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Abstract

Despite their widespread applications, single-cell RNA-sequencing (scRNA-seq) ex-

periments are still plagued by batch effects and dropout events. Although the completely

randomized experimental design has frequently been advocated to control for batch

effects, it is rarely implemented in real applications due to time and budget constraints.

Here, we mathematically prove that under two more flexible and realistic experimental

designs—the “reference panel” and the “chain-type” designs—true biological variability

can also be separated from batch effects. We develop Batch effects correction with

Unknown Subtypes for scRNA-seq data (BUSseq), which is an interpretable Bayesian

hierarchical model that closely follows the data-generating mechanism of scRNA-seq

experiments. BUSseq can simultaneously correct batch effects, cluster cell types, impute

missing data caused by dropout events, and detect differentially expressed genes without

requiring a preliminary normalization step. We demonstrate that BUSseq outperforms

existing methods with simulated and real data.
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Introduction

Single-cell RNA-sequencing (scRNA-seq) technologies enable the measurement of the tran-

scriptome of individual cells, which provides unprecedented opportunities to discover cell

types and understand cellular heterogeneity [1]. However, like the other high-throughput

technologies [2–4], scRNA-seq experiments can suffer from severe batch effects [5]. Moreover,

compared to bulk RNA-seq data, scRNA-seq data can have an excessive number of zeros

that result from dropout events—that is, the expressions of some genes are not detected even

though they are actually expressed in the cell due to amplification failure prior to sequencing

[6]. Consequently, despite the widespread adoption of scRNA-seq experiments, the design of

a valid scRNA-seq experiment that allows the batch effects to be removed, the biological cell

types to be discovered, and the missing data to be imputed remains an open problem.

One of the major tasks of scRNA-seq experiments is to identify cell types for a population

of cells [1]. The cell type of each individual cell is unknown and is often the target of inference.

Classic batch effects correction methods, such as Combat [7] and SVA [8, 9], are designed for

bulk experiments and require knowledge of the subtype information of each sample a prior.

For scRNA-seq data, this subtype information corresponds to the cell type of each individual

cell. Clearly, these methods are thus infeasible for scRNA-seq data. Alternatively, if one has

knowledge of a set of control genes whose expression levels are constant across cell types,

then it is possible to apply RUV [10, 11]. However, selecting control genes is often difficult

for scRNA-seq experiments.

To identify unknown subtypes, MetaSparseKmeans [12] jointly clusters samples across

batches. Unfortunately, MetaSparseKmeans requires all subtypes to be present in each batch.

Suppose that we conduct scRNA-seq experiments for blood samples from a healthy individual

and a leukemia patient, one person per batch. Although we can anticipate that the two

batches will share T cells and B cells, we do not expect that the healthy individual will have

cancer cells as the leukemia patient. Therefore, MetaSparseKmeans is too restrictive for

many scRNA-seq experiments.

The mutual-nearest-neighbor (MNN) based approaches, including MNN [13] and Scanorama

[14], allow each batch to contain some but not all cell types. However, these methods require

batch effects to be almost orthogonal to the biological subspaces and much smaller than
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the biological variations between different cell types [13]. These are strong assumptions and

cannot be validated at the design stage of the experiments. Seurat [15, 16], LIGER [17]

and scMerge [18] attempt to identify shared variations across batches by low-dimensional

embeddings and treat them as shared cell types. However, they may mistake the technical

artifacts as the biological variability of interest if some batches share certain technical noises,

for example when each patient is measured by several batches. To handle severe batch effects

for microarray data, Luo and Wei [19] developed BUS to simultaneously cluster samples across

multiple batches and correct batch effects. However, none of the above methods considers

features unique to scRNA-seq data, such as the count nature of the data, over-dispersion

[20], dropout events [6], or cell-specific size factors [21]. ZIFA [22] and ZINB-WaVE [23]

incorporate dropout events into the factor model, whereas scVI [24] and SAVER-X [25] couple

the modeling of dropout events with neural networks. However, as is the case with the other

state-of-the-art methods, these papers do not discuss the designs of scRNA-seq experiments

under which their methods are applicable.

Nevertheless, it is crucial to understand the conditions under which biological variability

can be separated from technical artifacts. Obviously, for completely confounded designs—for

example one in which batch 1 measures cell type 1 and 2, whereas batch 2 measures cell type

3 and 4—no method is applicable.

Here, we propose Batch effects correction with Unknown Subtypes for scRNA-seq data

(BUSseq), an interpretable hierarchical model that simultaneously corrects batch effects,

clusters cell types, and takes care of the count data nature, the overdispersion, the dropout

events, and the cell-specific size factors of scRNA-seq data. We mathematically prove that it

is legitimate to conduct scRNA-seq experiments under not only the commonly advocated

completely randomized design [1, 5, 26, 27], in which each batch measures all cell types, but

also the “reference panel” design and the “chain-type” design, which allow some cell types to

be missing from some batches. Furthermore, we demonstrate that BUSseq outperforms the

existing approaches in both simulation data and real applications. The theoretical results

answer the question about when we can integrate multiple scRNA-seq datasets and analyze

them jointly. We envision that the proposed experimental designs will be able to guide

biomedical researchers and help them to design better scRNA-seq experiments.
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Results

BUSseq is an interpretable hierarchical model for scRNA-seq

We develop a hierarchical model BUSseq that closely mimics the data generating procedure

of scRNA-seq experiments (Fig. 1a and Supplementary Fig. 1). Given that we have

measured B batches of cells each with a sample size of nb, let us denote the underlying gene

expression level of gene g in cell i of batch b as Xbig. Xbig follows a negative binomial distri-

bution with mean expression level µbig and a gene-specific and batch-specific overdispersion

parameter φbg. The mean expression level is determined by the cell type Wbi with the cell

type effect βgk, the log-scale baseline expression level αg, the location batch effect νbg, and

the cell-specific size factor δbi. The cell-specific size factor δbi characterizes the impact of cell

size, library size and sequencing depth. It is of note that the cell type Wbi of each individual

cell is unknown and is our target of inference. Therefore, we assume that a cell on batch b

comes from cell type k with probability P (Wbi = k) = πbk and the proportions of cell types

(πb1, · · · , πbK) vary among batches.

Unfortunately, it is not always possible to observe the expression level Xbig. Without

dropout (Zbig = 0), we can directly observe Ybig = Xbig. However, if a dropout event occurs

(Zbig = 1), then we observe Ybig = 0 instead of Xbig. It has been noted that highly expressed

genes are less-likely to suffer from dropout events [6]. We thus model the dependence of

the dropout rate P (Zbig = 1|Xbig) on the expression level using a logistic regression with

batch-specific intercept γb0 and odds ratio γb1.

Noteworthy, BUSseq includes the negative binomial distribution without zero inflation

as a special case. When all cells are from a single cell type and the cell-specific size factor

δbi is estimated a priori according to spike-in genes, BUSseq can reduce to a form similar to

BASiCS [20].

We only observe Ybig for all cells in the B batches and the total G genes. We conduct

statistical inference under the Bayesian framework and develop a Markov chain Monte Carlo

(MCMC) algorithm [28]. Based on the parameter estimates, we can learn the cell type for each

individual cell, impute the missing underlying expression levels Xbig for dropout events, and

identify genes that are differentially expressed among cell types. Moreover, our algorithm can
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Figure 1: Illustration of the BUSseq model and various types of experimental designs. (a)
The hierarchical structure of the BUSseq model. Only Ybig in the grey rectangle is observed.
(b) A confounded design that contains three batches. Each polychrome rectangle represents
one batch of scRNA-seq data with genes in rows and cells in columns; and each color indicates
a cell type. Batch 1 assays cells from cell types 1 and 2; batch 2 profiles cells from cell types
3 and 4; and batch 3 only contains cells from cell type 4. (c) The complete setting design.
Each batch assays cells from all of the four cell types, although the cellular compositions
vary across batches. (d) The reference panel design. Batch 1 contains cells from all of the
cell types, and all the other batches have at least two cell types. (e) The chain-type design.
Every two consecutive batches share two cell types. Batch 1 and Batch 2 share cell types
2 and 3; Batch 2 and Batch 3 share cell types 3 and 4 (see also Supplementary Figs. 1
and 2).

automatically detect the total number of cell types K that exists in the dataset according to

the Bayesian information criterion (BIC) [29]. BUSseq also provides a batch-effect corrected

version of count data, which can be used for downstream analysis as if all of the data were

measured in a single batch. Details are in Methods and Supplementary Notes.

Valid experimental designs for scRNA-seq experiments

If a study design is completely confounded, as shown in Fig. 1b, then no method can

separate biological variability from technical artifacts, because different combinations of

batch-effect and cell-type-effect values can lead to the same probabilistic distribution for the

observed data, which in statistics is termed a non-identifiable model. Formally, a model is
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said to be identifiable if each probability distribution can arise from only one set of parameter

values [30]. Statistical inference is impossible for non-identifiable models because two sets of

distinct parameter values can give rise to the same probabilistic function. We prove that the

BUSseq model is identifiable under conditions that are very easily met in reality. It is thus

applicable to a wide range of experimental designs.

For the “complete setting,” in which each batch measures all of the cell types (Fig. 1c

and Theorem 1 in Methods), BUSseq is identifiable as long as: (I) the odds ratio γb1s in

the logistic regressions for the dropout rates are negative for all of the batches, (II) every

two cell types have more than one differentially expressed gene, and (III) the ratios of mean

expression levels between two cell types ( exp(β1k)
exp(β1k̃)

, · · · , exp(βGk)
exp(βGk̃)

) are different for each cell-type

pair (k, k̃) (see Theorem 1 in Methods). Condition (I) requires that the highly expressed

genes are less likely to have dropout events, which is routinely observed for scRNA-seq data

[6]. Condition (II) always holds in reality. Because scRNA-seq experiments measure the

whole transcriptome of a cell, condition (III) is also always met in real data. For example, if

there exists one gene g such that for any two distinct cell-type pairs (k1, k2) and (k3, k4) their

mean expression levels ratios
exp(βgk1 )

exp(βgk2 )
and

exp(βgk3 )

exp(βgk4 )
are not the same, then condition (III) is

already satisfied.

The commonly advocated completely randomized experimental design falls into the

“complete setting” design, whereas the latter further relaxes the assumption implied by the

former that the cell-type proportions are almost the same for all batches. The identical

composition of the cell population within each batch is a crucial requirement for traditional

batch effects correction methods developed for bulk experiments such as Combat [13]. In

contrast, BUSseq is not limited to this balanced design constraint and is applicable to not

only the completely randomized design but also the general complete setting design.

Ideally, we would wish to adopt completely randomized experimental designs. However,

in reality, it is always very challenging to implement complete randomization due to time

and budget constraints. For example, when we recruit patients sequentially, we often have

to conduct scRNA-seq experiments patient-by-patient rather than randomize the cells from

all of the patients to each batch, and the patients may not have the same set of cell types.

Fortunately, we can prove that BUSseq also applies to two sets of flexible experimental

designs, which allow cell types to be measured in only some but not all of the batches.
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Assuming that conditions (I)-(III) are satisfied, if there exists one batch that contains cells

from all cell types and the other batches have at least two cell types (Fig. 1d), then BUSseq

can tease out the batch effects and identify the true biological variability (see Theorem 2 in

Methods). We call this setting the “reference panel design.”

Sometimes, it can still be difficult to obtain a reference batch that collects all cell types.

In this case, we can turn to the chain-type design, which requires every two consecutive

batches to share two cell types (Fig. 1e). Under the chain-type design, given that conditions

(I)-(III) hold, BUSseq is also identifiable and can estimate the parameters well (see Theorem

3 in Methods).

A special case of the chain-type design is when two common cell types are shared by all of

the batches, which is frequently encountered in real applications. For instance, when blood

samples are assayed, even if we perform scRNA-seq experiment patient-by-patient with one

patient per batch, we know a priori that each batch will contain at least both T cells and B

cells, thus satisfying the requirement of the chain-type design.

The key insight is that despite batch effects, differences between cell types remain constant

across batches. The differences between a pair of cell types allow us to distinguish batch

effects from biological variability for those batches that measure both cell types. Once batch

effects have been identified, we can conduct joint clustering across batches with batch effects

adjusted. In fact, BUSseq can separate batch effects from cell type effects under more general

designs beyond the easily understood and commonly encountered reference panel design and

chain-type design. If we regard each batch as a node in a graph and connect two nodes with

an edge if the two batches share at least two cell types, then BUSseq is identifiable as long as

the resulting graph is connected (see Supplementary Fig. 2 and Theorem 4 in Methods).

For scRNA-seq data, dropout rate depends on the underlying expression levels. Such

missing data mechanism is called missing not at random (MNAR) in statistics. It is very

challenging to establish identifiability for MNAR. Miao et al. [31] showed that for many cases

even when both the outcome distribution and the missing data mechanism have parametric

forms, the model can be nonidentifiable. However, fortunately, despite the dropout events

and the cell-specific size factors, by creating a set of functions similar to the probability

generating function, we proved Theorems 1-4 (see their proofs in Supplementary Notes). The

reference panel design, the chain-type design and the connected design liberalize researchers

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 3, 2019. ; https://doi.org/10.1101/533372doi: bioRxiv preprint 

https://doi.org/10.1101/533372
http://creativecommons.org/licenses/by-nc-nd/4.0/


from the ideal but often unrealistic requirement of the completely randomized design.

BUSseq accurately estimates the parameters and imputes the miss-

ing data

We first evaluate the performance of BUSseq via a simulation study. We simulate a dataset

with four batches and a total of five cell types under the chain-type design (Fig. 2a-d and

Theorem 3). Every two consecutive batches share at least two cell types, but none of the

batches contains all of the cell types. The sample sizes for each batch are (n1, n2, n3, n4) =

(300, 300, 200, 200), and there are a total of 3,000 genes. In real datasets, batch effects are

often much larger than the cell type effects (Fig. 3a) and not orthogonal to the cell type

effects (Supplementary Fig. 3). In the simulation study, we choose the magnitude of the

batch effects, cell type effects, the dropout rates, and the cell-specific size factors to mimic

real data scenarios (Fig. 3a). The simulated observed data suffer from severe batch effects

and dropout events (Fig. 2d and Fig. 3c). The dropout rates for the four batches are

26.79%, 24.53%, 28.36% and 31.29%, with the corresponding total zero proportions given by

44.13%, 48.85%, 53.07% and 61.38%.

BUSseq correctly identifies the presence of five cell types among the cells (Fig. 2e).

Moreover, despite the dropout events, BUSseq accurately estimates the cell type effects βgks

(Fig. 2a and f), the batch effects νbgs (Fig. 2b and g), and the cell-specific size factors

δbis (Fig. 2j). When controlling the Bayesian False Discovery Rate (FDR) at 0.05 [32, 33],

we identify all intrinsic genes that differentiate cell types with the true FDR being 0.02

(Methods).

In the simulation study, we know the underlying expression levels Xbigs. Therefore, we

can compare them with our inferred expression levels X̂bigs based the observed data Ybigs

which are subject to dropout events. Fig. 2h demonstrates that BUSseq can learn the

underlying expression levels well. This success arises because BUSseq uses an integrative

model to borrow strengths both across genes and across cells from all batches. As a result,

BUSseq can achieve accurate estimation and imputation despite the dropout events.

Combat offers a version of data that have been adjusted for batch effects [7]. Here, we

also provide batch-effects-corrected count data based on quantile matching (Methods). The
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Figure 2: Patterns of the simulation study. (a) True log-scale mean expression levels for each
cell type α + β. Each row represents a gene, and each column corresponds to a cell type.
The intrinsic genes that are differentially expressed between cell types can have high, medium
high, median low or low expression levels. (b) True batch effects. Each row represents a
gene, and each column corresponds to a batch. (c) True underlying expression levels X.
Each row represents a gene, and each column corresponds to a cell. The upper color bar
indicates the batches, and the lower color bar represents the cell types. There are a total of
3,000 genes. The sample sizes for each batch are 300, 300, 200 and 200, respectively. (d) The
simulated observed data Y . The overall dropout rate is 27.3%, whereas the overall zero rate
is 50.8%. (e) The BIC plot. The BIC attains the minimum at K = 5, identifying the true
cell type number. (f) The estimated log-scale mean expression levels for each cell type α̂+ β̂.

(g) Estimated batch effects. (h) Imputed expression levels X̂. (i) Corrected count data X̃
grouped by batches. (j) Scatter plot of the estimated versus the true cell-specific size factors.

adjusted count data no longer suffer from batch effects and dropout events, and they even do

not need further cell-specific normalization (Fig. 2i). Therefore, they can be treated as if

measured in a single batch for downstream analysis.

BUSseq outperforms existing methods in simulation study

We benchmarked BUSseq with the state-of-the-art methods for batch effects correction

for scRNA-seq data—LIGER [17], MNN [13], Scanorama [14], scVI [24], Seurat [16] and

ZINB-WaVE [23]. The adjusted Rand index (ARI) measures the consistency between two

clustering results and is between zero and one, a higher value indicating better consistency
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Hematopoietic Study

Pancreatic Study

Simulation Study

Uncorrected BUSseq

MNN

ZINB-WaVESeurat

LIGER

Scanorama scVI

Uncorrected BUSseq

MNN

ZINB-WaVESeurat

LIGER

Scanorama scVI

Figure 3: Comparison of batch effects correction methods in the simulation study. (a)
Comparison of the magnitude of cell type effects and batch effects in the simulation study and
the two real applications. The subpanel for the simulation study jitters around the assumed
values for β and ν. The boxplots show the distributions of the estimated cell type effects β̂
and batch effects ν̂ by BUSseq in the two real studies. The magnitude of the batch effects
and cell type effects in the simulation study were chosen to mimic the real data scenarios. (b)
The boxplots of silhouette coefficients for all compared methods. (c) T-distributed Stochastic
Neighbor Embedding (t-SNE) plots colored by batch for each compared method. (d) t-SNE
plots colored by true cell type labels for each compared method.
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(Supplementary Notes). The ARI between the inferred cell types Ŵbis by BUSseq and the

true underlying cell types Wbis is one. Thus, BUSseq can perfectly recover the true cell

type of each cell. In comparison, we apply each of the compared methods to the dataset

and then perform their own clustering approaches (Supplementary Notes). The ARI is able

to compare the consistency of two clustering results even if the numbers of clusters differ,

therefore, we choose the number of cell types by the default approach of each method rather

than set it to a common number. The resulting ARIs are 0.837 for LIGER, 0.654 for MNN,

0.521 for Scanorama, 0.480 for scVI, 0.632 for Seurat and 0.571 for ZINB-WaVE. Moreover,

the t-SNE plots (Fig. 3c and d) show that only BUSseq can perfectly cluster the cells by

cell types rather than batches. We also calculated the silhouette score for each cell for each

compared method (Supplementary Notes). A high silhouette score indicates that the cell

is well matched to its own cluster and separated from neighboring clusters. Fig. 3b shows

that BUSseq gives the best segregated clusters.

BUSseq outperforms existing methods on hematopoietic data

We re-analyzed the two hematopoietic datasets previously studied by Haghverdi et al.[13], one

profiled by the SMART-seq2 protocol for a population of hematopoietic stem and progenitor

cells (HSPC) from 12-week-old female mice [34] and another assayed by the massively parallel

single-cell RNA-sequencing (MARS-seq) protocol for myeloid progenitors from 6- to 8-week-

old female mice [35]. Although the two datasets were generated in two different laboratories

(Fig. 4a), both datasets have cell-type label for each cell that is annotated according to

the expression levels of marker genes [13, 35] from fluorescence-activated cell sorting (FACS)

(Methods).

In order to compare BUSseq with existing methods, we compute the ARI between the

clustering of each method and the FACS labels. The resulting ARIs are 0.582 for BUSseq,

0.307 for LIGER, 0.575 for MNN, 0.518 for Scanorama, 0.197 for scVI, 0.266 for Seurat and

0.348 for ZINB-WaVE. BUSseq thus outperforms all of the other methods in being consistent

with FACS labeling. BUSseq also has silhouette coefficients that are comparable to those

of MNN, which are better than those of all the other methods (Supplementary Fig. 4).

Furthermore, t-SNE plots confirm that BUSseq performs the best in segregating cells into

different cell types (Fig. 4b).
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Figure 4: t-SNE and Principal Component Analysis (PCA) plots for the hematopoietic data.
(a) t-SNE plots colored by batch. (b) t-SNE plots colored by FACS cell type labels. (c) PCA
plots colored by FACS cell type labels.

Specifically, BUSseq learns 6 cell types from the dataset. According to the FACS

labels (Methods), Cluster 2, Cluster 5, and Cluster 6 correspond to the common myeloid

progenitors (CMP), megakaryocyte-erythrocyte progenitors (MEP) and granulocyte-monocyte

progenitors (GMP), respectively (Fig. 4c and Fig. 5a-c). Cluster 1 is composed of long-

term hematopoietic stem and progenitor cells (LTHSC) and multi-potent progenitors (MPP).

These are cells from the early stage of differentiation. Cluster 4 consists of a mixture of MEP

and CMP, while Cluster 3 is dominated by cells labeled as “other”. Comparison between

the subpanel for BUSseq in Fig. 4c and Fig. 5b indicates that Cluster 4 are cells from

an intermediate cell type between CMP and MEP. In particular, according to Fig. 5e, the

marker genes Apoe and Gata2 are highly expressed in Cluster 4 but not in CMP (Cluster 2)

and MEP (Cluster 6), and the marker gene Ctse is expressed in MEP (Cluster 6) but not in

Cluster 4 and CMP (Cluster 2). Therefore, cells in Cluster 4 do form a unique group with

distinct expression patterns. This intermediate cell stage between CMP and GMP is missed

by all of the other methods considered. Moreover, we find that well known B-cell lineage

genes [36], Ebf1, Vpreb1, Vpreb3, and Igll1, are highly expressed in Cluster 3, but not in the

other clusters (Fig. 5c and e). To identify Cluster 3, which is dominated by cells labeled as
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e

Figure 5: BUSseq preserves the hematopoietic stem and progenitor cells (HSPC) differentiation
trajectories. (a) The diagram of HSPC differentiation trajectories. (b) The PCA plot of the
corrected count matrix from BUSseq colored according to the estimated cell types by BUSseq.
(c) The heatmap of scaled expression levels of key genes for HSPC. (d) The heatmap of
correlation between gene expression profiles of each cell type inferred by BUSseq and those
in the Haemopedia RNA-seq datasets. (e) The expression levels of four marker genes, Apoe,
Gata2, Ctse and Igll1, shown in the PCA plots of corrected count data by BUSseq, respectively.
The digit labels denote the corresponding clusters identified by BUSseq.

“other” by Nestorowa et al. [34], we map the mean expression profile of each cluster learned

by BUSseq to the Haemopedia RNA-seq dataset [37]. It turns out that Cluster 3 aligns

well to common lymphoid progenitors (CLP) that give rise to T-lineage cells, B-lineage cells

and natural killer cells (Fig. 5d). Therefore, Cluster 3 represents cells that differentiate

from lymphoid-primed multipotent progenitors (LMPP) cells [35]. Once again, all the other

methods fail to identify these cells as a separate group.

Thus, although BUSseq does not assume any temporal ordering between cell types, it is

able to preserve the differentiation trajectories (Fig. 5a and b); although BUSseq assumes

that each cell belongs to one cell type rather than conducts semisoft clustering [38], it is

capable of capturing the subtle changes across cell types and within a cell type due to

continuous processes such as development and differentiation.

We further inspect the functions of the intrinsic genes that distinguish different cell types.
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BUSseq detects 1419 intrinsic genes at the Bayesian FDR cutoff of 0.05 (Methods). The

gene set enrichment analysis [39] shows that 51 KEGG pathways [40] are enriched among

the intrinsic genes (p-values < 0.05) (Supplementary Notes). The highest ranked pathway is

the Hematopoietic Cell Lineage Pathway, which corresponds to the exact biological process

studied in the two datasets. Among the remaining 50 pathways, thirteen are related to

the immune system, and another nine are associated with cell growth and differentiation

(Supplementary Table 1). Therefore, the pathway analysis demonstrates that BUSseq is

able to capture the underlying true biological variability, even if the batch effects are severe,

as shown in Fig. 3a and Fig. 4a.

BUSseq outperforms existing method on pancreas data

We further studied the four scRNA-seq datasets of human pancreas cells analyzed in Haghverdi

et al. [13], two profiled by CEL-seq2 protocol [41, 42] and two assayed by SMART-seq2

protocol [42, 43]. These cells were isolated from deceased organ donors with and without

type 2 diabetes. We obtained 7,095 cells after quality control (Supplementary Notes) and

treated each dataset as a batch following Haghverdi et al. [13].

For the two datasets profiled by the SMART-seq2 protocol, Segerstolpe et al. [43] and

Lawlor et al. [42] provide cell-type labels; for the other two datasets assayed by the CEL-seq2

protocol, Haghverdi et al. [13] provide the cell-type labels based on the marker genes in the

original publications [41, 42]. We can thus compare the clustering results from each batch

effects correction method with the labeled cell types (Fig. 6a and b).

The pancreas is highly heterogeneous and consists of two major categories of cells: islet

cells and non-islet cells. Islet cells include alpha, beta, gamma, and delta cells, while non-islet

cells include acinar and ductal cells. BUSseq identifies a total of eight cell types: five for

islet cells, two for non-islet cells and one for the labeled “other” cells. Specifically, the five

islet cell types identified by BUSseq correspond to three groups of alpha cells, a group of

beta cells, and a group of delta and gamma cells. The two non-islet cell types identified

by BUSseq correspond exactly to the acinar and ductal cells. Compared to all of the other

methods, BUSseq gives the best separation between islet and non-islet cells, as well as the

best segregation within islet cells. In particular, the median silhouette coefficient by BUSseq

is higher than that of any other method (Fig. 6c).
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Figure 6: t-SNE plots for the pancreas data. (a) t-SNE plots colored by batch. (b) t-SNE
plot colored by FACS cell type labels. (c) The boxplot of silhouette coefficients for all of the
compared methods. (d) The expression levels of six marker genes, GCG for alpha cells, INS
for beta cells, SST for gamma cells, PPY for delta cells, PRSS1 for acinar cells, and KRT19
for ductal cells, shown in the t-SNE plot of the corrected count data of BUSseq, respectively.

The ARIs of all methods are 0.608 for BUSseq, 0.542 for LIGER, 0.279 for MNN, 0.527

for Scanorama, 0.282 for scVI, 0.287 for Seurat and 0.380 for ZINB-WaVE. Thus, BUSseq

outperforms all of the other methods in being consistent with the cell-type labels according

to marker genes. In Fig. 6d, the locally high expression levels of marker genes for each cell

type show that BUSseq correctly clusters cells according to their biological cell types.

BUSseq identifies 426 intrinsic genes at the Bayesian FDR cutoff of 0.05 (Methods). We

conducted the gene set enrichment analysis [39] with the KEGG pathways [40] (Supplementary

Notes). There are 14 enriched pathways (p-values < 0.05). Among them, three are diabetes

pathways; two are pancreatic and insulin secretion pathways; and another two pathways are

related to metabolism (Supplementary Table 2). Recall that the four datasets assayed

pancreas cells from type 2 diabetes and healthy individuals, therefore, the pathway analysis

once again confirms that BUSseq provides biologically and clinically valid cell typing.
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Discussion

For the completely randomized experimental design, it seems that “everyone is talking, but

no one is listening.” Due to time and budget constraints, it is always difficult to implement

a completely randomized design in practice. Consequently, researchers often pretend to

be blind to the issue when carrying out their scRNA-seq experiments. In this paper, we

mathematically prove and empirically show that under the more realistic reference panel and

chain-type designs, batch effects can also be adjusted for scRNA-seq experiments. We hope

that our results will alarm researchers of confounded experimental designs and encourage

them to implement valid designs for scRNA-seq experiments in real applications.

BUSseq provides one-stop services. In contrast, most existing methods are multi-stage

approaches—clustering can only be performed after the batch effects have been corrected and

the differential expressed genes can only be called after the cells have been clustered. The

major issue with multi-stage methods is that uncertainties in the previous stages are often

ignored. For instance, when cells have been first clustered into different cell types and then

differential gene expression identification is conducted, the clustering results are taken as if

they were the underlying truth. As the clustering results may be prone to errors in practice,

this can lead to false positives and false negatives. In contrast, BUSseq simultaneously

corrects batch effects, clusters cell types, imputes missing data, and identifies intrinsic genes

that differentiate cell types. BUSseq thus accounts for all uncertainties and fully exploits the

information embedded in the data. As a result, BUSseq is able to capture subtler changes

between cell types, such as the cluster corresponding to LMPP lineage that is missed by all

the state-of-the-art methods.

BUSseq employs MCMC for statistical inference. As MCMC algorithms not only provide

point estimates but also explore the entire posterior distributions and hence allow the users to

quantify the uncertainty of estimates, they are famous for heavy computation load. However,

fortunately, the computational complexity of BUSseq is O(
∑B

b=1 nbGK), which is both linear

in the number of genes G and in the total number of cells
∑B

b=1 nb. Moreover, most steps of

the MCMC algorithm for BUSseq are parallelizable. We implement a parallel multi-core-CPU

version and a parallel GPU version of the algorithm, respectively. Running the GPU version

of the algorithm with a single core of an Intel Xeon Gold 6132 Processor and one NVIDIA
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Tesla P100 GPU took 0.35, 1.15, 1.5 hours for the simulation, the hematopoietic and the

human pancreas data, respectively (Supplementary Table 3). Compared to the time for

preparing samples and conducting the scRNA-seq experiments, the computation time of

BUSseq is affordable and worthwhile for the accuracy.

Practical and valid experimental designs are urgently required for scRNA-seq experiments.

We envision that the flexible reference panel and the chain-type designs will be widely adopted

in scRNA-seq experiments and BUSseq will greatly facilitate the analysis of scRNA-seq data.
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Methods

BUSseq model

The hierarchical model of BUSseq can be summarized as:

Pr(Wbi = k) = πbk,

K∑
k=1

πbk = 1;

Xbig|Wbi = k ∼ NB(µbig, φbg), log(µbig) = αg + βgk + νbg + δbi;

Zbig|Xbig = xbig ∼ Bernoulli(pbig), log(
pbig

1− pbig
) = γb0 + γb1xbig;

Ybig = Xbig|Zbig = 0, Ybig = 0|Zbig = 1.

Collectively, Y = {Ybig}g=1,··· ,G
b=1,··· ,B;i=1,··· ,nb

are the observed data; the underlying expression levels

X = {Xbig}g=1,··· ,G
b=1,··· ,B;i=1,··· ,nb

, the dropout indicators Z = {Zbig}g=1,··· ,G
b=1,··· ,B;i=1,··· ,nb

and the cell

type indicators W = {Wbi}b=1,··· ,B;i=1,··· ,nb
are all missing data; the log-scale baseline gene

expression levels α = {αg}g=1,··· ,G, the cell type effects β = {βgk}g=1,··· ,G
k=2,··· ,K , the location batch

effects ν = {νbg}g=1,··· ,G
b=2,··· ,B , the overdispersion parameters φ = {φbg}g=1,··· ,G

b=1,··· ,B , the cell-specific

size factors ∆ = {δbi}i=2,··· ,nb

b=1,··· ,B , the dropout parameters Γ = {γb0, γb1}b=1,··· ,B and the cell

compositions π = {πbk}k=1,··· ,K
b=1,··· ,B are the parameters. Without loss of generality, for model

identifiability, we assume that the first batch is the reference batch measured without batch

effects with ν1g = 0 for every gene and the first cell type is the baseline cell type with βg1 = 0

for every gene. Similarly, we take the cell-specific size factor δb1 = 0 for the first cell of each

batch. We gather all the parameters as Θ = {α,β,ν,φ,∆,Γ,π}.

Experimental designs

By creating a set of functions similar to the probability generating function, we prove

that BUSseq is identifiable, in other words, if two sets of parameters are different, then

their probability distribution functions for the observed data are different, for not only the

“complete setting” but also the “reference panel” and the “chain-type” designs (see the proofs

in the Supplementary Notes).

Theorem 1. (The Complete Setting)

If πbk > 0 for every batch b and cell type k, given that (I) γb1 < 0 for every b, (II) for any

two cell types k1 and k2, there exist at least two differentially expressed genes g1 and g2—

βg1k1 6= βg1k2 and βg2k1 6= βg2k2, and (III) for any two distinct cell-type pairs (k1, k2) 6= (k3, k4),

their differences in cell-type effects are not the same βk1 − βk2 6= βk3 − βk4, then BUSseq is

identifiable (up to label switching) in the sense that Lo(Θ|y) = Lo(Θ
∗|y) for any y implies
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that πbk = π∗
bρ(k), (γb0, γb1) = (γ∗b0, γ

∗
b1), αg + βgk = α∗

g + β∗
gρ(k), νgb = ν∗gb, δbi = δ∗bi and φbg = φ∗

bg

for every gene g and batch b, where ρ is a permutation of {1, 2, · · · , K}.

In the following, we denote the cell types that are present in batch b as Cb and count the

number of cell types existing in batch b as Kb = |Cb|.

Theorem 2. (The Reference Panel Design)

If there are a total of K cell types ∪Bb=1Cb = {1, 2, · · · , K}, Kb ≥ 2 for every batch b, and

there exists a batch b̃ such that it contains all of the cell types Cb̃ = {1, 2, · · · , K}, then given

that conditions (I)-(III) hold, BUSseq is identifiable (up to label switching).

Theorem 3. (The Chain-type Design)

If there are a total of K cell types ∪Bb=1Cb = {1, 2, · · · , K} and every two consecutive batches

share at least two cell types |Cb ∩ Cb−1| ≥ 2 for all b ≥ 2, then given that conditions (I)-(III)

hold, BUSseq is identifiable (up to label switching).

Therefore, even for the “reference panel” and “chain-type” designs that do not assay

all cell types in each batch, batch effects can be removed; cell types can be clustered; and

missing data due to dropout events can be imputed. Both the reference panel design and the

chain-type design belong to the more general connected design.

Theorem 4. (The Connected Design)

We define a batch graph G = (V,E). Each node b ∈ V represents a batch. There is an edge

e ∈ E between two nodes b1 and b2 if and only if batches b1 and b2 share at least two cell

types. If the batch graph is connected and conditions (I)-(III) hold, then BUSseq is identifiable

(up to label switching).

Statistical inference

We conduct the statistical inference under the Bayesian framework. We assign independent

priors to each component of Θ as follows: πb = (πb1, · · · , πbK) ∼ Dirichlet(ξ, · · · , ξ), 1 ≤ b ≤
B; γb0 ∼ N(0, σ2

z0), 1 ≤ b ≤ B;−γb1 ∼ Gamma(aγ, bγ), 1 ≤ b ≤ B;αg ∼ N(ma, σ
2
a), 1 ≤ g ≤

G; νbg ∼ N(mc, σ
2
c ), 2 ≤ b ≤ B, g = 1, · · · , G; δbi ∼ N(md, σ

2
d), 1 ≤ b ≤ B, 2 ≤ i ≤ nb;φbg ∼

Gamma(κ, τ), 1 ≤ b ≤ B, 1 ≤ g ≤ G.

We are interested in detecting genes that differentiate cell types. Therefore, we impose

a spike-and-slab prior [44] using a normal mixture to the cell-type effect βgk. The spike

component concentrates on zero with a small variance τ 2β0, whereas the slab component tends

to deviate from zero, thus having a larger variance τ 2β1. We introduce another latent variable

Lgk to indicate which component βgk comes from. Lgk = 0 if gene g is not differentially

expressed between cell type k and cell type one, and Lgk = 1, otherwise. We further define
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Dg =
∑K

k=2 Lgk. If Dg > 0, then the expression level of gene g does not stay the same across

cell types. Following Huo et al. [12], we call such genes intrinsic genes, which differentiate

cell types. To control for multiple hypothesis testing, we let Lgk ∼ Bernoulli(p) and assign

a conjugate prior Beta(ap, bp) to p. We set τβ1 to a large number and let τβ0 follow an

inverse-gamma prior Inv −Gamma(aτ , bτ ) with a small prior mean.

We develop an MCMC algorithm to sample from the posterior distribution (Supplementary

Notes). After the burn-in period, we take the mean of the posterior samples to estimate

γb, αg, βgk, νbg, δbi and φbg and use the mode of posterior samples of Wbi to infer the cell type

for each cell.

When inferring the differential expression indicator Lgk, we control the Bayesian false

discovery rate (FDR) [32] defined as

FDR(κ) =

∑G
g=1

∑K
k=2 ξgkI(ξgk ≤ κ)∑G

g=1

∑K
k=2 I(ξgk ≤ κ)

,

where ξgk = Pr(Lgk = 0|y) is the posterior marginal probability that gene g is not differentially

expressed between cell type k and cell type one, which can be estimated by the T posterior

samples L
(t)
gk s collected after the burn-in period as 1

T

∑T
t=1(1− L

(t)
gk ). Given a control level α

such as 0.1, we search for the largest κ0 ≤ 0.5 such that the estimated F̂DR(κ) based on

ξ̂gks is smaller than α and declare L̂gk = 1 if ξ̂gk ≤ κ0. The upper bound 0.5 for κ0 prevents

us from calling differentially expressed genes with small posterior probability Pr(Lgk = 1|y).

Consequently, we identify the genes with D̂g =
∑K

k=2 L̂gk > 0 as the intrinsic genes. We set

α = 0.05 in both the simulation study and the real applications.

BUSseq allows the user to input the total number of cell types K according to prior

knowledge. When K is unknown, BUSseq selects the number of cell types K̂ such that it

achieves the minimum BIC (Supplementary Notes).

Batch-effects-corrected values

To facilitate further downstream analysis, we also provide a version of count data X̃ =

{X̃big}g=1,··· ,G
b=1,··· ,B;i=1,··· ,nb

for which the batch effects are removed and the biological variability is

retained. We develop a quantile matching approach based on inverse sampling. Specifically,

given the fitted model and the inferred underlying expression level x̂big, we first sample ubig

from Unif [FNB(x̂big−1; exp(α̂g+β̂gŵbi
+ν̂bg+δ̂bi), φ̂bg), FNB(x̂big; exp(α̂g+β̂gŵbi

+ν̂bg+δ̂bi), φ̂bg)]

where Unif [a, b] denotes the uniform distribution on the interval [a, b] and FNB(·;µ, r) denotes

the cumulative distribution function of a negative binomial distribution with mean µ and

overdispersion parameter r. Next, we calculate the uthbig quantile of NB(exp(α̂g + β̂gŵbi
), φ̂1g)

as the corrected value x̃big.
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The corrected data X̃ are not only protected from batch effects but also impute the

missing data due to dropout events. Moreover, further cell-specific normalization is not

needed. Meanwhile, the biological variability is retained thanks to the quantile transformation

and sampling step. Therefore, we can directly perform downstream analysis on X̃.

Assignment of FACS cell type labels to learned clusters

In the two real data examples, we first identify the cell type of each individual cell according

to FACS labeling. Then, for each cluster learned by BUSseq, we calculate the proportion

of labeled cell types. If a cell type accounts for more than one-third of the cells in a given

cluster, we assign this cell type to the cluster. Although a cluster may be assigned more than

one cell type, most identified clusters by BUSseq are dominated by only one cell type.

Mapping clusters to Haemopedia

Haemopedia is a database of gene expression profiles from diverse types of hematopoietic

cells [37]. It collected flow sorted cell populations from healthy mice.

To understand Cluster 3 learned by BUSseq for the hematopoietic data, which is dominated

by cells classified as “other” according to the FACS labeling, we mapped the cluster means

learned by BUSseq to the Haemopedia RNA-seq dataset.

We first applied TMM normalization [45] to all the samples in the Haemopedia RNA-

seq dataset. Then, we extracted 7 types of hematopoietic stem and progenitor cells from

Haemopedia, including Lin−Sca-1+c-Kit+ (LSK) cells, short-term hematopoietic stem cells

(STHSC), MPP, CLP, CMP, MEP and GMP. Each selected cell type had two RNA-seq

samples in Haemopedia, so we averaged over the two replicates for each cell type. Further,

we added one to the normalized expression levels as a pseudo read count to handle genes

with zero read count and log-transformed the data. Finally, we scaled the data across the

7 cell types for each gene. To be comparable, we transformed the cluster mean learned by

BUSseq as mgk = log(1 + exp(αg + βgk)) for gene g in the cluster k and scaled mgk across all

cell types as well. Finally, we calculated the correlation between the cluster means inferred

by BUSseq and the reference expression profiles in Haemopedia for 37 marker genes. The 37

marker genes were retrieved from Paul et al. [35] (31 maker genes for HSPC) and Herman et

al. [36] (6 maker genes for LMPP).

Software availability

The C++ source code of the parallel multi-core-CPU version of BUSseq is available on GitHub

https://github.com/songfd2018/BUSseq-1.0, and the CUDA C source code of the GPU
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version of BUSseq is available on GitHub https://github.com/Anguscgm/BUSseq_gpu. All

codes for producing results and figures in this manuscript are also available on GitHub

(https://github.com/songfd2018/BUSseq-1.0_implementation).

Data availability

The published data sets used in this manuscript are available through the following accession

numbers: SMART-seq2 platform hematopoietic data with GEO GSE81682 by Nestorowa et

al. [34]; MARS-seq platform hematopoietic data with GEO GSE72857 by Paul et al. [35];

CEL-seq platform pancreas data with GEO GSE81076 by Grün et al. [41]; CEL-seq2 platform

pancreas data with GEO GSE85241 by Muraro et al. [46]; SMART-seq2 platform pancreas

data with GEO GSE86473 by Lawlor et al. [42]; and SMART-seq2 platform pancreas data

with ArrayExpress E-MTAB-5061 by Segerstolpe et al. [43].

The parameter settings for the simulation study and the simulated data are available on

GitHub (https://github.com/songfd2018/BUSseq-1.0_implementation).
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