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Abstract 

Learning can cause significant changes in neural responses to relevant stimuli, in addition to 

modulation due to task engagement. However, it is not known how different functional types of 

excitatory neurons contribute to these changes. To address this gap, we performed two-photon 

calcium imaging of excitatory neurons in layer 2/3 of mouse primary visual cortex before and 

after learning of a visual discrimination. We found that excitatory neurons show striking 

diversity in the temporal dynamics of their response to visual stimuli during the behavior, and 

based on this we classified them into transient, sustained, and suppressed groups. Notably, these 

functionally defined cell classes exhibit different visual stimulus selectivity and modulation by 

locomotion, and were differentially affected by training condition. In particular, we observed a 

decrease in the number of transient neurons responsive during behavior after learning, while both 

transient and sustained cells showed an increase in modulation due to task engagement after 

learning. The identification of functional diversity within the excitatory population, with distinct 

changes during learning and task engagement, provides insight into the cortical pathways that 

allow context-dependent neural representations. 
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Introduction 

Sensory perception is context dependent, and has been shown to be modulated by a number of 

factors including task demands, learning, and behavioral engagement. Specific task demands can 

modulate neural responses to improve the detection or discriminability of relevant stimulus 

features and spatial locations (Deubel et al., 1998; Slotnick et al., 2003; Poort et al., 2015). 

Likewise, learning can affect coding strategies leading to increasingly sparse or robust 

representations, changes in tuning, and shifts in excitatory/inhibitory balance (Yizhar et al., 

2011; Peters et al., 2014; Chu et al., 2016). Task engagement and arousal have also been 

associated with a multiplicative gain in response to relevant sensory stimuli reminiscent of 

studies showing that attention can enhance responses (Moran and Desimone, 1985.; McAdams 

and Maunsell, 1999; Niell and Stryker, 2010; McGinley et al., 2015; Vinck et al., 2015; 

Wekselblatt and Niell, 2015). 

Circuit mechanisms for context dependent processing of sensory information are poorly 

understood, especially among subpopulations of excitatory neurons. Recent studies have 

addressed the differences in the responses of inhibitory neuron subtypes (representing only 10-

20% of cortical neurons) and their effects on learning (Kato et al., 2015; Kuchibhotla et al., 

2016; Yavorska and Wehr, 2016), finding differential modulation of responses due to training in 

three genetically distinct subtypes. It remains unclear, however, how much diversity exists in the 

excitatory population, which represents approximately 80% of the neurons in cortex, and how 

potential sub-populations of the excitatory pool might contribute to context dependent 

perception. Furthermore, inhibitory neurons primarily affect local processing, while excitatory 

neurons, especially those in layer 2/3, send long range projections to other brain areas, 
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determining what information is transmitted downstream (Han et al., 2018). Changes in the 

response of excitatory cells could greatly impact the types of information relayed to other 

cortical regions.  

In the current study, we sought to test whether excitatory neurons in primary visual cortex 

showed similar learning related changes across the whole population, or whether changes due to 

learning were specific to different sub-populations. Furthermore, if the changes are specific, 

what features of the neural response can define these sub-populations? To determine the changes 

in excitatory neurons due to learning and context, we employed two-photon imaging in head-

fixed animals while they performed a visual discrimination task both before and after learning, or 

simply after exposure to the stimuli without learning. We clustered the neural responses based on 

temporal dynamics, rather than visual tuning properties, revealing three distinct cell classes 

(transient, sustained, suppressed) among the responsive neurons. We refer to these as 

‘functional’ cell types, as they are defined by their activity patterns rather than other features 

such as gene expression or morphology. This diversity in the excitatory population of layer 2/3 

also corresponded to specific changes in responsiveness over the course of learning, and as well 

as modulation by task engagement that was cell type-specific and dependent on learning history. 

These results reveal striking heterogeneity in the excitatory cell population in cortex, and suggest 

that changes over learning are more specific than previously described.   

Materials and Methods 

Animal use 

Animals were maintained in the animal facility at University of Oregon and used in accordance 

with protocols approved by the University of Oregon Institutional Animal Care and Use 

Committee (IACUC). All procedures were conducted in accordance with the ethical guidelines 
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of the National Institutes of Health. Animals were maintained on a 12hr light / 12hr dark reverse 

light cycle, with training and experiments performed during the dark phase of the cycle. Running 

wheels were provided in each home cage as environmental enrichment. 

Surgical Procedures 

The headplate and cranial window implant procedures were performed as described in 

Wekselblatt et al. (2016), with minor modifications described below. Briefly, a titanium 

headplate was cemented to the skull to allow head fixation in an initial surgery. Following 

recovery from the headplate surgery, a 5mm diameter cranial window (No. 1 coverglass, Warner 

Instruments) was implanted over the visual cortex (3mm lateral, 1.5mm anterior of Bregma). For 

the headplate procedure, the imaging well of the headplate was filled with a thin layer of clear 

dental acrylic to protect the skull, instead of sylgard used in the previous description. We found 

that dental acrylic provided greater protection, as the sylgard plug would occasionally fall out or 

cause condensation to be trapped inside the headplate well. For the cranial window procedure, 

dexamethasone sodium phosphate (2 mg/kg subcutaneously) was administered ~24 hr prior to 

surgery and again ~2hr prior to surgery to reduce brain edema. We found that giving two doses 

of dexamethasone, instead of the single dose previously described, had a much greater effect on 

reducing brain swelling caused by the craniotomy. Finally, mice were allowed to recover for at 

least 1 week after surgeries before beginning habituation and training. For the first 3 days we 

provided post-surgical animals with wet food in a small dish on the floor of their cage and a high 

calorie nutrient supplement (Nutri-Cal, Vetoquinol). This prevented weight loss after surgery and 

helped animals recover quickly. 
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Imaging 

We used a custom macroscope for widefield imaging, as described in Wekselblatt et al. (2016). 

This design was based on the tandem lens system used for intrinsic signal imaging (Ratzlaff and 

Grinvald, 1991; Kalatsky and Stryker, 2003). Briefly, two camera lenses (Nikon 50mm f/1.2 and 

Nikon 105mm f/1.8) were interfaced with a dichroic filter cube (Thorlabs). Blue light 

illumination was supplied in epifluorescence configuration through the filter cube housing to 

excite the fluorescent calcium indicator. Green light was supplied directly through a fiber placed 

obliquely above the brain to measure intrinsic signal due to hemodynamics. Images were 

acquired at 10Hz with 4x spatial binning using Camware software (PCO Corporation), with 

frame acquisition and LED illumination triggered by TTL pulses from the stimulus presentation 

computer to synchronize with visual stimulus frames. 

Two-photon imaging was performed using a resonant scanning two photon microscope 

optimized for in-vivo imaging (Neurolabware, Los Angeles, CA) coupled to a Mai-Tai HP Ti-

Sapphire pulsed laser tuned to 920nm, with a 16x/0.8NA objective (Nikon). Scanbox software 

(Dario Ringach / Neurolabware) in Matlab (Mathworks) was used for data acquisition. Images 

were acquired at 10 fps and 796x796 pixels over a ~800x800um field of view, using 65-110mW 

illumination power as measured at the front aperture of the objective. All recordings were 

targeted to layer 2/3 of V1 (depth 100 – 200 microns). 

Stimulus delivery and behavior control 

Visual stimuli were presented on a Viewsonic VA2342 LCD monitor (28 x 50cm), linearized to 

correct for gamma (mean luminance 35cd/m2), oriented tangentially 25 cm from the mouse’s 

right eye in portrait configuration (except during the shaping task), covering ~60x90° of visual 
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space. Stimuli were generated with custom software using the Psychtoolbox extension for 

Matlab (Brainard, 1997; Pelli, 1997).  

The behavioral control system was as described in Wekselblatt et al. (2016). Movement of the 

mouse on the spherical treadmill was measured with an optical USB computer mouse positioned 

laterally on the polystyrene ball, acquired once per stimulus frame (60Hz) in Matlab. Visual 

stimuli for behavior consisted of 33° diameter circular patches of stationary square wave gratings 

at random spatial phase with spatial frequency 0.08cpd, oriented either horizontally or vertically. 

Gratings appeared at one of two locations on the screen, either top or bottom (centered at +/- 20° 

from center of monitor in elevation). 

For retinotopic mapping, we binarized a 1/f noise stimulus described previously (Pnevmatikakis 

et al., 2016; Wekselblatt et al., 2016) with spatial frequency corner of 0.05cpd and cutoff of 

0.12cpd, and temporal frequency cutoff of 5Hz. This noise stimulus was masked to create a 20 

degree wide bar that moved across the visual display with a 10 second period in either azimuth 

or elevation for 30 cycles. This stimulus was binarized to black/white instead of grayscale to 

increase contrast and generate edges.  

Passive viewing stimuli consisted of static grating patches identical to those presented during 

behavior (33° diameter, 0.08cycle/degree), with an additional location in the center of the screen 

and 2 additional orientations (45 and 135 degrees). Passive sessions consisted of 20 repetitions 

per stimulus, presented for 1 second each with an inter-stimulus interval of 1 second. 

Behavioral training 

The spherical treadmill and head-fixation were as described in Wekselblatt et al. (2016). Briefly, 

a 200mm hollow polystyrene ball was placed inside a 250mm polystyrene hemisphere (Graham 
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Sweets Studios, Cardiff, UK) supplied with airflow through a Tygon tube positioned at the 

bottom pole. This provided a rotating surface on which the mouse was able to freely move. The 

animal’s head was fixed via a surgically attached headplate that could be screwed into a rigid 

crossbar above the floating ball. Headplates were manufactured from titanium by 

emachineshop.com. Designs are available upon request. 

Prior to beginning behavior, mice were handled for several days until they were comfortable 

with the experimenter. Once water scheduling began, animals received water only during and 

immediately after head-fixed training on the ball. Training sessions increased in duration over 

the course of 1–2 weeks, from 30 minutes to 1 hour sessions, and occurred twice per day 

separated by ~3 hours. 

All training was performed with a mostly automated system (Wekselblatt et al., 2016). First, 

mice learned the simple visual task of discriminating the location of a luminance stimulus with 

the screen in landscape orientation. Initially, animals were required to request a trial by stopping 

spontaneous locomotion for 1 second to receive a water reward. Upon requesting a trial, a 

stimulus was presented with dark on either the nasal or lateral 2/3 of the screen, and light on the 

other 1/3. The animal was rewarded with a second water drop for moving either right or left on 

the ball if dark was on the nasal or lateral side respectively. When an animal could reliably 

request trials, the water reward for stopping to initiate trials was eliminated. This task took about 

1-2 weeks to learn and established trial structure and attention to the visual stimulus.  

Water rewards were calibrated by the experimenter to maintain consistent weights (>80% of 

baseline), corresponding to ~0.8 – 1.0 ml of water through the course of a session. Mice were 

trained 2 sessions per day, 7 days per week for 30 – 60 minutes per session, with a session 

ending when the subject stopped initiating trials or performance dropped.  
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Once a mouse could perform a significant number of trials (>200 per session) and reached ~85% 

accuracy on the luminance task, they were graduated to one of three task conditions: naïve, 

experienced, or trained (Figure 1C). These tasks followed a similar trial structure to the 

luminance task, but a circular grating patch, either horizontal or vertical, was presented on either 

the top or bottom of the screen (Figure 1D). The stimulus remained on the screen for one second 

after correct responses. Incorrect responses triggered a 3.5sec timeout with potentially aversive 

flashing error stimulus and 50% probability of a correction trial, where the previous stimulus was 

repeated until answered correctly, to prevent perseverative errors and bias.  

Animals in the ‘naïve’ group were imaged during their initial exposures (<8) to the grating 

stimuli immediately following mastery of the shaping task. ‘Naïve’ animals were randomly 

rewarded during imaging sessions to ensure that they stayed naïve to any rule. Animals who 

were assigned to the ‘experienced’ group were moved to the grating stimuli but the spatial 

location of the stimulus did not predict reward. Instead, the rewarded direction of motion of the 

trackball was random on each trial. Animals in the experienced group were given roughly the 

same amount of experience with the grating stimuli as the ‘trained’ group before imaging 

occurred (1-2 months, >50 sessions, >10,000 trials). Animals who were assigned to the ‘trained’ 

group were moved to the grating stimuli (Figure 1B), and tested based on the location of the 

grating. Animals became proficient at this task in 2-4 weeks. Imaging occurred only after 

animals performed >200 trials per session at over 80% correct for at least two consecutive 

sessions.  

The imaging behavioral configuration was identical to training, except the stimulus remained on 

the screen for 1.5 seconds even after incorrect responses, replacing the flashing error stimulus 

used during training, to avoid differences in visual input between correct and error trials. 
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Additionally, correction trials were removed during imaging sessions to ensure each trial was 

independent from the previous answer. 

Optogenetic Silencing 

 To perform optogenetic silencing we activated GABAergic fast-spiking interneurons (Pv+) 

expressing channelrhodopsin-2 (ChR2) by illumination with a blue LED (470nm) through a 

chronic cranial window (Lien and Scanziani, 2013; Burgess et al., 2017). The animals used for 

optogenetic silencing experiments were trained on the spatial discrimination task until they 

reached criterion performance (>80% correct, >200trials per session). Experimental animals 

were double positive for cre-dependent ChR2 and Pv-cre. Control animals were GCaMP 

expressing animals used in the imaging experiments. We provided light stimulation through a 

chronic cranial window on 20% of trials, starting at visual stimulus onset and lasting until 

behavioral response. We performed silencing by illuminating either the entire cranial window 

(which includes several extrastriate areas) or restricting illumination to primary visual cortex 

(Poort et al., 2015). V1 isolation was performed by covering the rest of the window with a black 

silicone elastomer (Dow Corning Sylgard 170, Ellsworth adhesives). The light intensity level 

used was 0.45mw/mm2. 

Data analysis – widefield imaging 

As in Wekselblatt et al. (2016), to analyze widefield fluorescence images while correcting for 

hemodynamic noise, 3:1 alternating blue and green frames were separately interpolated to 

produce a continuous image series at 10Hz. The fractional fluorescence change relative to the 

mean over the recording period (dF/F) was calculated for each pixel in each channel. The green 

channel was subtracted from the blue channel to correct for hemodynamic signals, giving a 

corrected fractional fluorescence intensity dF/F. 
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For periodic stimuli (Figure 3), we computed the amplitude and phase of the Fourier component 

of the dF/F signal at the stimulus frequency (0.1Hz). For each pixel, the Fourier phase 

corresponds to the retinotopic position that elicited the greatest visual response from the neural 

population at that cortical location. Retinotopic maps generated from widefield imaging were 

then used to target two-photon recordings to the cortical region within the cranial window 

representing the behavioral stimulus locations, either top or bottom, which were identified based 

on vasculature.  

Data analysis – two-photon imaging 

Two-photon image data was first spatially aligned within the acquisition software, using phase 

correlation to estimate x-y translation. Cell body ROIs were extracted semi-automatically using 

published constrained non-negative matrix factorization algorithm, including neuropil correction 

and temporal deconvolution (Pnevmatikakis et al., 2016). Fractional fluorescence change (dF/F) 

was calculated for each cell, for both behavior and passively viewed stimuli. 

Periodic mapping was performed immediately after two-photon behavioral sessions to confirm 

accurate targeting of the retinotopic location in V1 representing the stimulus location. To ensure 

we had estimates of the spatial receptive field centers for all cells, we calculated a smooth map of 

retinotopy based on the neuropil response. Next, we calculated the retinotopic positions of each 

individual neuron based on its position on the neuropil map. Two-photon retinotopic mapping 

data was then used to restrict analysis only to cells whose location in the retinotopic map 

overlapped with the locations of behavioral stimuli. Although the stimuli were 33° in diameter, 

only cells whose receptive field centers fell within a 24° diameter (‘centered’) were used for 

analysis. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/533463doi: bioRxiv preprint 

https://doi.org/10.1101/533463


11 
 

Hierarchical clustering was performed on the response time-courses of imaged ‘centered’ cells 

for rewarded trials using Wards criterion (Matlab). For each training group, analyses of 

modulation due to locomotion and orientation selectivity were performed on all active cells for 

each cluster. For analysis of group differences of each cell class across training conditions, cell 

responses were averaged by individual sessions, and then session averages were combined 

among like training groups. 

Experimental Design and Statistical Analysis 

Adult mice 2–6 months old, both male and female, were used in this study. Mice used for 

imaging experiments were a cross of GCaMP6s under the control of CRE (Jackson Labs 024742 

(Wekselblatt et al., 2016)), and CaMK2-tTA (Jackson Labs 007004 (Mayford et al., 1996)). For 

optogenetic silencing of visual cortex, we crossed mice expressing Cre-dependent ChR2 

(Jackson Labs 012569) and Pv-Cre (Jackson Labs 008069).  A total of 15 animals were used for 

imaging experiments, with 5 mice in each training group (51 total sessions, 10,605 total cells). 7 

animals were used for optogenetic silencing experiments (26 total sessions). 

Statistical tests on cell responses were performed using the Kruskal-Wallis test, a nonparametric 

version of a one-way ANOVA. Multiple comparisons were made using Tukey’s honestly 

significant difference procedure. Significance testing for the fraction of active cells was 

performed in Matlab using a one-way ANOVA corrected for multiple comparisons. Unless 

otherwise noted, summary statistics are presented as means, with error bars representing standard 

error of the mean. Results were considered significant at p<0.05. 
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Results 

A head-fixed paradigm to investigate sensorimotor learning in mice  

For this study we used two-photon imaging of head-fixed mice to determine the effects of 

sensorimotor learning on V1 processing (Figure 1A). We compared cortical responses to visual 

stimuli in mice that were trained on a visual discrimination task (“trained”) with those of 

untrained mice (“naïve”). In addition, to test whether any changes observed were due to training 

or simply exposure, we imaged mice that had viewed the same stimuli over a similar number of 

sessions as the trained mice but were not trained on the discrimination rule (“experienced”).  

To separate the acquisition of task structure (initiating trials and response) from learning of the 

visual discrimination itself, we first trained all experimental groups on a simple shaping task, 

based on luminance detection in which the mice had to move the Styrofoam ball left when the 

medial portion of the screen was light and right when the temporal portion of the screen was 

light. Once mice consistently performed >200 trials per session at over 90% performance (~1-2 

weeks), they were assigned to one of the 3 experimental groups described above. Initial shaping 

allowed us to select for mice that were adept at self-initiating trials and responding in a 2-

alternative forced choice (2-AFC) visual discrimination task, so that differences were due to 

learning the visual task and not to learning the trial structure.  

We then trained mice to perform a spatial localization task, reporting whether a single square-

wave grating patch appeared on the top or bottom of the monitor. Mice were trained to respond 

identically to grating patches of either horizontal or vertical orientation (Figure 1B). Animals 

assigned to the ‘trained’ group were rewarded for responding correctly based on the location, not 

the orientation, of the grating. Animals became proficient at the spatial discrimination task in 2-4 

weeks. We performed imaging of the ‘trained’ group only after animals performed >200 trials 
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per session at over 80% correct for 2-3 consecutive days. Animals in the ‘naïve’ group were 

imaged during their initial exposures to the grating stimuli (<8 sessions), immediately following 

mastery of the shaping task (Figure 1C,D). Due to this shaping, ‘naïve’ mice would self-initiate 

trials and respond at approximately the same frequency and time-course as the other two training 

groups (Figure 2A-C). Animals assigned to the ‘experienced’ group were presented with the 

same grating stimuli, but the rewarded response direction was random with respect to the 

stimulus. Thus, we exposed ‘experienced’ animals to the same visual stimuli as the ‘trained’ 

group, but without allowing learning of a specific discrimination rule. Animals in the 

‘experienced’ group were given approximately the same amount of exposure to the grating 

stimuli as the ‘trained’ group before imaging occurred (1-2 months, >50 sessions, >10,000 

trials).  

Optogenetic silencing of visual cortex disrupts performance in the spatial location task 

To determine whether visual cortex was necessary for the performance of the spatial 

discrimination task, we performed optogenetic inactivation of visual cortex in a separate group of 

animals. For this manipulation, we trained transgenic animals expressing Cre-dependent 

channelrhodopsin-2 (ChR2) in parvalbumin positive (Pv+) interneurons. Prior studies have 

shown that application of blue light in Pv+/ChR2 animals causes almost complete silencing of 

the excitatory population, by strongly activating inhibitory drive to excitatory cells through local 

GABAergic fast-spiking interneurons (Lien and Scanziani, 2013; Burgess et al., 2017) 

After reaching criterion performance in the spatial location task, animals received blue light 

stimulation through a chronic cranial window on 20% of trials. Silencing was done either by 

illuminating the entire 5 mm cranial window (which includes several extrastriate visual areas) or 

restricting illumination to V1 by blocking access to the rest of the window using a black silicone 
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elastomer (Poort et al., 2015). Light was delivered with a blue LED (470 nm, 0.45 mW/mm2) 

from stimulus onset until a behavioral response was registered. We found that performance in the 

spatial discrimination task was significantly worse on silencing trials compared to normal trials 

within the same session for animals expressing ChR2, in both the entire window (p=0.004, N=6 

sessions) and V1 shutdowns (p=0.002, N=7 sessions). Performance was not affected for control 

animals that express only GCaMP6 (Figure 2D). Importantly, reaction time was unchanged for 

all groups, suggesting that this impairment in performance was not due to impairment of motor 

output (Figure 2E).  

Widefield mapping of visual cortex and targeting of stimulus location 

To image the response characteristics of different excitatory neurons in V1, we used transgenic 

mice expressing a genetically encoded calcium indicator, GCaMP6s (Chen et al., 2013), under 

control of a CaMK2 driver line (Mayford et al., 1996). In these mice the majority of excitatory 

neurons in cortex express GCaMP6s (Wekselblatt et al., 2016). In order to target imaging of 

cortical calcium signals to the specific cortical locations within V1 that represent the behavioral 

stimulus positions, we performed widefield retinotopic mapping prior to our two-photon 

recordings (Figure 3). By mapping both azimuth and elevation using a moving window of 

periodic topographic noise as previously described in Wekselblatt et al. (2016), we generated 

maps of the preferred locations in visual space for the population activity of all the pixels within 

the 5 mm cranial window (Figure 3A-C). This allowed us to determine the specific cortical 

locations within V1 that represent the behavioral stimulus positions for each individual mouse 

using an overlay of vasculature landmarks (Figure 3A,D). 

To further confirm that the field of view (~800um x 800um) in our two-photon recordings was 

centered at one of the grating patch stimulus locations presented during behavior (top or bottom), 
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mapping of the retinotopic position of each cell’s receptive field was performed following each 

behavior imaging session (Figure 3E,F). This additional mapping step allowed us to select only 

cells whose receptive field locations were well within the bounds of our behavioral grating 

stimulus for further analyses (Figure 3G). Although the grating stimulus was ~33° in diameter, 

only cells with receptive fields that fell within the central 24° diameter were used in subsequent 

analyses; this conservative bound was set so that only cells that were well-centered on the 

stimulus were included. One stimulus location was imaged per session, and the location imaged 

was alternated between the retinotopic location in V1 representing the top and bottom stimulus 

positions on each subsequent session. We then combined the responses across sessions to the 

stimulus position that corresponded to the receptive field location of the recorded cells for that 

session, which we refer to as the “retinotopically matched” location. 

Heterogeneity in layer 2/3 excitatory population  

We next measured task-evoked activity in functionally defined regions of primary visual cortex 

while mice performed the behavioral tasks described above. Recordings were made at various 

depths ranging from 100 to 200 um below the surface of the brain, in layer 2/3 of V1, during 

both behavior and passive viewing. We could simultaneously observe the activity of hundreds of 

imaged excitatory neurons. Figure 4A shows the time course of activity of all (N=10605) 

recorded neurons with receptive fields within the retinotopic locations of the stimuli, during 

correct responses for each of the stimulus conditions. 

Hierarchical clustering based on the response time-courses of these cells revealed striking 

heterogeneity across the population. Three distinct response types were found among neurons 

activated during behavior, which we term “transient”, “sustained,” and “suppressed” (Figure 

4B). Transient cells exhibited a large and brief response at the onset of the visual stimulus that 
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quickly decayed. Sustained responding cells showed a slower rise to peak and maintained 

activity until the offset of the visual stimulus. Suppressed cells had high baseline activity and 

were suppressed during the time that the visual stimulus was present.  

These classes each showed a high correlation in the timecourse of their response within a class, 

with much weaker or negative correlations across classes (Figure 4C,D). This indicates that the 

clustering defines three groups with distinct timecourses in aggregate. As shown below, these 

groups also differ in other aspects of their response.  We used these classifications to group cells 

for subsequent analyses. In addition, cells that had less than a 0.02 standard deviation in the dF/F 

of their response during behavior were deemed ‘inactive,’ and were excluded from clustering and 

subsequent analyses. Changing this criterion by a factor of two in either direction did not 

significantly affect results. 

Different functional cell classes show distinct selectivity and state dependence 

To allow us to assess the effects of task-engagement on V1 processing, and to measure 

orientation selectivity and preference of recorded neurons, we introduced an additional passive 

viewing stimulus. Following the behavior session, the mice were presented with static grating 

patches of four evenly spaced orientations (0, 45, 90, 135 deg), adding two orientations not 

shown in previous stimuli. The water-spout was removed following the behavior session, and 

passive stimuli were presented in a pseudo-randomized order for 1 second each, with a 1.5 

second inter-stimulus-interval. 

The distribution of orientation selectivity differed significantly (p<0.001) among these cell 

classes (Figure 5A-D). Sustained and transient cells had relatively high orientation selectivity 

(mean OSI = 0.55 +/- 0.01, and 0.48 +/- 0.01 respectively). In contrast, suppressed cells showed 
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very little orientation preference (mean OSI = 0.28 +/- 0.01), as has been reported for 

suppressed-by-contrast cells in previous studies (Tailby et al., 2007; Niell and Stryker, 2010). 

Furthermore, these cell classes were differentially modulated by locomotion (Figure 5E-H). 

Locomotion alters the gain of visual responses in many upper layer cells in mouse V1 (Niell and 

Stryker, 2010; Vinck et al., 2015; Reimer et al., 2014). We tracked locomotion during passive 

viewing sessions and examined its effect on the response profiles of the different cell classes. 

Suppressed cells showed a much greater modulation of baseline firing rate with locomotion than 

either the transient (p<0.001) or sustained (p<0.001) cell classes (Figure 5E-H), similar to 

previously reported suppressed-by-contrast cells (Niell and Stryker, 2010). The difference in 

response dynamics during behavior, passive receptive field properties, and level of modulation 

by behavioral state demonstrates that there is significant diversity in distinct sub-populations of 

layer 2/3 excitatory neurons in V1. 

Training affects proportion of responsive cells  

To investigate whether there were long term changes in response properties of layer 2/3 cells as a 

result of learning or repeated exposure, we compared the fraction of responsive neurons, defined 

by having a standard deviation in dF/F greater than 0.02 during behavior, between the behavioral 

training groups (trained, naïve, and experienced). The proportion of responsive cells was smaller 

in ‘trained’ (26.6 +/- 3.0%) and ‘experienced’ (30.5 +/- 2.7%) animals relative to the ‘naïve’ 

group (37.2 +/- 2.6%) (p=0.044 and p=0.001 respectively).  The reduction in responsive cells 

was due almost entirely to the decreased proportion of transient responses in both the ‘trained’ 

and ‘experienced’ groups compared to the naïve group (Figure 6), although this was only 

significant for the trained group (p=0.03). There were no significant changes in the number of 

sustained or suppressed cells between groups (p=0.12 and p=0.44 respectively).  
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Next, we examined which cell types contributed to the diminished responses in learned and 

experienced animals. Both the ‘trained’ and ‘experienced’ groups showed a decreased proportion 

of transient responding cells compared to the ‘naïve’ group (Figure 6), although this was only 

significant for the trained group (p=0.03). We did not observe a significant change in the number 

of sustained or suppressed cells between groups (p=0.12 and p=0.44 respectively). This 

dissociation suggests a cell-type specific effect of learning versus extended exposure.  

Despite the changes observed in the proportions of active cells, we did not find evidence that 

behavioral training affected response magnitude or time-course of activity within the responsive 

cells, for any of the cell classes across training groups (Figure 7). Of the cells that were active 

during the behavior, temporal dynamics (Figure 7A-C) and the peak amplitude (Figure 7D) of 

the response were nearly identical across training conditions for all three cell classes. This 

finding is consistent with previous studies which show learning related changes primarily affect 

the fraction of responsive cells, but not the magnitude of the responses in active neurons (Makino 

and Komiyama, 2015; Chu et al., 2016). While we did not perform longitudinal imaging to 

follow individual neurons over time, these findings suggest that a significant portion of the 

transient cells become unresponsive as a result of repeated exposure. 

Training condition affects active/passive modulation 

We next examined whether training condition (‘trained’, ‘naïve’, or ‘experienced) had an effect 

on visually evoked responses to the grating stimuli when presented passively. To achieve this, 

we compared the activity evoked during the passive viewing sessions described above for 

measuring orientation selectivity. To control for the differences in the observed proportion of 

active cells among training groups, we restricted this analysis to cells that were active during 

behavior. Passive responses from animals in the ‘experienced’ group were not different from 
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those in the ‘naïve’ group. In contrast, the calcium signals of both transient (p=0.005) and 

sustained (p=0.001) cells for animals in the ‘trained’ group were smaller than those in naïve 

animals (Figure 7E-H). Importantly, we did not observe a change in temporal dynamics between 

groups during passive viewing, verifying that the classification into groups based on temporal 

dynamics was robust in all conditions of these experiments. Furthermore, there was no 

locomotor activity locked to stimulus onset during passive viewing (Fig 7I), suggesting that the 

characteristic timecourse of each group is not due to locomotion. Note that the time-course differ 

between passive viewing and the behavioral task due to stimulus presentation – in passive 

viewing stimuli were presented for 1 sec, whereas during behavior they remained on the screen 

until 1.5 sec after the animal’s response, resulting in longer stimulus presentation. 

To determine how learning affected the level of modulation by task engagement, we compared 

active and passive responses to the grating stimuli for each cell class within the three training 

groups. We found that responses during active behavior were significantly larger than the 

responses to the passive viewing of the same stimuli for all cell classes within all training groups 

(range of p-values = 7.7x10-5 to 0.0016, across nine groups) (Figure 8A-C). This difference 

between active and passive responses was especially pronounced for the group of animals who 

had been trained on the spatial discrimination (Figure 8B). To quantify this observation, we 

calculated a task modulation index ((task – passive) / (task + passive)) for each cell. Figure 8D 

shows that both transient and sustained cell classes in animals trained in the spatial location task 

had significantly higher task modulation indices compared to ‘naïve’ animals (transient: p = 

0.014, sustained: p = 0.017, suppressed: p = 0.160). Task modulation in ‘experienced’ animals, 

on the other hand, was similar to that of ‘naïve’ animals. Thus, in addition to cell-type specific 
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changes in the proportions of active cells with learning, the modulation of responses due to task-

engagement depended on the specific training history. 

Discussion 

In this study we determined how different excitatory neuron types are modulated by learning and 

task engagement. We show that excitatory cells in layer 2/3 can be characterized into three 

functionally distinct sub-populations based on time-course of response to a visual stimulus: 

‘transient’, ‘sustained’ and ‘suppressed’. Furthermore, we show that these cell classes exhibit 

different selectivity and modulation by behavioral state. Experience and learning reduce the 

fraction of cells responsive to visual stimuli used in the behavior task. Notably, we find a specific 

reduction in the transient population in trained animals. Additionally, we find that trained 

animals show greater modulation due to active task-engagement compared with naïve and 

experienced animals for both the transient and sustained cell classes. 

Previous research has shown similar decreases in population activity after learning in both 

human and animal studies (Mruczek and Sheinberg, 2007; Anderson et al., 2008; Woloszyn and 

Sheinberg, 2013). Additionally, a reduction in active neurons over training has been observed in 

several brain areas including auditory cortex, olfactory bulb, motor cortex and visual cortex 

suggesting a potentially shared mechanism across sensory systems (Otazu et al., 2009; Peters et 

al., 2014; Kato et al., 2015; Makino and Komiyama, 2015; Chu et al., 2016). This shift in the 

fraction of active neurons may be an effect of repeated exposure to the same stimuli over the 

course of thousands of trials, or may reflect a more general design principle of sensorimotor 

learning in which sensory cortex acquires efficient coding after training (Makino et al., 2016). 

Primary visual cortex has many downstream targets including extrastriate cortex, posterior 

parietal cortex, retrosplenial cortex, striatum and amygdala. The reduction in the fraction of 
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behaviorally responsive neurons over training may represent an early mechanism for gating 

information flow to the appropriate target areas needed to execute the proper behavioral output. 

This is an intriguing idea given that cortico-cortical neurons in V1 have been shown to convey 

specific information matched to the preferences of the downstream recipient area (Zeki and 

Shipp, 1988; Nassi and Callaway, 2009; Glickfeld et al., 2013; Glickfeld and Olsen, 2017). 

A number of recent studies have shown that motor output and other state variables are reflected 

in neural activity, even in primary visual cortex (Niell and Stryker, 2010; Keller et al., 2012; 

Musall et al., 2018; Stringer et al., 2018). It is therefore possible that some aspects of the 

response timecourse, and changes with learning, could reflect the motor output associated with 

task performance. Indeed, the high baseline activity of the suppressed group is strongly 

modulated by locomotion. However, we do not expect that this explains our classification or 

differences in learning across groups, as the same response types were observed even in passive 

viewing, where there was no stimulus-evoked motor output (Figure 7). It is possible, though, that 

further distinctions among the excitatory population, and their changes with learning, may arise 

if cells are classified by the motor signals they encode. 

Our study provides the first report of sub-divisions within the cortical excitatory cell population 

that are differentially affected by learning and context. This characterization is an important step 

in determining the specific mechanisms by which information flow is routed to the correct brain 

areas for action. Local inhibitory neurons are also likely involved in this learning-related 

reduction of excitatory responses. In primary visual cortex, somatostatin (SOM) interneurons 

have been implicated in gating top-down effects of task engagement (Makino and Komiyama, 

2015), and in auditory cortex both SOM+ and Pv+ interneurons have been shown to play a role 

in perceptual learning by providing context dependent synaptic inhibition (Kato et al., 2015; 
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Kuchibhotla et al., 2016). While context-dependent changes in inhibitory activity primarily affect 

local processing, changes in the excitatory cell population, especially in layer 2/3, will have 

effects on both local and long-range synaptic partners and could thus function to gate the 

information sent to downstream areas (Zeki and Shipp, 1988; Nassi and Callaway, 2009; 

Glickfeld et al., 2013; Glickfeld and Olsen, 2017). It will be important for future studies to 

determine how these excitatory cell classes are connected with and affected by different 

interneuron sub-types and long-range projections to and from other brain areas.  

It is important to note that although the ‘experienced’ group was not trained on an explicit 

discrimination, this does not imply that no learning was involved in their performance. Due to 

the structure of the task, it is likely that these animals adopt a detection strategy, rather than a 

discrimination strategy, learning to move the ball and lick for reward when the stimulus appears 

even though there is no predictive power in the content of the stimulus. This may contribute to 

the similarities we see between ‘experienced’ and ‘trained’ animals, in terms of the reduction of 

responsive neurons during behavior. Replication of our findings with similar and different task 

demands should be done to address whether the observed changes are task-specific or a general 

mechanism of learning. 

We also note that because we did not perform chronic imaging of the same cells, we cannot say 

what changes occurred to individual neurons over learning. Although we report population 

differences rather than changes in the same cells over time, our results are consistent with 

previous longitudinal studies on changes in the responses of single neurons during learning (Kato 

et al., 2015; Makino and Komiyama, 2015; Chu et al., 2016). Future longitudinal studies should 

investigate the time-course of the reduction of responses in individual neurons, and how this 

time-course compares with that of increased behavioral proficiency. 
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The excitatory population in cortex labeled by the CaMK2 promoter includes roughly 80% of the 

neurons in cortex (Mayford et al., 1996; Wekselblatt et al., 2016). Here we show that this 

population is diverse and consists of at least three cell types, as defined by their functional 

properties (response timecourse). The functional differences observed here might reflect 

different inputs to the identified cell classes, potentially originating from different retinal 

ganglion cell types (Solomon et al., 2002; Tailby et al., 2007). On the output side, these 

populations may represent parallel processing streams analogous to the dorsal and ventral 

streams identified in humans and primates, which have distinct projection patterns to 

downstream areas and are specialized for processing different information (Ungerleider and 

Mishkin, 1982; Nassi and Callaway, 2009; Wang et al., 2012). Future studies should be able to 

identify these cell types using molecular or genetic markers, projection patterns, or anatomical 

reconstruction to help determine their role in cortical circuits underlying learning and behavior.  
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Figure 1. Behavioral paradigm and training 

A) Schematic of spatial 2-alternative forced choice (2-AFC) visual behaviors. Head-fixed mice 

move the spherical treadmill a threshold distance right or left in response to the location of stimuli 

presented on a monitor. B) Stimuli presented for visual behaviors were a single square wave 

grating patch of horizontal or vertical orientation located at the top or bottom of monitor. C) Flow 

chart showing sequence of procedures and behavioral training for each experimental group. D) 

Time course of a behavioral trial. During the stopping period, green indicate locomotion and red 

indicates the animal has stopped. The animal must stop for 1 full second to trigger stimulus onset.  
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Figure 2. Task performance and dependence on visual cortex. 

A,B) Mean trial initiation times (A) and response times (B) for each training category, showing 

that all learned the task structure equally well. C) Mean performance in visual discrimination 

behavior for each group. E-F) Optogenetic silencing of visual cortex. E) Performance on spatial 

discrimination task is dependent on visual cortex. F) Mean reaction time with and without 

shutdown.  
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Figure 3. Targeted imaging of stimulus location in primary visual cortex (V1) 

A) Single photon illumination of GCaMP6-s expression in visual cortex through chronic cranial 

window. Inset shows location of 2-photon recoding shown in (D-F). Scale bar = 1mm, applies to 

(A-C). B-C) Widefield retinotopic mapping of azimuth (B) and elevation (C), to functionally 

target 2-photon recordings to stimulus location. Colors represent position on monitor that elicited 

the greatest activity from each cortical location. D) 2-photon field of view in layer 2/3 of V1 

(800um x 800um). E-F) 2-photon retinotopic mapping allows precise targeting of stimulus 

location in azimuth (E) and elevation (F). G) Receptive field centers for cells recorded from a 

single session. Blue circles denote stimulus locations (33 degree diameter). Inner red circles 

represent selection criteria (24 degree diameter) for ‘centered’ cells included in analysis. Green 

dots are included cells. Black dots are excluded cells. Inset at top right shows location of cranial 

window and orientation of animal for panels A-F. Inset at bottom shows schematic of retinotopic 

mapping stimulus for azimuth (B,E) and elevation (C,F).  
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Figure 4. Hierarchical clustering of response time-course reveals striking heterogeneity 

among excitatory neurons 

A) Average response (dF/F) of imaged neurons in response to each of the four stimuli used for 

behavior (correct trials only). Responses sorted according to cluster identity based on time-course 

(inactive, transient, sustained, suppressed). B) Average evoked response time-course for each 

functional cell class, determined by cluster identity. Average from correct trials at the 

retinotopically matched location only, pooled across orientations. T=0 represents stimulus onset. 

C) Correlation of the mean timecourse of response between all pairs of recorded neurons, 

following clustering, demonstrating high correlation within blocks of clustered cells, with weaker 

correlations across cells in different clusters. D) Mean correlation for all pairs of cells within a 

cluster (blue), and pairs across a given cluster and the other two clusters (red). 
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Figure 5. Distinct functional cell classes exhibit unique differences in orientation selectivity 

and state modulation. 

A-C) Distribution of orientation selectivity (circular variance) for transient cells (A), sustained 

cells (B), and suppressed cells (C). D) Average orientation selectivity for cells of each functional 

class. E-G) . Distribution of modulation by running of spontaneous activity (S) for transient cells 

(E), sustained cells (F), and suppressed cells (G). H) Average running modulation for each 

functional cell class, showing suppressed cells show greatest modulation of spontaneous activity 

by running. Modulation of spontaneous activity by locomotor state de_ned by (Srun – Srest) / 

(Srun + Srest)  
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Figure 6. Task training and exposure result in a reduction of the fraction of active cells in 

layer 2/3 of V1. 

Fraction of active cells during behavior for each functional cell class and each training condition. 

Average is calculated across fractions in each individual session.  
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Figure 7. Effects of training on responses during behavior and passive viewing.  

A-C) Average timecourse of evoked activity during behavior for each cell class, by training 

condition. D) Average response at peak timepoint for each cell class and training group. Transient 

peak = 200-300ms, sustained/suppressed peak = 800-900ms. E-G) Average timecourse of evoked 

activity during passive viewing for each cell class, by training condition. H) Average response at 

peak timepoint for each cell class and training group. I) Average running speed during stimulus 

presentation period for passive viewing. 
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Figure 8. Training enhances modulation due to task engagement.  

A-C) Task evoked responses are enhanced relative to passive responses to the same stimuli for all 

training groups and cell classes. Responses evoked to grating stimuli during behavior and passive 

viewing for naïve group (A), trained group (B), and experienced group (C). D) Task modulation 

is enhanced by learning. Trained animals show greater modulation for transient and sustained cell 

classes. Task Modulation Index = (Rtask – Rpass) / (Rtask +Rpass). 
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