 29 4 3 2 

1% Glu 

Forward 22 4 4 2 

Reverse 20 4 4 2 

Forward+Reverse 22 4 4 2 

0.5% Glu 

Forward 20 4 3 2 

Reverse 20 4 3 2 

Forward+Reverse 20 4 3 2 

0.125% Glu 

Forward 29 4 3 2 

Reverse 34 4 3 2 

Forward+Reverse 34 4 3 2 

2% Gal 

Forward 38 3 3 2 

Reverse 40 3 3 2 

Forward+Reverse 40 3 3 2 

2% Raf 

Forward 26 3 3 2 

Reverse 29 3 3 2 

Forward+Reverse 29 3 3 2 

Number of genes covered by single molecules of MeSMLR-seq 
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Table S4 

Sample 

Growth medium Sequencing data 

Yeast extract Peptone Carbon source MeSMLR-seq 
Bulk-cell 

RNA-seq 

Single-cell 

RNA-seq 

2% Glu 1% 2% 2% Glucose √ √ √ 

1% Glu 1% 2% 
1% Glucose + 

1% Galactose 
√ √ 

0.5% Glu 1% 2% 

0.5% Glucose + 

1.5% Galactose √ √ 

0.125% Glu 1% 2% 
0.125% Glucose + 

1.875% Galactose 
√ √ 

2% Gal 1% 2% 2% Galactose √ √ 

2% Raf 1% 2% 2% Raffinose √ √ 

Statistics of biological samples and sequencing data used in this study 
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Table S5 

Sample 
Biological 

replicate 

Total number of 

read pairs 
Alignment rate (%) 

2% Glu 

Replicate 1 11462015 98.42 

Replicate 2 9091690 98.43 

Replicate 3 8459098 97.56 

1% Glu 

Replicate 1 9066796 98.38 

Replicate 2 10611557 98.29 

Replicate 3 10746015 98.32 

0.5% Glu 

Replicate 1 9691923 97.88 

Replicate 2 10111610 98.33 

Replicate 3 9994920 98.39 

0.125% Glu 

Replicate 1 11210531 98.15 

Replicate 2 9751364 98.20 

Replicate 3 9615422 97.70 

2% Gal 

Replicate 1 9614336 98.16 

Replicate 2 10500154 98.65 

Replicate 3 10784979 98.60 

2% Raf 

Replicate 1 10677473 98.70 

Replicate 2 10395431 98.62 

Replicate 3 9721105 98.50 

Statistics of bulk-cell RNA-seq data 
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Table S6 

Public data Yeast strain Growth condition 
GEO accession 

No. 
Data format Reference 

ATAC-seq BY4741 YPD 

GSE66386 

SRR1822155 (rep1) 

SRR1822156 (rep2) 

FASTQ 2

DNase-seq W303 YPD 

GSE69651 

GSM1705337(rep1) 

GSM1705338(rep2) 

CSV 6

MNase-seq BY4741 YPD 

GSE61888 

SRR1593252(rep1) 

SRR1593214(rep2) 

SRR1593251(rep3) 

FASTQ 5

ChIP-seq (Pol2) BY4741 YPD 

GSE51251 

SRR1003615(input) 

SRR1003615(IP) 

FASTQ 3

ChIP-exo (Abf1, Cbf1, 

Mcm1, Rap1 and Reb1) 
BY4741 YPD GSE93662 GFF 8

ChEC-seq (Med8 and 

Med17) 
BY4705 YPD GSE81289 BED 9

Statistics of public sequencing data used in this study 
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