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Abstract

Motivation: Breast cancer is a collection of multiple tissue pathologies, each with a distinct
molecular signature that correlates with patient prognosis and response to therapy. Accurately differ-
entiating between breast cancer sub-types is an important part of clinical decision-making. Already,
this problem has been addressed using machine learning methods that separate tissue samples into
distinct groups. However, there remains unexplained heterogeneity within the established sub-types
that cannot be resolved by the commonly used classification algorithms. In this paper, we propose a
novel deep learning architecture, called DeepTRIAGE (Deep learning for the TRactable Individualised
Analysis of Gene Expression), which not only classifies cancer sub-types with comparable accuracy,
but simultaneously assigns each patient their own set of interpretable and individualised biomarker
scores. These personalised scores describe how important each feature is in the classification of each
patient, and can be analysed post-hoc to generate new hypotheses about intra-class heterogeneity.

Results: We apply the DeepTRIAGE framework to classify the gene expression signatures of
luminal A and luminal B breast cancer sub-types, and illustrate its use for genes and gene set (i.e.,
GO and KEGG) features. Using DeepTRIAGE, we find that the GINSI gene and the kinetochore
organisation GO term are the most important features for luminal sub-type classification. Through
classification, DeepTRIAGE simultaneously reveals heterogeneity within the luminal A biomarker
scores that significantly associate with tumour stage, placing all luminal samples along a continuum
of severity.

Availability and implementation: The proposed model is implemented in Python using Py-
Torch framework. The analysis is done in Python and R. All Methods and models are freely available
from https://github.com/adham/BiomarkerAttend.

1 Introduction

Breast cancer is a collection of multiple tissue pathologies with a joint genetic and environmental
aetiology, and a leading cause of death among women worldwide. During the progression of cancer,
inherited or acquired mutations in the DNA change the sequence (or amount) of the messenger
RNA (mRNA) produced by the cell, thereby changing the structure (or amount) of functional protein.
As such, mRNA can serve as a useful proxy for evaluating the functional state of a cell, with its
abundance being easily measured by microarray or high-throughput RNA sequencing (RNA-Seq).
Indeed, mRNA abundance has already been used as a biomarker for cancer diagnosis and classification
(Golub et al. (1999); Bair and Tibshirani (2003)), cancer sub-type classification (Sgrlie et al. (2001);
Parker et al. (2009)), and for clustering gene expression signatures (Ben-Dor et al. (1999)). For a
comprehensive comparison of the supervised and unsupervised methods used with gene expression
data, see Pirooznia et al. (2008).

Despite advancements in the field, mRNA-based classifiers still present unique challenges. First,
these data-sets contain many more features (10,000s) than samples (100s), a p > n problem that
is usually addressed by feature selection or feature engineering (Saeys et al. (2007); Kursa (2014)).
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Second, it is often difficult to interpret mRNA-based classifiers because the predictive genetic fea-
tures do not necessarily make sense to biologist experts without explicit contextualisation. Third,
the routine use of discriminative methods (e.g., support vector machines (Vanitha et al. (2015)) or
random forests (Cai et al. (2015); Kursa (2014))) only provide information with regard to the impor-
tance of a feature for an entire class. For cancer data, this means that these methods cannot suggest
the importance of a feature for a specific patient, but instead only provide such information at the
level of cancer type or sub-type. This is important when considering that a substantial amount
of heterogeneity remains unaddressed within cancer sub-types (Mayer et al. (2014); Parker et al.
(2009)).

In this paper, we propose a deep learning method for the stratification of clinical samples that
not only offers interpretability through feature importance at the level of the cancer sub-type, but
also at the level of the individual patient. As such, our method offers a finer level of interpretation
than existing methods by capturing the heterogeneity of samples within each sub-type. To achieve
this goal, we use an attention mechanism, a deep learning technique first proposed for machine
translation and automatic image captioning (Bahdanau et al. (2014); Xu et al. (2015)). Attention
allows salient features to come dynamically to the forefront for each patient as needed. As a result,
the global knowledge of the model, obtained from the discriminating classes, is enhanced by the local
knowledge that each patient provides. In other words, the attention mechanism offers an insight
into the model’s decision-making process by revealing a set of individualised importance scores that
describe how important each feature is for the classification of that patient. Further analysis of these
importance scores reveals valuable insights into sub-type heterogeneity that are not directly apparent
in the unattended data.

Machine learning techniques have been successfully applied to gene expression data for decades.
More recently, deep learning, especially unsupervised deep learning, has influenced several approaches
to gene expression analysis. These unsupervised models have been used to learn meaningful abstrac-
tions of biology from unlabelled gene expression data. For example, Tan et al. (2016) extracted
biological insights from the Pseudomonas aeruginosa gene expression compendium using shallow
auto-encoders. Similarly, stacked auto-encoders have been adopted to capture a hierarchical latent
space from yeast gene expression data (Chen et al. (2016)), showing that the first layer correctly
captures yeast transcription factors, while deeper layers conform to the existing knowledge of biolog-
ical processes. More related to our work, it has been shown that shallow denoising auto-encoders are
capable of extracting clinical information and molecular signatures from the gene expression data of
patients with breast cancer (Tan et al. (2015)). Later, Danaee et al. (2016) coupled representations
obtained from stacked denoising auto-encoders with a traditional classifier to achieve discriminatory
power, applying it to classify cancerous samples from healthy ones.

Although the classification of cancer is an important task, breast cancer is not a monolithic entity.
It is comprised of distinct molecular sub-types, each with a distinct molecular signature that correlate
with patient prognosis and response to therapy (Dai et al. (2015)). This is especially true when
considering the luminal sub-types: luminal A cancers have a much better prognosis than luminal B
cancers and can be treated with endocrine therapy alone (Dai et al. (2015)). Yet, luminal A remains
one of the most diverse cancer sub-types in terms of its molecular signature and severity (Netanely
et al. (2016)). As a case study, we focus our analysis on the difficult problem of classifying breast
cancer sub-types based on gene expression signatures, and approach it using an end-to-end supervised
deep learning model. Using publicly available data from The Cancer Genome Atlas (TCGA), we
develop and apply a novel deep learning architecture, called DeepTRIAGE (Deep learning for the
TRactable Individualised Analysis of Gene Expression). The DeepTRIAGE architecture achieves
three key outcomes.

First, our architecture uses an attention mechanism which facilitates a new interpretation of
feature importance, not only at the level of cancer sub-type, but also at the level of the individual
patient.

Second, our architecture can model data where the number of features are much larger than the
number of observations.

Third, our architecture reveals patient-level feature importance scores that provide insights into
the data that are not discoverable when looking directly at the gene expression signature.

Taken together, our work establishes a computational framework for calculating interpretable and
individualised biomarker scores that can accurately classify luminal sub-types, while simultaneously
revealing and describing intra-class heterogeneity. Using DeepTRIAGE, we find that the GINS1 gene
and the kinetochore organisation GO annotation are the most important features for luminal sub-
type classification. Through classification, DeepTRIAGE simultaneously reveals heterogeneity within
the luminal A biomarker scores that significantly associate with tumour stage, placing all luminal
samples along a continuum of severity.
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2 Materials and methods

2.1 Data acquisition

We retrieved the unnormalised gene-level RNA-Seq data for the TCGA breast cancer (BRCA) cohort
(Weinstein et al. (2013)) using the TCGAbiolinks package (Colaprico et al. (2016)). After filtering
any genes with zero counts across all samples, we performed an effective library size normalisation
of the count data using DESeq2 (Anders and Huber (2010)). To retrieve luminal A (LumA) and
luminal B (LumB) sub-type status for the TCGA BRCA samples, we downloaded the “PAM50”
labels from the supplementary data of Netanely et al. (2016). With 1148 PAMS50 labels retrieved, we
excluded patients that had more than one tumour sample sequenced. This left us with 528 LumA
and 201 LumB samples. Of these, 176 LumA and 67 LumB samples were set aside as a test set.

2.2 Engineering annotation-level expression from genes

To reduce the dimensionality of the raw feature space, we transformed raw features from “gene ex-
pression space” into an “annotation space”. For this, we elected to use the Gene Ontology (GO)
Biological Process and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation databases.
Pathways with less than ten associated genes were removed before estimating pathway-level expres-
sion by taking the sum of counts for all genes in each pathway, as described and validated in Quinn
et al. (2018). This results in 3942 GO features and 302 KEGG features that are then used for
model training.

2.3 Model architecture

Gene expression data-sets usually have many more features than samples. Using a standard deep
learning architecture with such data leads to a parameter explosion in the model that can cause
over-fitting and reduce generalizability. Instead, our model aims to (i) reduce the number of free
parameters of the model, (ii) encode global knowledge in the data by finding discriminatory features
at cancer sub-type level (akin to a logistic regression), and (iii) encode local information provided
by each individual patient using an attention mechanism. These innovations make the attention
mechanism tractable for high-dimensional data.

2.3.1 The DeepTRIAGE model

Let d be the dimension of the raw feature space and let x; = [z;1, ..., ;4] be the representation of
sample j in this space. Our goal is to train a binary classifier that learns whether sample j belongs
to the LumA class (y; = 1) or the LumB class (y; = 0).

Let Eqxm be an embedding matrix and let e; = [e;1, . . ., €im] be the embedding vector for feature
i € {1:d}. Using Equation 1, we define )“(;i)7 the m-dimensional embedded vector of feature i for
sample j:

K = o (26,055 0.) = [x§1> . x%} (1)

where f., parametrised by O., is the function that captures the relationship between the scalar value
xj; and the embedding vector e;. Note that the same embedding matrix is used for each sample.

Now, we can define a new representation for sample j using its embedded vectors, as shown in
Equation 2:

Xj = iﬁjifz (ﬁgi); @z) = [Zjs,. .., Zjp] (2)

where X; is a p-dimensional representation of the raw feature data, f, : R™ — RP is parametrised
by ©:, and (j; is a scalar value denoting the individualised importance that feature ¢ has in the
classification of sample j. Note that m < d and usually p < m. In other words, the dimensionality
of the embedding space is much smaller than the dimensionality of the raw feature space, and the
dimensionality of final representation X; is smaller than the dimensionality of embedding space,
allowing the attention mechanism to work successfully for such high-dimensional data. By viewing
Equation 2 in a deep learning framework, one can interpret (;; as the attention of sample j to feature
i and compute it using Equations 3, 4, and 5:

aji = fa (’A‘;i); @a> ®3)

(Xj = [ajl,...,ajd] (4)
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B, = softmax (o)) = [exp(aj1), ..., exp(aja)] 5)

Si exp (ai)
where f, : R™ — R is parametrised by ©,. Equation 5 is simply a normalisation to ensure that
the attention weights sum to one for each sample.
Now, given the fixed size representation of sample j as X;, we can train the binary classifier f,
for LumA vs. LumB classification:

Pr(y; = 11%5) = fy (%5;0y) (6)
where ©,is the set of parameters for f,.
Given the embedding matrix E, we have defined our model through Equations 1-6. In the next
section, we show how to learn the parameters of this model.

Remark 1 There are different approaches to constructing the embedding matrix E. For instance:
end-to-end learning with an unsupervised component added to the model, estimation using auto-
encoders, or dimensionality reduction using PCA. We chose to use random vectors because it has
been shown that their performance is comparable with the aforementioned techniques Bingham and
Mannila (2001); Romero et al. (2016). Therefore, e; is an m-dimensional random vector.

Remark 2 There are many ways to compute the attention weights. We used a definition inspired
by the concept of self-attention which means that the attention to a feature is only influenced by
that feature (Vaswani et al. (2017)).

2.3.2 Learning model parameters

In the previous section, we defined our model through Equation 1-6. Now we discuss how to specify
its components {fe, fz, fa, fy} and how to learn their parameters {O., 04,0, 0,}. Since we want
to learn the model end-to-end, we choose these components to be differentiable.

In order to compute ﬁ;z), we capture the relationship between the feature value x;; and the
embedding vector e; via multiplicative interaction using Equation 7. Therefore, O, is a null set.

&;i) = fe (zji,€5) (7)

= Tji€i

We choose f; and f, to be two feed-forward neural networks with weights ©, and ©, respectively.
See Equations 8 and 9:

[z (fcy); em) = nnet, ()A(;Z)) (8)
fa (ﬁ;i);®a> = nnet, ()251)) (9)

where both can be thought of non-linear transformation; nnet, : R™ — R? and nnet, : R™ — R.
Given X;, any differentiable classifier can be placed on top to predict the cancer sub-type (Equa-

tion 6). We use a feed-forward network with a sigmoid activation function in the last layer to calculate
the probability of sample j belonging to a sub-type:

fu (%53 ©y) = nnety, (X;) (10)
where ©, represents the weights of this network.
Since all components are fully differentiable, the entire model can be learnt by minimising the
log-loss function employing automatic differentiation and gradient-based methods.

2.4 Analysis of importance scores

What we have described so far focuses on the discriminatory mechanism of our model. When
viewed from the top, our proposed model is capable of separating cancer sub-types, like many other
classification algorithms. However, one important distinction is that our model also generates an
individualised importance score for each feature at the sample-level. This aspect is highly useful as
it opens new opportunities for post-classification analyses at the level of individual patients, making
our method both hypothesis-testing and hypothesis-generating.

Given B; = [Bj1,...,04d], where Bj; is the individualised importance score for sample j and
feature 7, we can construct an importance score matrix B by stacking 3, for all samples.
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Logistic Regression Linear SVM  DeepTRIAGE

GO (BP) annotations 0.87 0.89 0.90
KEGG annotations 0.86 0.84 0.87
Ensembl genes 0.85 0.85 0.87

Table 1: This table shows the Fl-score performance of the DeepTRIAGE attention model for luminal
sub-type classification. We benchmark its performance as compared to a logistic regression and support
vector machine (SVM), using both gene and gene set annotation features. From this, we see that our
model, which adds a level of interpretability at the individual level, does not sacrifice classification
accuracy. This table also demonstrates that an analysis of the transformed annotation-based features
does not perform worse than an analysis of the non-transformed gene expression data.

To detect emerging patterns within the individualised importance scores, we perform non-negative
matrix factorisation (NMF') and principal component analysis (PCA) of the importance score ma-
trix B. As a point of reference, we also perform an ordination of the raw feature space from 2.2.
Note that all individualised per-sample importance scores were calculated on the withheld test set.

3 Results and Discussion

3.1 GINSI1 drives luminal sub-type classification in test set

Table 1 shows the performance of the DeepTRIAGE model for luminal sub-type classification. When
applying this model to Ensembl gene expression features, we obtain personalised biomarker scores
that describe how important each gene is in predicting the cancer sub-type for each sample, without
sacrificing accuracy. We can interpret this matrix directly using multivariate methods (e.g., NMF or
PCA). Figure 1 shows the NMF factor which best discriminates between the breast cancer sub-types.
Here, we see that a single gene, GINS1 (ENSG00000101003), contributes most to this factor. This
gene has a role in the initiation of DNA replication, and has been associated with worse outcomes
for both luminal A and luminal B sub-types (Nieto-Jiménez et al. (2017)). Interestingly, this is not
a PAM50 gene, suggesting that our model is not merely re-discovering the PAM50 signature. We
post that the model performance, along with this biologically plausible result, validates its use for
gene expression data.

3.2 Kinetochore organisation associates with tumour severity within
and between luminal sub-types

To reduce the number of features and to facilitate the interpretation of feature importance, we
transformed the gene-level expression matrix into a annotation-level expression matrix using the
Gene Ontology (GO) annotation set (cf. Section 2.2). Table 1 shows that GO annotation features
perform as well as using gene features for all models. Although annotation features do not improve
performance per se, they do improve the interpretability of the model by representing the data in a
way that reflects domain-specific knowledge (Subramanian et al. (2005)). By applying DeepTRIAGE
to the GO features, we obtain personalised biomarker scores that describe how important each GO
term is in predicting the cancer sub-type for each sample.

Figure 2 shows the most discriminative NMF factor of the GO-based importance score matrix.
The left panel shows the relative contribution of each term to this factor, while the right panel
shows the distribution of samples with regard to this factor. From this, we see that a single factor
cleanly delineates the luminal A samples from the luminal B samples, and is comprised mostly by
the GO:0051383 (kinetochore organisation) gene set. Figure 3 shows a PCA of the same importance
score matrix, along with a biplot of the 5 most variable GO terms, offering another perspective into
the structure of the importance score matrix.

Both visualisations show that the kinetochore organisation gene set can meaningfully discriminate
between the luminal A and luminal B cancer sub-types. This gene set contains 5 members: SMC4,
NDC80, SMC2, CENPH, and CDT1. Figure 4 shows the expression of these genes in the test data,
showing that the prioritised gene set contains genes with significant mean differences between the
two sub-types (p-value < 0.01). Interestingly, only one of these (NDC80) is a member of the PAM50
gene set used to define the luminal A and B sub-types. The kinetochore organisation gene set is
involved in the assembly and disassembly of the chromosome centromere, an attachment point for
spindle microtubules during cell division. The dysregulation of this gene set would be expected to
associate with luminal sub-typing because centromere instability drives genomic instability, and lu-
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Figure 1: This figure presents the results of non-negative matrix factorisation applied to the importance
score matrix computed from Ensemble gene expression data using DeepTRIAGE. Shown here is the factor
which best discriminates between the two breast cancer sub-types. The left panel shows the relative
contribution of each gene term to the most discriminative factor, with the top 3 components labelled
explicitly. The right panel shows a box plot of the distribution of all samples across the composite factor
score. This figure is produced using the test set only.
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Figure 2: This figure presents the results of non-negative matrix factorisation applied to the GO-based
importance score matrix. Shown here is the factor which best discriminates between the two breast cancer
sub-types. The left panel shows the relative contribution of each GO term to the most discriminative
factor, with the top 3 components labelled explicitly. The right panel shows a box plot of the distribution
of all samples across the composite factor score. This figure is produced using the test set only.
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Figure 3: This figure shows a PCA biplot of the GO-based importance score matrix (left panel) and the
GO annotation features (right panel), with the top 5 most variable terms labelled explicitly. For the
importance scores, we see that the first principal axis describes much of the variance between the breast
cancer sub-types, while the second principal axis describes much of the variance within the luminal A
sub-type. By super-imposing the features as arrows, we can see which annotations best describe the
origin of this variance. This level of structure is not evident when looking at the PCA biplot of the
annotation feature space. This figure is produced using the test set only.

minal B cancers are more unstable than luminal A cancers (as evidenced by Ki-67 staining (Inic et al.
(2014)) and tumour severity). Indeed, NDC80 and CENPH dysregulation has already been associ-
ated with worse breast cancer outcomes, with luminal A exhibiting less centromere and kinetochore
dysregulation in general (Zhang et al. (2016)).

However, the real added value of our attention model is that it projects all samples according
to a distribution of importance scores, implicitly revealing and describing heterogeneity within the
cancer sub-types. While Figure 3 shows how GO:0051383 distinguishes between the luminal sub-
types, it also shows how GO:0031668 (cellular response to extra-cellular stimulus) and GO:0061158
(3’-UTR-mediated mRNA destabilisation) explain much variance within the luminal A group. These
axes are not arbitrary. A linear model predicting each PCA axis as a function of the tumour (T),
node (N), and metastasis (M) stage (as nominal factors) among the luminal A samples only, reveals
that small values in the first axis (PC1) significantly associate with the lower T stages, while large
values significantly associate with the N2 stage (p < 0.05). Meanwhile, large values in the second axis
(PC2) significantly associate with the T4 stage (p < 0.05). This suggests that the luminal A samples
which are closest to luminal B samples in the PCA tend to be worse tumours. This is consistent
with the literature which describes luminal B cancer as a more severe disease (Dai et al. (2015)),
as well as Netanely et al’s observation that luminal cancers exist along a phenotypic continuum of
severity (Netanely et al. (2016)). Thus, our method provides a biological explanation for some of
the variance associated with the diagnostically-relevant differences in luminal sub-types. This level
of resolution is not provided by the other machine learning algorithms used for RNA-Seq data, and
is not evident in the ordination of the unattended GO annotation features (see Figure 3B).

3.3 DNA mismatch repair associates with tumour severity within
and between luminal sub-types

We repeated the same analysis above using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
annotation set which organises genes according to canonical functional pathways (cf. Section 2.2).
Like with GO annotations, the DeepTRIAGE model performed just as well with KEGG annotations
(see Table 1). However, by applying DeepTRIAGE to the KEGG features, we obtain personalised
biomarker scores that describe how important each KEGG term is for the classification of each
patient.
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Figure 4: This figure shows the test set gene expression for 5 genes found within the GO:0051383
(kinetochore) gene set. Here, we see that all 5 genes are up-regulated in luminal B samples. This is
relevant because our attention model prioritised this gene set when looking for feature importance within
the breast cancer test set.

The NMF and PCA ordination of the KEGG-based importance scores both show that hsa03430
(DNA mismatch repair) explains much of the inter-group variability (see Figures 5 and 6). This
is expected to separate luminal A and B sub-types because errors in the DNA mismatch repair
mechanism allow mutations to propagate, resulting in a more aggressive cancer. Yet, the PCA biplot
shows that there exists a large amount of intra-class heterogeneity that is not explained by this
pathway. Along this axis, we see a contribution by hsa04670 (Leukocyte transendothelial migration)
and hsa04215 (Apoptosis), both relevant to tumour progression and metastasis. Again, these axes
are not arbitrary. A linear model predicting each PCA axis as a function of the tumour (T), node
(N), and metastasis (M) stage (as nominal factors) among the luminal A samples only, reveals that
small values in both axes (PC1 and PC2) significantly associate with the T1 stage (p < 0.05).
This suggests that the heterogeneity uncovered by the DeepTRIAGE architecture places patients
along a diagnostically-relevant continuum of tumour severity. Again, this level of resolution is not
provided by other machine learning algorithms and is not evident in the ordination of the unattended
annotation-level data (see Figure 6B).

4 Summary

Breast cancer is a complex heterogeneous disorder with many distinct molecular sub-types. The
luminal breast cancer class, comprised of the luminal A and luminal B intrinsic sub-types, varies
in disease severity, prognosis and treatment response (Dai et al. (2015)), and has been described as
existing along a vast phenotypic continuum of severity (Netanely et al. (2016)). Stratifying individual
cancerous samples along this severity continuum could inform clinical decision-making and generate
new research hypotheses. The DeepTRIAGE architecture offers a way to stratify clinical samples,
while implicitly describing the biological basis for this stratification.

In this manuscript, we propose the DeepTRIAGE architecture as a general solution to the clas-
sification and stratification of biological samples using gene expression data. To the best of our
knowledge, this work showcases the first application of the attention mechanism to the classification
of high-dimensional gene expression data. In developing DeepTRIAGE, we also innovate the attention
mechanism so that it extends to high-dimensional data where there are many more features than
samples. Using DeepTRIAGE, we show that the attention mechanism can not only classify cancer
sub-types with good accuracy, but can also provide individualised biomarker scores that reveal and
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Figure 5: This figure presents the results of a non-negative matrix factorisation applied to the KEGG-
based importance score matrix. Shown here is the factor which best discriminates between the two
breast cancer sub-types. The left panel shows the relative contribution of each KEGG term to the most
discriminative factor, with the top 3 components labelled explicitly. The right panel shows a box plot of
the distribution of all samples across the composite factor score. This figure is produced using the test
set only.
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Figure 6: This figure shows a PCA biplot of the KEGG-based importance scores (left panel) and the
KEGG annotation features (right panel), with the top 5 most variable terms labelled explicitly. For the
importance scores, we see that the first principal axis describes much of the variance between the breast
cancer sub-types, while the second principal axis describes much of the variance within the luminal A
sub-type. By super-imposing the features as arrows, we can see which annotations best describe the
origin of this variance. This level of structure is not evident when looking at the PCA biplot of the
annotation feature space. This figure is produced using the test set only.
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describe the heterogeneity within and between cancer sub-types. By applying DeepTRIAGE to the
gene expression signatures of luminal breast cancer samples, we identify canonical cancer pathways
that differentiate between the cancer sub-types and explain the variation within them, and find that
some of this intra-class variation associates with tumour severity.
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