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Abstract  1 

The ability to rapidly and accurately recognise complex objects is a crucial function of 2 

the human visual system. Successful object recognition requires binding incoming visual 3 

features such as colour and form into specific neural representations that can be compared to 4 

our pre-existing knowledge about the world. For some objects, typical colour is a central 5 

feature for recognition; for example, a banana is typically yellow. Here, we examine the 6 

timecourse over which features such as colour and form are bound together by using 7 

multivariate pattern analyses of time-resolved neuroimaging (magnetoencephalography) data. 8 

Consistent with a traditional hierarchical view, we show that single object features are 9 

processed before the features are bound into a coherent object that can be compared with 10 

existing, conceptual object representations. Our data also suggest that colour processing is 11 

be affected by the conjunction of object and colour. These results provide new insights into 12 

the interaction between our knowledge about the world and incoming visual information. 13 

  14 
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Introduction 15 

 Successful object recognition depends critically on comparing incoming perceptual 16 

info with existing internal representations (Albright, 2012; Clarke & Tyler, 2015). A central 17 

feature of many objects is colour, which can be a highly informative cue about an object’s 18 

identity. For example, when we see a small oval fruit that is yellow in colour, we know that we 19 

are looking at a lemon and not a lime. Although a lot is known about colour perception itself, 20 

we know comparatively less about how object-colour knowledge interacts with colour 21 

perception and object processing. Here, we apply multivariate pattern analyses (MVPA) to 22 

Magnetoencephalography (MEG) data to examine how the activation of object-colour 23 

knowledge unfolds over time.  24 

There is substantial behavioural evidence that our existing knowledge about an 25 

object’s typical colour interacts with processing perceptual object features. From the 26 

behavioural literature, we know that representations of canonically-coloured objects inherently 27 

include colour as a strong defining feature, such that conflicting colour information (e.g., a red 28 

banana) slows recognition (Nagai & Yokosawa, 2003; Tanaka & Presnell, 1999, for a meta-29 

analysis see Bramão, Reis, Petersson, & Faísca, 2011). Neuroimaging and neural stimulation 30 

experiments suggests that this binding of incoming perceptual information and object-colour 31 

knowledge takes place in the anterior temporal lobe (ATL) (Chiou, Sowman, Etchell, & Rich, 32 

2014; Coutanche & Thompson-Schill, 2014; Pobric, Jefferies, & Lambon Ralph, 2010). In one 33 

study, for example, brain activation patterns evoked by recalling a known object’s colour and 34 

its shape could be distinguished in brain areas that have consistently been associated with 35 

those features, namely V4 and lateral occipital cortex (LOC) respectively (Coutanche & 36 

Thompson-Schill, 2014). In contrast, recalling an object’s particular conjunction of colour and 37 

shape, that is, a ‘bound’ representation, could only be distinguished in the anterior temporal 38 

lobe (ATL). Similarly, results from patient work (Patterson, Nestor, & Rogers, 2007) and 39 

transcranial magnetic stimulation studies (Chiou et al., 2014; Pobric et al., 2010) point towards 40 
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the ATL as a hub for conceptual knowledge (for a recent review see Ralph, Jefferies, 41 

Patterson, & Rogers, 2017). While these results suggest that the ATL carries conceptual 42 

information, it is unclear how conceptual-level processing interacts dynamically with 43 

perception.  44 

Time-resolved data, such Electroencephalography (EEG) or MEG data, can give an 45 

understanding of the stage of processing at which incoming perceptual information is 46 

influenced by stored object-knowledge. Previous EEG studies have examined the temporal 47 

dynamics of object-colour knowledge as an index of the integration of incoming visual 48 

information and prior knowledge (Lloyd-Jones, Roberts, Leek, Fouquet, & Truchanowicz, 49 

2012; Lu et al., 2010; Proverbio, Burco, del Zotto, & Zani, 2004). For example, Lloyd-Jones et 50 

al. (2012) showed participants images of everyday objects coloured correctly (e.g., a yellow 51 

banana) or incorrectly (e.g., a purple banana) while recording EEG data. Their results show 52 

that shape information modulated the neural responses at around 170ms (i.e., component 53 

N1), the combination of shape and colour affected the signal at 225ms (i.e., component P2), 54 

and the typicality of object-colour pairing modulated components approximately 225 and 55 

350ms after stimulus onset (i.e., P2 and P3). These findings suggest that shape information 56 

activates typical object-colour associations and that bound colour and shape features are 57 

processed later than shape or colour alone. This suggests that the initial stages of object 58 

recognition may be purely based on shape, with the interactions with object-colour knowledge 59 

coming into play at a much later stage, perhaps as late as during response selection.  60 

In these previous studies, the focus was on evoked components, which cannot tell us 61 

about the type of information that is contained in the neural signal. In the present study, we 62 

examine the temporal aspects underlying object-colour processing using time-resolved 63 

multivariate analyses of MEG data, which allows us to explore when particular types of 64 

information (e.g., shape, colour, congruency) influence neural activity. This provides a unique 65 

insight into the temporal dynamics of object-knowledge and object-feature binding by showing 66 
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how existing knowledge about an object’s typical colour affects perceptual processing of that 67 

object’s features. We presented participants with coloured objects that were either congruent 68 

(e.g., yellow banana) or incongruent (e.g., red banana). Using machine learning algorithms, 69 

we determined the timepoint at which neural activity differed between congruently and 70 

incongruently coloured objects, which reflects the time by which binding of colour and shape 71 

must have occurred. By further contrasting the neural responses evoked by congruent and 72 

incongruently coloured objects with those evoked by objects without colour (e.g., greyscale 73 

banana) and colours without familiar objects (colours overlaid on abstract shapes), we also 74 

examine whether existing knowledge about an object’s typical colour influences perceptual 75 

processing of those features. Overall, our findings elucidate the timecourse of interactions 76 

between incoming visual information and prior knowledge in the brain, demonstrating the 77 

importance of what we know in determining what we see. 78 

 79 

Methods 80 

 Participants. 20 healthy volunteers (11 female, mean age = 28.9 years, SD = 6.9 years, 81 

1 left-handed) participated in the study. All participants reported accurate colour-vision and 82 

had normal or corrected-to-normal visual acuity. Participants gave informed consent before 83 

the experiment started and were financially compensated. The study was approved by the 84 

Macquarie University Human Research Ethics Committee.  85 

Stimuli. We identified five real world objects that previous studies have shown to be 86 

strongly associated with each of four different colours (red, green, orange and yellow; see 87 

Figure 1) (Bannert & Bartels, 2013; Joseph, 1997; Lloyd-Jones et al., 2012; Naor-Raz, Tarr, 88 

& Kersten, 2003; Tanaka & Presnell, 1999; Therriault, Yaxley, & Zwaan, 2009). Each colour 89 

category had one manmade object (e.g., fire hydrant), one living object (e.g., ladybird), and 90 

three fruits or vegetables (e.g., strawberry, tomato, cherry). We sourced two exemplar images 91 

for each object class, resulting in 10 images for each colour, 40 individual images in total. We 92 
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then created incongruently coloured objects by swapping the colours (e.g., green strawberry, 93 

orange broccoli). For both congruent and incongruent stimuli, we did not use the native colours 94 

from the images themselves, but instead overlayed pre-specified hues on desaturated 95 

(greyscale) images that were equated for luminance using the SHINE toolbox (Willenbockel 96 

et al., 2010). This ensured that congruent and incongruent stimuli were matched in the way 97 

the texture and shape of the object interacted with the colour overlay. A greyscale image 98 

overlayed with its canonically associated colour (e.g., yellow hue applied to greyscale banana) 99 

resulted in a congruent object; a greyscale image overlayed with a colour different from its 100 

canonically associated colour (e.g., red hue applied to greyscale banana) resulted in an 101 

incongruent object. Every congruent object exemplar had a single colour-matched incongruent 102 

partner. For example, we used a specific shade of red and added it to the grey-scale images 103 

of the strawberries to make the congruent strawberries and overlayed it onto the lemons to 104 

make the incongruent lemons. We then took a specific shade of yellow and overlayed it on the 105 

lemons to make the congruent lemon exemplar, and onto the strawberries to make the 106 

incongruent strawberry exemplar. That means, overall, we have the identical shapes and 107 

colours in the congruent and the incongruent condition, a factor that is crucial to ensure our 108 

results cannot be explained by features other than colour congruency. The only difference 109 

between these key conditions is that the colour-shape combination is either typical (congruent) 110 

or atypical (incongruent). 111 

This procedure resulted in 40 congruent objects (10 of each colour), and 40 112 

incongruent objects (10 of each colour, Figure 1). We added two additional stimulus types to 113 

this set: the full set of 40 greyscale images, and a set of 10 different angular abstract shapes, 114 

coloured in each of the four hues for a set of 40 (see Figure 1). As is clear in Figure 1, the 115 

colours of the abstract shapes appeared brighter than the colours of the objects, this is 116 

because the latter were made by overlaying hue on greyscale, whereas the shapes were 117 

simply coloured. As our principle goal was to ensure that the congruent objects appeared to 118 
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have their typical colouring, we did not match the overall luminance of the coloured stimuli. 119 

For example, if we equated the red of a cherry with the yellow of a lemon, neither object would 120 

look typically coloured. Thus, each specific colour pair is not equated for luminance; however 121 

we have the same colours across different conditions, which ensures this cannot form a clue 122 

for the classification algorithm in distinguishing our categories. 123 

All stimuli were presented at a distance of 114cm and image size varied randomly from 124 

trial to trial by 2 degrees visual angle resulting in the visual angle of ~4.3 – 6.3 degrees. This 125 

added visual variability to reduce low-level featural differences not related to colour between 126 

images. 127 

 Procedure. Before entering the magnetically shielded room for MEG recordings, an 128 

elastic cap with five marker coils was placed on the participant’s head. We recorded head 129 

shape with a digitiser pen and used these marker coils to measure the head position within 130 

the magnetically shielded room at the start of the experiment, half way through and at the end.  131 

 In the main task (Figure 1B), participants completed eight blocks of 800 trials each. 132 

Each individual stimulus appeared 40 times over the course of the experiment. Each stimulus 133 

was presented centrally for 450ms with a black fixation dot on top of it. To keep participants 134 

attentive, after every 80 trials, a target image was presented until a response was given 135 

indicating whether this stimulus had appeared in the immediately previous block of trials or 136 

not (50% present vs absent). The different conditions (congruent, incongruent, grey-scale, 137 

abstract shape) were randomly intermingled throughout each block, and the target was 138 

randomly selected each time. On average, participants performed with 90% (SD=5.4%) 139 

accuracy.  140 
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 141 

Figure 1. (A) shows all stimuli used in this experiment. The same objects were used in the 142 
congruent, incongruent, and greyscale conditions. There were two exemplars of each objects. 143 
Colours in the congruent and incongruent condition were matched. The abstract shapes were 144 
identical across colour categories.  (B) shows an example sequence of the main task. 145 
Participants viewed each object for 450ms. After each run, one object was displayed and 146 
participants had to indicate whether they had seen this object in the previous run or not. 147 
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After completing the main blocks, we collected behavioural object-naming data to test 148 

for a behavioural congruency effect with our stimuli. On the screen, participants saw each of 149 

the objects again (congruent, incongruent or grey-scale) in a random order and were asked 150 

to name the objects as quickly as possible. As soon as voice onset was detected, the stimulus 151 

disappeared. We marked stimulus-presentation time with a photodiode and recorded voice-152 

onset with a microphone. Seventeen participants completed three blocks of this reaction time 153 

task, one participant completed two blocks, and for two participants we could not record any 154 

reaction times.  Each block contained all congruent, incongruent and grey-scale objects 155 

presented once.  156 

Naming reaction times were defined as the difference between stimulus-onset and 157 

voice-onset. Trials containing naming errors and microphone errors were not analysed. We 158 

calculated the median naming time for each exemplar for each person and then compared the 159 

naming times for each of the congruent, incongruent and greyscale conditions.  160 

 Apparatus. The neuromagnetic recordings were conducted with a whole-head axial 161 

gradiometer MEG (KIT, Kanazawa, Japan), containing 160 axial gradiometers. We recorded 162 

the MEG signal with a 1000Hz frequency. An online low-pass filter of 200Hz and a high-pass 163 

filter of 0.03Hz were used. All stimuli were projected on a translucent screen mounted on the 164 

ceiling of the magnetically shielded room. Stimuli were presented using MATLAB with 165 

Psychtoolbox extension (Brainard, 1997; Brainard & Pelli, 1997; Kleiner et al., 2007). Parallel 166 

port triggers and the signal of a photodiode were used to mark the beginning and end of each 167 

trial.  A Bimanual 4-Button Fiber Optic Response Pad (Current Designs, Philadelphia, USA) 168 

was used to record the responses. Head shape recordings were completed with a Polhemus 169 

Fastrak digitiser pen (Colchester, USA).  170 

 Pre-processing. FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011) was used to 171 

pre-process the data. The data were downsampled to 200Hz and then epoched from -100 to 172 
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450ms relative to stimulus onset. We did not conduct any further pre-processing steps 173 

(filtering, channel selection, trial-averaging etc.) to keep the data in its rawest possible form. 174 

Decoding Analyses. For all our decoding analyses, patterns of brain activity were 175 

extracted across MEG sensors at every timepoint, for each participant separately. We used a 176 

regularised linear discriminant analysis (LDA) classifier which was trained to distinguish the 177 

conditions of interest. We then used independent test data to assess whether the classifier 178 

could predict the condition above chance in the new data. We conducted training and testing 179 

at every timepoint and tested for significance using random-effects Monte Carlo cluster 180 

(TFCE; Smith & Nichols, 2009) statistics, corrected for multiple comparisons using the max 181 

statistic across time points (Maris & Oostenveld, 2007). Note that our aim was not to achieve 182 

the highest possible decoding accuracy (i.e., “classification for prediction”, Hebart & Baker, 183 

2017), but rather to test whether the classifier could predict the conditions above chance at 184 

any of the timepoints (i.e., “classification for interpretation”, Hebart & Baker, 2017). Therefore, 185 

we followed a minimal preprocessing pipeline and performed our analyses on a single-trial 186 

basis. Classification accuracy above chance indicates that the MEG data contains information 187 

that is different for the categories. We used the CoSMoMVPA toolbox (Oosterhof, Connolly, 188 

& Haxby, 2016) to conduct all our analyses.  189 

We ran three decoding analyses to examine how the typicality of object-colour 190 

combinations influences colour and shape processing over time. By examining the timecourse 191 

of object-feature binding, these analyses allow us to track the interaction between object-192 

colour knowledge and object representations in the brain. First, we tested whether activation 193 

patterns evoked by congruently coloured objects (e.g., red strawberry) differ from activation 194 

patterns evoked by incongruently coloured objects (e.g., yellow strawberry). Any differential 195 

response that depends on whether a colour is typical or atypical for an object (a congruency 196 

effect) requires the perceived shape and colour to be bound and compared to a conceptual 197 

object representation activated from memory. We trained the classifier on all congruent and 198 
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incongruent trials except for trials corresponding to one pair of matched exemplars (e.g., all 199 

instances of congruent and incongruent strawberries and congruent and incongruent 200 

bananas). We then tested the classifier using only the left-out exemplar pairs. We repeated 201 

this process until each matched exemplar pair had been left out (i.e., used as test data) once. 202 

Leaving an exemplar pair out ensures that there are identical shapes and colours for both 203 

classes (congruent and incongruent) in both the training and the testing set, and that the 204 

stimuli of the test set have different shape characteristics than any of the training objects. As 205 

such, the only distinguishing feature between the conditions is the conjunction of shape and 206 

colour features, which defines congruency. This allows us to compare directly whether (and 207 

at which timepoint) object-colour knowledge interacts with stored object representations.  208 

In a second decoding analysis, we examined whether the conjunction of object and 209 

colour influenced colour perception itself. Perceiving a strongly associated shape in the 210 

context of viewing a certain colour might lead to a more stable representation of that colour in 211 

the MEG signal. For example, if we see a yellow banana, the banana shape may facilitate a 212 

stable representation of the colour yellow earlier than if we see a yellow strawberry. To assess 213 

this possibility, we trained the classifier to distinguish between the surface colours of the 214 

abstract shapes (i.e., red, orange, yellow, green, chance: 25%). We then tested how well the 215 

classifier could predict the colour of the congruent and incongruent objects. Training the 216 

classifier on the same abstract shapes across colour categories makes it impossible that a 217 

certain shape-colour combination drives an effect, as the distinguishing feature between the 218 

abstract shapes is colour. This analysis allows us to compare whether the typicality of colour-219 

form combinations has an effect on colour processing.   220 

Third, we tested whether the conjunction of object and colour has an effect on object 221 

decoding. If object-colour influences early perceptual processes, we might see a facilitation 222 

for decoding objects when they are coloured congruently or interference when the objects are 223 

coloured incongruently. We used the greyscale object trials to train the classifier to distinguish 224 
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between all of the objects. The stimulus set contained two exemplars of each item (e.g., 225 

strawberry 1 and strawberry 2). We used different exemplars for the training and testing set 226 

to minimise the effects of low-level visual features, however, given that there are major 227 

differences in object shapes and edges we can still expect to see strong differences between 228 

the objects. The classifier was trained on one exemplar of all of the greyscale trials. We then 229 

tested the classifier’s performance on the congruent and incongruent object trials using the 230 

exemplars the classifier did not train on. We then swapped the exemplars used for training 231 

and testing set until every combination had been used in the testing set.  Essentially, this 232 

classifier is trained to predict which object was presented to the participant (e.g., was it a 233 

strawberry or a frog?) and we are testing whether there is a difference depending on whether 234 

the object is congruently or incongruently coloured.  235 

In addition to our main analyses, we also conducted additional decoding analyses to 236 

replicate and extend an earlier study testing the timecourse of colour processing (Teichmann, 237 

Grootswagers, Carlson, & Rich, 2019). We tested whether colour representations accessed 238 

via perception (i.e., coloured abstract shapes) and via associations (i.e., greyscale objects 239 

associated with a colour) evoke similar neural patterns. The results from these additional 240 

analyses are summarised in the supplementary materials.  241 

Statistical Tests. In all our analyses, we used random effects Monte-Carlo cluster 242 

statistic using Threshold Free Cluster Enhancement (TFCE, Smith & Nichols, 2009) as 243 

implemented in the CoSMoMVPA toolbox to see whether the classifier could predict the 244 

decisions above chance. The TFCE statistic represents the support from neighbouring time 245 

points, thus allowing for detection of sharp peaks and sustained small effects over time. We 246 

used a permutation test, swapping labels of complete trials, and re-ran the decoding analysis 247 

on the data with the shuffled labels 100 times per participant to create subject-level null-248 

distributions. We then used Monte-Carlo sampling to create a group-level null-distribution 249 

consisting of 10,000 shuffled label permutations for the time-resolved decoding, and 1000 for 250 
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the time-generalisation analyses (to reduce computation time). The null distributions were then 251 

transformed into TFCE statistics. To correct for multiple comparisons, the maximum TFCE 252 

values across time in each of the null distributions was selected. We then transformed the true 253 

decoding values to TFCE statistics. To assess whether the true TFCE value at each timepoint 254 

is significantly above chance, we compared it to the 95th percentile of the corrected null 255 

distribution. Selecting the maximum TFCE value provides a conservative threshold for 256 

determining whether the observed decoding accuracy is above chance, corrected for multiple 257 

comparisons.  258 

 259 

Results 260 

Behavioural results. We first present the behavioural data to confirm that our stimuli 261 

induce a congruency effect on object naming times. All incorrect responses and microphone 262 

errors were excluded from analysis (on average across participants: 10.1%). We then 263 

calculated the median reaction time for naming each stimulus. If a participant named a specific 264 

stimulus incorrectly across trials (e.g., incongruently coloured strawberry was always named 265 

incorrectly), we removed this stimulus completely to ensure that the reaction times in one 266 

condition were not skewed (on average this occurred in 5.4% of cases). Participants were 267 

faster to name the congruently coloured (702ms) than incongruently coloured (750ms) objects 268 

(t(17) = 4.06, p < .001; 95% CI [22.9, 72.7]). This suggests that the objects we used here do 269 

indeed have associations with specific canonical colours, and we replicate the effect of colour 270 

congruency on recognition of these objects (Bannert & Bartels, 2013; Joseph, 1997; Lloyd-271 

Jones et al., 2012; Naor-Raz et al., 2003; Tanaka & Presnell, 1999; Therriault et al., 2009).  272 

In the main task, participants were asked to indicate every 80 trials whether they had 273 

seen a certain target object or not. The aim of this task was to keep participants motivated 274 

and attentive throughout the training session. On average, participants reported whether the 275 

targets were present or absent with 90% accuracy (SD = 5%, range: 81.25% - 100%).  276 
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MEG decoding results. The aim of our decoding analyses was to examine the 277 

interaction between object-colour knowledge and object representations. First, we tested for 278 

a difference in the brain activation pattern for congruently and incongruently coloured objects. 279 

The results show distinct patterns of neural activity for congruent compared to incongruent 280 

objects in a cluster stretching from 265 to 330ms after stimulus onset, demonstrating that brain 281 

activity is modulated by colour congruency in this time window (Figure 2B). Thus, binding of 282 

colour and form must have occurred by ~265ms. 283 

 284 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 30, 2019. ; https://doi.org/10.1101/533513doi: bioRxiv preprint 

https://doi.org/10.1101/533513


 

 14 

Figure 2. Cross-validation and results of the congruency analysis contrasting trials from the 285 
congruent and incongruent conditions. (A) shows the leave-one-matched-exemplar-out cross 286 
validation approach used for the congruency decoding analysis. The classifier was trained on 287 
the trials shown in clear squares and then tested on the trials shaded grey (actual stimuli were 288 
all clear), ensuring that the classifier is not tested on the exemplars that it trained on. This 289 
limits the effect features other than congruency can have on classifier performance. (B) shows 290 
the classification accuracy over time. Shading represents the standard error across 291 
participants. Black dashed line represents chance level (50% - congruent versus incongruent). 292 
Black dots highlight significant timepoints, corrected for multiple comparisons.    293 
 294 
  295 

To assess whether congruency influences colour perception, we trained a classifier to 296 

distinguish between the colours in the abstract shape condition and then tested it on the 297 

congruent and incongruent trials separately (see supplementary materials for further colour 298 

decoding analyses). Colour can be successfully classified in a cluster stretching from 75 to 299 

125ms for the congruent condition and in a cluster stretching from 75 to 185ms for the 300 

incongruent trials (Figure 3A). These results suggest there is a qualitative difference between 301 

the way colour information is processed depending on the congruency of the image. To assess 302 

how these signals evolves over time, we used time-generalisation matrices (Figure 3B and 303 

3C). Colour category was decodable from both conditions early on (~70ms) but in the 304 

incongruent condition, the activation associated with colour seems to be sustained longer 305 

(Figure 3C) than for the congruent condition (Figure 3B). This suggests that colour signals are 306 

prolonged when object-colour combinations are unusual relative to when they are typical. 307 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 30, 2019. ; https://doi.org/10.1101/533513doi: bioRxiv preprint 

https://doi.org/10.1101/533513


 

 15 

 308 

Figure 3. Results of the colour decoding analysis for the congruent and incongruent trials. 309 
Here, the classifier was trained to distinguish the colour of all abstract shape trials and tested 310 
on the congruent and incongruent trials separately. (A) shows the classification accuracy over 311 
time for this analysis. Red indicates the classifier’s performance when it was tested on 312 
incongruent trials and blue indicates the classifier’s performance when it was tested on 313 
congruent trials. Shading represents the standard error. Black dashed line indicates chance 314 
level (25% - red versus green versus orange versus yellow). Red (incongruent) and blue 315 
(congruent) dots highlight significant timepoints, corrected for multiple comparisons. (B) and 316 
(C) show the results of the same analysis across all possible training and testing timepoint 317 
combinations. These time-time matrices allow us to examine how the signal for the congruent 318 
colours (B) and incongruent colours (C) evolves over time. The plots on the left show the 319 
classification accuracy at every timepoint combination with lighter pixels reflecting higher 320 
decoding accuracies. The plots on the right show clusters where decoding is significantly 321 
above chance, corrected for multiple comparisons.  322 
 323 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 30, 2019. ; https://doi.org/10.1101/533513doi: bioRxiv preprint 

https://doi.org/10.1101/533513


 

 16 

 The goal of the third analysis was to examine whether shape representations are 324 

affected by colour congruency. We trained a classifier to distinguish between trials in which 325 

the participant saw one of the exemplars of each of the twenty objects in greyscale (e.g., 326 

greyscale strawberry 1, greyscale cherry 1, etc.). We then tested at which timepoint the 327 

classifier could successfully cross-generalise to the other exemplar of that object in the 328 

congruent and incongruent condition separately. Note that although the exact images are 329 

unique, there are shared shape characteristics between exemplars (e.g., the two frog 330 

exemplars share some shape aspects despite being different postures) which can be 331 

expected to drive the classifier’s performance. The results show the neural data has 332 

differential information about the object in a cluster stretching from 80 to 450ms for the 333 

congruent test set and from 90 to 450ms for the incongruent test set (Figure 4A).  These 334 

results show that we can decode the object category early on, consistent with the classifier 335 

being driven by low-level visual features such as shape or texture. The timecourse for 336 

congruent and incongruent exemplar decoding is very similar, suggesting that colour 337 

congruency does not affect the initial stages of object processing. On error trials, we can see 338 

whether the classifier makes the same mistakes when decoding congruent and incongruent 339 

stimuli. Figure 4B shows these errors, averaged across timepoints when the decoding was 340 

significant. Figure 4C shows a high correlation between the resulting confusion matrices. This 341 

demonstrates that the particular classification errors in congruent and incongruent conditions 342 

are highly similar, reflecting shape effects rather than colour congruency effects. Thus, we 343 

have no evidence that early stages of object processing are affected by colour congruency.  344 
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 345 

Figure 4. Results of the object exemplar decoding analysis. The classifier was trained to 346 
distinguish between all object categories in the greyscale object condition. We used one 347 
exemplar of each class for the training and the other exemplar for testing the classifier.  Testing 348 
was done for the congruent and incongruent trials separately. (A) shows the classification 349 
accuracy over time for the exemplar decoding analysis. The red line shows the classifier 350 
accuracy when testing the classifier on incongruent trials and blue shows the classifier 351 
accuracy when testing the classifier on congruent trials. Shading represents the standard 352 
error. Black dashed line represents chance level (5% - 20 different object categories). Red 353 
(incongruent) and blue (congruent) dots highlight significant timepoints (p<0.05), corrected for 354 
multiple comparisons. (B) shows the confusion matrices for the incongruent (left) and 355 
congruent (right) condition. The confusion matrices were averaged across time (90-450ms). 356 
The true object categories are plotted on the y-axis and the predicted categories on the x-axis. 357 
The colour highlights the frequency of a specific cateogry being predicted in response to a 358 
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given category. The diagonal shows accurate classifier prediction (match between predicted 359 
and true category). (C) shows the correlation of the two confusion matrices over time.  360 
 361 

 362 

Discussion 363 

 A crucial question in object recognition is how incoming visual information interacts 364 

with stored object concepts to create meaningful vision under varying situations. The aims of 365 

the current study were to examine the temporal dynamics of object-colour knowledge and to 366 

test whether activating object-colour knowledge influences early stages of colour and object 367 

processing. Our data provide three major insights: First, congruently and incongruently 368 

coloured objects evoke a different neural representation after ~260ms suggesting that by this 369 

time, visual object features are bound into a coherent representation and compared to stored 370 

object representations. Second, compared with the latency at which congruency decoding is 371 

possible, the congruency of the object-colour binding does seem to affect colour processing 372 

earlier in the signal. This indicates that there is some information about the “correctness” of 373 

an object’s colour even in the early stages of processing. Third, we find no evidence that the 374 

congruency of object-colour binding affects shape processing, suggesting behavioural 375 

congruency effects are due to conflict at a later stage in processing.  376 

Here, we use colour congruency as an index to assess when prior knowledge is 377 

integrated with bound object features. When comparing brain activation patterns of the same 378 

objects presented in different colours, there was a decodable difference between congruent 379 

and incongruent conditions from 265ms onwards suggesting that a stored object 380 

representation containing information about the typical colour of an object must have been 381 

activated at that stage. Prior to this time, the signal is primarily driven by early perceptual 382 

features such as colour and shape, which were matched for the congruent and incongruent 383 

conditions (same objects, same colours, only the binding of colour and shape differed). Thus, 384 

our data illustrate the classic hierarchy of vision with single features being processed first and 385 
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the conjunction of colour and shape occurring at a later stage. These timecourse data do not 386 

speak to which brain areas are involved in the integration of colour and shape information, 387 

which has already been explored by the fMRI literature, instead our congruency analysis 388 

shows the relative timecourse at which different features are bound together and a meaningful 389 

object representation emerges. These results are consistent with previous work showing that 390 

simple colour processes such as registering the intensity of light occurs in early visual areas 391 

such as V1 and V2, while more complex colour-related processes such as distinguishing 392 

between object surface colours occur in V4 and beyond (Seymour, Williams, & Rich, 2015; 393 

Zeki & Marini, 1998). Activating object colour from memory has been shown to involve the 394 

ATL (e.g., Coutanche & Thompson-Schill, 2014) and coding for object-colour congruency has 395 

involves perirhinal cortex (Price, Bonner, Peelle, & Grossman, 2017). Further support on the 396 

involvement of the ATL in the integration of information, such as colour and shape, comes 397 

from work on patients with semantic dementia (e.g., Bozeat, Lambon Ralph, Patterson, & 398 

Hodges, 2002) and studies on healthy participants using TMS (e.g., Chiou et al., 2014). The 399 

latency of congruency decoding in our data may reflect the process of comparing bound 400 

perceptual object features with a conceptual template representation of the object in higher-401 

level brain areas such as the ATL.  402 

Our results also show that the “correctness” of an object’s colour has an effect on 403 

colour processing. We found colour decoding onset at a similar time (~70ms) for congruently 404 

and incongruently coloured objects, however, colours were decodable longer in the 405 

incongruent condition than the congruent condition (Figure 3A). Thus, early on colour is 406 

processed in a similar way for congruently and incongruently coloured objects, but after the 407 

initial, early colour processing, colour information persists only in the incongruent condition. It 408 

is possible that this different dynamic in colour processing is driven by certain colours co-409 

occurring more often with other low-level features such as texture, edges or degree of 410 

curvature. We presumably learn these regularities from repeated exposure over the lifespan 411 
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(e.g., Clarke & Tyler, 2015). If there is a conflict between the actual colour and the “most likely” 412 

colour, it may lead to the prolonged colour signal which we observed here.  413 

The timecourse of exemplar decoding we observe is consistent with previous studies 414 

on object recognition. Here, we found that exemplar identity could be decoded at ~90ms 415 

(Figure 4A). Similar latencies have been found in other M/EEG decoding studies (Carlson, 416 

Tovar, Alink, & Kriegeskorte, 2013; Cichy, Pantazis, & Oliva, 2014; Contini, Wardle, & Carlson, 417 

2017; Grootswagers, Robinson, & Carlson, 2019; Isik, Meyers, Leibo, & Poggio, 2013) and 418 

single unit recordings (e.g., Hung, Kreiman, Poggio, & DiCarlo, 2005). Behavioural data, 419 

including the reaction times collected here in our participants, show that colour influences 420 

object identification speed (e.g., Bramão, Faísca, Petersson, & Reis, 2010). The neural data, 421 

however, did not show an effect of object colour on the classifier’s performance when 422 

distinguishing the neural activation patterns evoked by different objects. For example, the 423 

brain activation pattern in response to a strawberry could be differentiated from the pattern 424 

evoked by a lemon, without any influence of the congruency of their colours. This suggests 425 

that colour and shape processing affect each other in an asymmetric way: colour 426 

representations are influenced by object shape, perhaps due to statistical learning through 427 

experience, but shape representations are not influenced by colour. This finding is consistent 428 

with previous results (Proverbio et al., 2004) but might seem puzzling because colour 429 

congruency has been shown to have a strong effect on object naming  (e.g., Chiou et al., 430 

2014; Nagai & Yokosawa, 2003; Tanaka & Presnell, 1999). It seems plausible, however, that 431 

the typicality between object and colour combination affects later stages of processing as seen 432 

in our congruency analysis, rather than influencing these early stages. For example, the 433 

source of behavioural congruency effects may be at the stage of response selection, which 434 

would not show up in these early neural signals. More exploration is needed to test this 435 

interpretation, but the current data suggest that colour congruency does not have an impact 436 

on early stages of shape processing. 437 
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Our study demonstrates that object representations are influenced by object-colour 438 

knowledge but not at the initial stages of visual processes. Our data also suggest that colour 439 

processing is affected by colour congruency, with colour signals being extended for 440 

incongruently in comparison to congruently coloured objects. Our findings document the 441 

timecourse of the processes suggested by the traditional hierarchical view of vision, in which 442 

single object features are processed before the features are bound into a coherent object that 443 

can be compared with existing, conceptual object representations. We find that object-colour 444 

binding is complete by ~265ms, clearly demonstrating an interaction between our knowledge 445 

of the world and incoming information to form our visual perception. 446 

  447 
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Supplementary Materials 

 

In addition to the main analyses we also tested whether colour representations that 

are accessed via perception and via association could be decoded using our methods. Below, 

we summarise these results.  

 

Real colour analysis 

For the real colour analysis, we trained the classifier to distinguish between MEG data 

when participants viewed the abstract shapes in different colours and tested its performance 

on independent real colour trials. We found that most of the colour pairs could be decoded 

from ~70ms after stimulus onset (Figure S1B). Yellow versus green trials could be 

differentiated later on in the signal (~115ms) but the colour representation was not stable 

(Figure 2B). Red versus orange could not be decoded, probably reflecting the high similarity 

between these colours (Figure S1B).  Note that the decoding accuracy might be influenced by 

luminance differences which are smaller in the case of red versus orange and yellow versus 

green than in all the other colour pairs (unlike in our previous study (Teichmann et al., 2019) 

in which the colours were equiluminant). Peak decoding for the remaining real colour pairs 

was at ~135-150ms after stimulus onset (Figure S1).  
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Figure S1. (A) shows the similarity between colour categories based on colour distance. (B) 
shows the results of the real colour decoding analysis for all colour pairs. The classifier was 
trained on the abstract shape trials to distinguish between two colours at a time. Each colour 
category contained identical shapes. The classifier was trained to distinguish between all 
shapes except one. Testing was done only on the shape that the classifier did not train on. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 30, 2019. ; https://doi.org/10.1101/533513doi: bioRxiv preprint 

https://doi.org/10.1101/533513


 

 28 

The classification accuracy over time for the real colour decoding analysis for each colour pair 
is plotted above. Shading represents the standard error. Black dashed line represents chance 
level (50% - pairwise comparison). Black dots highlight significant timepoints for each pairwise 
comparison (p<0.05), corrected for multiple comparisons.    
 
 
Implied colour analysis 

A controlled approach of testing whether there is any representational overlap between 

real and implied colours is to train a classifier on real colour and test on implied colour trials. 

For this analysis, there is no low-level feature such as shape or luminance that could drive the 

classification. Successful cross-generalisation implies that the brain representation of colour 

accessed via colour perception and association share characteristics. To see whether this is 

the case, we trained a classifier to distinguish between patterns evoked by pairs of our 

coloured abstract shapes, as in our first analysis. We then tested the classifier on 

distinguishing between the grey-scale objects that are associated with those colours. 

Consistent with our previous work (Teichmann et al., 2019), the representational overlap for 

real and implied colours dynamically evolved over time. We therefore ran this analysis as a 

time-generalisation analysis, training and testing the classifier at every timepoint combination 

(Carlson et al., 2011; King & Dehaene, 2014). We ran the analysis separately for each of the 

colour pairs as the real colour decoding results showed that the classifier cannot reliably 

distinguish all colour pairs (Figure S1). Across the time-time decoding matrices (Figure S2), 

we can see that the classifier can cross-generalise best between real and implied colours 

when the colours are most dissimilar (i.e., red and green). Accessing colour via real colour 

perception and implied colour activation occurred at the same time, around 150ms. For red 

versus green, there was additional significant decoding off the diagonal, which indicates a 

temporal difference in the instantiation of a similar pattern. Colour information evoked by real 

colours from ~150ms-450ms resembles colour information evoked by greyscale objects in a 

timewindow from ~150-170ms after stimulus onset. This indicates that colour information 

evoked by association is only briefly in the signal. There also is a reactivation of colour 
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information for the red-green comparison at ~400ms after stimulus onset.  For the red versus 

yellow and green versus orange contrast there is cross-generalisation in a timewindow around 

~150ms after stimulus onset. In contrast, we did not observe successful cross-generalisation 

when training and testing on colours that are similar. This is not surprising given that we did 

not have a reliable model to distinguish between these real colours (i.e., red versus orange, 

Figure S1).  

 

Figure S2. Time-generalisation for cross-decoding, training the classifier on real colour trials 
and testing on grey-scale object trials. The analysis was done separately for each pairwise 
colour comparison. The plots in show the decoding accuracies for every timepoint combination 
when training on abstract shapes and testing on greyscale object trials. Pink highlights show 
timepoints with decoding significantly above chance (p<0.05), controlled for multiple 
comparisons.  
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Overall, our results show that there are representational similarities for real and implied 

colours but this is only distinguishable using our methods for colours that are quite dissimilar 

(e.g., red and green). It is important to note that there is no colour information at all in the 

equiluminant greyscale object trials and that the shapes used for training the classifier are 

identical except in colour and luminance. That means we here have strong evidence for real 

and implied colour sharing an overlapping brain activation pattern that becomes apparent from 

around 150 to 200ms after stimulus onset, at least when the colours are dissimilar enough.  
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