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 1 

Abstract  1 

The ability to rapidly and accurately recognise complex objects is a crucial function of the 2 

human visual system. To recognise an object, we need to bind incoming visual features such 3 

as colour and form together into cohesive neural representations and integrate these with our 4 

pre-existing knowledge about the world. For some objects, typical colour is a central feature 5 

for recognition; for example, a banana is typically yellow. Here, we applied multivariate pattern 6 

analysis on time-resolved neuroimaging (magnetoencephalography) data to examine how 7 

object-colour knowledge affects emerging object representations over time. Our results from 8 

20 participants (11 female) show that the typicality of object-colour combinations influences 9 

object representations, although not at the initial stages of object and colour processing. We 10 

find evidence that colour decoding peaks later for atypical object-colour combinations in 11 

comparison to typical object-colour combinations, illustrating the interplay between processing 12 

incoming object features and stored object-knowledge. Taken together, these results provide 13 

new insights into the integration of incoming visual information with existing conceptual object 14 

knowledge.  15 

16 
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  17 

Significance Statement 18 

To recognise objects, we have to be able to bind object features such as colour and shape 19 

into one coherent representation and compare it to stored object knowledge. The 20 

magnetoencephalography data presented here provide novel insights about the integration of 21 

incoming visual information with our knowledge about the world. Using colour as a model to 22 

understand the interaction between seeing and knowing, we show that there is a unique 23 

pattern of brain activity for congruently coloured objects (e.g., a yellow banana) relative to 24 

incongruently coloured objects (e.g., a red banana). This effect of object-colour knowledge 25 

only occurs after single object features are processed, demonstrating that conceptual 26 

knowledge is accessed relatively late in the visual processing hierarchy.   27 
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Introduction 28 

Successful object recognition depends critically on comparing incoming perceptual 29 

information with existing internal representations (Albright, 2012; Clarke & Tyler, 2015). A 30 

central feature of many objects is colour, which can be a highly informative cue in visual object 31 

processing (Rosenthal et al., 2018). Although we know a lot about colour perception itself, 32 

comparatively less is known about how object-colour knowledge interacts with colour 33 

perception and object processing. Here, we measure brain activity with 34 

magnetoencephalography (MEG) and apply multivariate pattern analyses (MVPA) to test how 35 

stored object-colour knowledge influences emerging object representations over time.  36 

 37 

Colour plays a critical role in visual processing by facilitating scene and object recognition 38 

(Gegenfurtner & Rieger, 2000; Tanaka et al., 2001), and by giving an indication of whether an 39 

object is relevant for behaviour (Conway, 2018; Rosenthal et al., 2018). Objects that include 40 

colour as a strong defining feature have been shown to activate representations of associated 41 

colours (Bannert & Bartels, 2013; Hansen et al., 2006; Olkkonen et al., 2008; Teichmann et 42 

al., 2019; Vandenbroucke et al., 2014; Witzel et al., 2011), leading to slower recognition when 43 

there is conflicting colour information (e.g., a red banana; Nagai & Yokosawa, 2003; Tanaka 44 

& Presnell, 1999; for a meta-analysis, see Bramão, Reis, Petersson, & Faísca, 2011). 45 

Neuroimaging studies on humans and non-human primates have shown that there are several 46 

colour-selective regions along the visual ventral pathway (Lafer-Sousa et al., 2016; Lafer-47 

Sousa & Conway, 2013; Seymour et al., 2010, 2015; Zeki & Marini, 1998). While the more 48 

posterior colour-selective regions do not show a shape bias, the anterior colour-selective 49 

regions do (Lafer-Sousa et al., 2016), supporting suggestions that colour knowledge is 50 

represented in regions associated with higher-level visual processing (Simmons et al., 2007; 51 

Tanaka et al., 2001). A candidate region for the integration of stored knowledge and incoming 52 

visual information is the anterior temporal lobe (ATL; Chiou et al., 2014; Papinutto et al., 2016; 53 

Patterson et al., 2007). In one study (Coutanche & Thompson-Schill, 2014), for example, brain 54 

activation patterns evoked by recalling a known object’s colour and its shape could be 55 

distinguished in a subset of brain areas that have been associated with perceiving those 56 

features, namely V4 and lateral occipital cortex, respectively. In contrast, recalling an object’s 57 

particular conjunction of colour and shape, could only be distinguished in the ATL, suggesting 58 

that the ATL processes conceptual object representations.  59 

 60 

Time-resolved data measured with electroencephalography (EEG) or MEG can give an 61 

understanding of how conceptual-level processing interacts dynamically with perception.  62 
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Previous EEG studies have examined the temporal dynamics of object-colour knowledge as 63 

an index of the integration of incoming visual information and prior knowledge (Lloyd-Jones et 64 

al., 2012; Lu et al., 2010; Proverbio et al., 2004). For example, Lloyd-Jones et al. (2012) 65 

showed that shape information modulates neural responses at ~170ms (component N1), the 66 

combination of shape and colour affected the signal at 225ms (component P2), and the 67 

typicality of object-colour pairing modulated components approximately 225 and 350ms after 68 

stimulus onset (P2 and P3). These findings suggest that the initial stages of object recognition 69 

may be driven by shape, with the interactions with object-colour knowledge coming into play 70 

at a much later stage, perhaps as late as during response selection.  71 

 72 

Using multivariate methods for time-resolved neuroimaging data, we can move beyond 73 

averaged measures (i.e., components) to infer what type of information is contained in the 74 

neural signal on a trial-to-trial basis. In the present study, we used MVPA to determine the 75 

timepoint at which neural activity evoked by congruently (e.g., yellow banana) and 76 

incongruently (e.g., red banana) coloured objects differs, which indicates when stored 77 

knowledge is integrated with incoming visual information. Furthermore, we examined whether 78 

existing knowledge about an object’s colour influences perceptual processing of surface 79 

colour and object identity. Overall, using colour as a model, our findings elucidate the 80 

timecourse of interactions between incoming visual information and prior knowledge in the 81 

brain. 82 

 83 

 84 

Materials and Methods 85 

Participants 86 

20 healthy volunteers (11 female, mean age = 28.9 years, SD = 6.9 years, 1 left-handed) 87 

participated in the study. All participants reported accurate colour-vision and had normal or 88 

corrected-to-normal visual acuity. Participants gave informed consent before the experiment 89 

started and were financially compensated. The study was approved by the Macquarie 90 

University Human Research Ethics Committee.  91 

 92 

Stimuli 93 

We identified five real world objects that previous studies have shown to be strongly 94 

associated with each of four different colours (red, green, orange and yellow; see Figure 1) 95 

(Bannert & Bartels, 2013; Joseph, 1997; Lloyd-Jones et al., 2012; Naor-Raz et al., 2003; 96 

Tanaka & Presnell, 1999; Therriault et al., 2009). Each colour category had one manmade 97 
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object (e.g., fire hydrant), one living object (e.g., ladybird), and three fruits or vegetables (e.g., 98 

strawberry, tomato, cherry). We sourced two exemplar images for each object class, resulting 99 

in 10 images for each colour, 40 individual images in total. We then created incongruently 100 

coloured objects by swapping the colours (e.g., yellow strawberry, red banana). For both 101 

congruent and incongruent stimuli, we did not use the native colours from the images 102 

themselves, but instead overlayed pre-specified hues on desaturated (greyscale) images that 103 

were equated for luminance using the SHINE toolbox (Willenbockel et al., 2010). A greyscale 104 

image overlayed with its canonically associated colour (e.g., yellow hue applied to greyscale 105 

banana) resulted in a congruent object; a greyscale image overlayed with a colour different 106 

from its canonically associated colour (e.g., red hue applied to greyscale banana) resulted in 107 

an incongruent object. Every congruent object exemplar had a single colour-matched 108 

incongruent partner. For example, we used a specific shade of red and added it to the grey-109 

scale images of the strawberry to make the congruent strawberry and overlayed it onto the 110 

lemon to make the incongruent lemon. We then took a specific shade of yellow and overlayed 111 

it on the lemons to make the congruent lemon exemplar, and onto the strawberry to make the 112 

incongruent strawberry exemplar. That means, overall, we have the identical objects and 113 

colours in the congruent and the incongruent condition, a factor that is crucial to ensure our 114 

results cannot be explained by features other than colour congruency. The only difference 115 

between these key conditions is that the colour-object combination is either typical (congruent) 116 

or atypical (incongruent).  117 

 118 

This procedure resulted in 40 congruent objects (10 of each colour), and 40 incongruent 119 

objects (10 of each colour, Figure 1). We added two additional stimulus types to this set: the 120 

full set of 40 greyscale images, and a set of 10 different angular abstract shapes, coloured in 121 

each of the four hues for a set of 40 (see Figure 1). As is clear in Figure 1, the colours of the 122 

abstract shapes appeared brighter than the colours of the objects, this is because the latter 123 

were made by overlaying hue on greyscale, whereas the shapes were simply coloured. As 124 

our principle goal was to ensure that the congruent objects appeared to have their typical 125 

colouring, we did not match the overall luminance of the coloured stimuli. For example, if we 126 

equated the red of a cherry with the yellow of a lemon, neither object would look typically 127 

coloured. Thus, each specific colour pair is not equated for luminance; however, we have the 128 

same colours across different conditions.  129 

 130 
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All stimuli were presented at a distance of 114cm. To add visual variability, which reduces the 131 

low-level featural overlap between the images, we varied the image size from trial to trial by 2 132 

degrees of visual angle. The range of visual angles was therefore between ~4.3 – 6.3 degrees.  133 

 134 

Experimental Design and Statistical Analysis 135 

Experimental tasks 136 

In the main task (Figure 1C), participants completed eight blocks of 800 stimulus presentations 137 

each. Each individual stimulus appeared 40 times over the course of the experiment. Each 138 

stimulus was presented centrally for 450ms with a black fixation dot on top of it. To keep 139 

participants attentive, after every 80 stimulus presentations, a target image was presented 140 

until a response was given indicating whether this stimulus had appeared in the last 80 141 

stimulus presentations or not (50% present vs absent). The different conditions (congruent, 142 

incongruent, grey-scale, abstract shape) were randomly intermingled throughout each block, 143 

and the target was randomly selected each time. On average, participants performed with 144 

90% (SD=5.4%) accuracy.  145 

 146 

After completing the main blocks, we collected behavioural object-naming data to test for a 147 

behavioural congruency effect with our stimuli. On the screen, participants saw each of the 148 

objects again (congruent, incongruent or greyscale) in a random order and were asked to 149 

name the objects as quickly as possible. As soon as voice onset was detected, the stimulus 150 

disappeared. We marked stimulus-presentation times with a photodiode and recorded voice-151 

onset with a microphone. Seventeen participants completed three blocks of this reaction time 152 

task, one participant completed two blocks, and for two participants we could not record any 153 

reaction times. Each block contained all congruent, incongruent and grey-scale objects 154 

presented once.  155 

 156 

Naming reaction times were defined as the difference between stimulus-onset and voice-157 

onset. Trials containing naming errors and microphone errors were not analysed. We 158 

calculated the median naming time for each exemplar for each person and then averaged the 159 

naming times for each of the congruent, incongruent and greyscale conditions.  160 

 161 
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 162 
Figure 1. (A) shows all stimuli used in this experiment. The same objects were used in the 163 
congruent, incongruent, and greyscale conditions. There were two exemplars of each object. 164 
Colours in the congruent and incongruent condition were matched. The abstract shapes were 165 
identical across colour categories. (B) shows the mean chromaticity coordinates for the 2° 166 
observer under D65 illumination for each colour category (top) as well as the mean lightness 167 
of all coloured stimuli used in this experiment (bottom). The colours were transformed into 168 
CIELUV space using the OptProp toolbox (Wagberg, 2007). (C) shows an example sequence 169 
of the main task. Participants viewed each object for 450ms. After each sequence, one object 170 
was displayed and participants had to indicate whether they had seen this object in the 171 
previous sequence or not. 172 
 173 
 174 
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 175 

 176 

MEG data acquisition 177 

While participants completed the main task of the experiment, neuromagnetic recordings were 178 

conducted with a whole-head axial gradiometer MEG (KIT, Kanazawa, Japan), containing 160 179 

axial gradiometers. We recorded the MEG signal with a 1000Hz frequency. An online low-180 

pass filter of 200Hz and a high-pass filter of 0.03Hz were used. All stimuli were projected on 181 

a translucent screen mounted on the ceiling of the magnetically shielded room. Stimuli were 182 

presented using MATLAB with Psychtoolbox extension (Brainard, 1997; Brainard & Pelli, 183 

1997; Kleiner et al., 2007). Parallel port triggers and the signal of a photodiode were used to 184 

mark the beginning and end of each trial.  A Bimanual 4-Button Fiber Optic Response Pad 185 

(Current Designs, Philadelphia, USA) was used to record the responses.  186 

 187 

Before entering the magnetically shielded room for MEG recordings, an elastic cap with five 188 

marker coils was placed on the participant’s head. We recorded head shape with a Polhemus 189 

Fastrak digitiser pen (Colchester, USA) and used the marker coils to measure the head 190 

position within the magnetically shielded room at the start of the experiment, halfway through 191 

and at the end. 192 

 193 

MEG data analysis: Preprocessing 194 

FieldTrip (Oostenveld et al., 2011) was used to preprocess the MEG data. The data were 195 

downsampled to 200Hz and then epoched from -100 to 500ms relative to stimulus onset. We 196 

did not conduct any further preprocessing steps (filtering, channel selection, trial-averaging 197 

etc.) to keep the data in its rawest possible form.  198 

 199 

MEG data analysis: Decoding Analyses 200 

For all our decoding analyses, patterns of brain activity were extracted across all 160 MEG 201 

sensors at every timepoint, for each participant separately. We used a regularised linear 202 

discriminant analysis (LDA) classifier which was trained to distinguish the conditions of interest 203 

across the 160-dimensional space. We then used independent test data to assess whether 204 

the classifier could predict the condition above chance in the new data. We conducted training 205 

and testing at every timepoint and tested for significance using random-effects Monte Carlo 206 

cluster (TFCE; Smith & Nichols, 2009) statistics, corrected for multiple comparisons using the 207 

max statistic across time points (Maris & Oostenveld, 2007). Note that our aim was not to 208 

achieve the highest possible decoding accuracy, but rather to test whether the classifier could 209 
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predict the conditions above chance at any of the timepoints (i.e., “classification for 210 

interpretation”, Hebart & Baker, 2017). Therefore, we followed a minimal preprocessing 211 

pipeline and performed our analyses on a single-trial basis. Classification accuracy above 212 

chance indicates that the MEG data contains information that is different for the categories. 213 

We used the CoSMoMVPA toolbox (Oosterhof et al., 2016) to conduct all our analyses.  214 

 215 

We ran several decoding analyses which can be divided in three broad themes. First, we 216 

tested when we can differentiate between trials where congruently and incongruently coloured 217 

objects were presented. This gives us an indication of the timecourse of the integration of 218 

visual object representations and stored conceptual knowledge. Second, we examined single 219 

feature processing focusing on colour processing and how the typicality of object-colour 220 

combinations influences colour processing over time. Third, we looked at another single 221 

feature, shape, and tested whether object-colour combinations influence shape processing 222 

over time. 223 

 224 

For the congruency analysis (Figure 2A), we tested whether activation patterns evoked by 225 

congruently coloured objects (e.g., red strawberry) differ from activation patterns evoked by 226 

incongruently coloured objects (e.g., yellow strawberry). Any differential response that 227 

depends on whether a colour is typical or atypical for an object (a congruency effect) requires 228 

the perceived shape and colour to be bound and compared to a conceptual object 229 

representation activated from memory. We trained the classifier on all congruent and 230 

incongruent trials except for trials corresponding to one pair of matched exemplars (e.g., all 231 

instances of congruent and incongruent strawberries and congruent and incongruent 232 

bananas). We then tested the classifier using only the left-out exemplar pairs. We repeated 233 

this process until each matched exemplar pair had been left out (i.e., used as test data) once. 234 

Leaving an exemplar pair out ensures that there are identical objects and colours for both 235 

classes (congruent and incongruent) in both the training and the testing set, and that the 236 

stimuli of the test set have different shape characteristics than any of the training objects. As 237 

such, the only distinguishing feature between the conditions is the conjunction of shape and 238 

colour features, which defines congruency. This allows us to compare directly whether (and 239 

at which timepoint) stored object representations interacts with incoming object-colour 240 

information.  241 

 242 

Next, we focused on the timecourse of colour processing. First, we examined the timecourse 243 

of colour processing independent of congruency (Figure 3A). For this analysis, we trained the 244 
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classifier on distinguishing between the four different colour categories of the abstract shapes 245 

and tested its performance on an independent set of abstract shape trials. We always left one 246 

block out for the cross-validation (8-folds). The results of this analysis give an indication about 247 

the emergence of when the representations differ between different surface colours, but as 248 

we did not control the colours to be equal in luminance or have the same hue difference 249 

between each pair, this is not a pure chromatic measure. We did not control luminance 250 

because we used these colours to create our coloured objects, which needed to look as 251 

realistic as possible. Thus, the colour decoding analysis includes large and small differences 252 

in hue and in luminance between the categories. To look at the differences between each 253 

colour pair, we also present confusion matrices showing the frequencies of the predicted 254 

colour categories at peak decoding.  255 

 256 

Our second colour processing analysis was to examine whether the conjunction of object and 257 

colour influenced colour processing (Figure 4A). Perceiving a strongly associated object in the 258 

context of viewing a certain colour might lead to a more stable representation of that colour in 259 

the MEG signal. For example, if we see a yellow banana, the banana shape may facilitate a 260 

representation of the colour yellow earlier than if we see a yellow strawberry. To assess this 261 

possibility, we trained the classifier to distinguish between the surface colours of the abstract 262 

shapes (i.e., red, orange, yellow, green; chance: 25%). We then tested how well the classifier 263 

could predict the colour of the congruent and incongruent objects. Training the classifier on 264 

the same abstract shapes across colour categories makes it impossible that a certain shape-265 

colour combination drives an effect, as the only distinguishing feature between the abstract 266 

shapes is colour. This analysis allows us to compare whether the typicality of colour-form 267 

combinations has an effect on colour processing.   268 

 269 

In our final set of analyses, we examined the timecourse of shape processing. First, to assess 270 

the timecourse of shape processing independent of congruency, we trained a classifier to 271 

distinguish the five different abstract shapes in a pairwise fashion (Figure 5A). We always 272 

used one independent block of abstract shape trials to test the classifier performance (8-fold 273 

cross-validation). The results of this analysis indicate when information about different shapes 274 

are is present in the neural signal, independent of other object features (e.g., colour) or 275 

congruency. Second, we tested whether the conjunction of object and colour has an effect on 276 

object decoding (Figure 6A). If object-colour influences early perceptual processes, we might 277 

see a facilitation for decoding objects when they are coloured congruently or interference 278 

when the objects are coloured incongruently. We used the greyscale object trials to train the 279 
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classifier to distinguish between all of the objects. The stimulus set contained two exemplars 280 

of each item (e.g., strawberry 1 and strawberry 2). We used different exemplars for the training 281 

and testing set to minimise the effects of low-level visual features, however, given that there 282 

are major differences in object shapes and edges, we can still expect to see strong differences 283 

between the objects. The classifier was trained on one exemplar of all of the greyscale trials. 284 

We then tested the classifier’s performance on the congruent and incongruent object trials 285 

using the exemplars the classifier did not train on. We then swapped the exemplars used for 286 

training and testing set until every combination had been used in the testing set.  Essentially, 287 

this classifier is trained to predict which object was presented to the participant (e.g., was it a 288 

strawberry or a frog?) and we are testing whether there is a difference depending on whether 289 

the object is congruently or incongruently coloured.  290 

 291 

Statistical Inferences 292 

In all our analyses, we used random effects Monte-Carlo cluster statistic using Threshold Free 293 

Cluster Enhancement (TFCE, Smith & Nichols, 2009) as implemented in the CoSMoMVPA 294 

toolbox to see whether the classifier could predict the condition of interest above chance. The 295 

TFCE statistic represents the support from neighbouring time points, thus allowing for 296 

detection of sharp peaks and sustained small effects over time. We used a permutation test, 297 

swapping labels of complete trials, and re-ran the decoding analysis on the data with the 298 

shuffled labels 100 times per participant to create subject-level null-distributions. We then 299 

used Monte-Carlo sampling to create a group-level null-distribution consisting of 10,000 300 

shuffled label permutations for the time-resolved decoding, and 1000 for the time-301 

generalisation analyses (to reduce computation time). The null distributions were then 302 

transformed into TFCE statistics. To correct for multiple comparisons, the maximum TFCE 303 

values across time in each of the null distributions was selected. We then transformed the true 304 

decoding values to TFCE statistics. To assess whether the true TFCE value at each timepoint 305 

is significantly above chance, we compared it to the 95th percentile of the corrected null 306 

distribution. Selecting the maximum TFCE value provides a conservative threshold for 307 

determining whether the observed decoding accuracy is above chance, corrected for multiple 308 

comparisons.  309 

 310 

To assess at which timepoint the decoding accuracy peaks, we bootstrapped the participants’ 311 

decoding accuracies for each analysis 10,000 times and generated 95% confidence intervals 312 

for peak decoding. For the analyses in which we are comparing colour and exemplar decoding 313 

for congruent and incongruent trials, we also compared the above chance decoding durations. 314 
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To test for the duration of above chance decoding, we bootstrapped the data (10,000 times) 315 

and ran our statistics. At each iteration we then looked for the longest period in which we have 316 

above chance decoding in consecutive timepoints. We plotted the bootstrapped decoding 317 

durations and calculated medians to compare the distributions for the congruent and the 318 

incongruent condition.  319 

 320 

 321 

Results 322 

Behavioural results 323 

We first present the data from our behavioural object-naming task to confirm that our stimuli 324 

induce a congruency effect on object naming times. All incorrect responses and microphone 325 

errors were excluded from the analysis (on average across participants: 10.1%). We then 326 

calculated the median reaction time for naming each stimulus. If a participant named a specific 327 

stimulus incorrectly across trials (e.g., incongruently coloured strawberry was always named 328 

incorrectly), we removed this stimulus completely to ensure that the reaction times in one 329 

condition were not skewed. We ran a repeated measures ANOVA to compare the naming 330 

times for the different conditions in the behavioural object naming task using JASP (Love et 331 

al., 2015). Naming times were significantly different between the conditions (F(2,34) = 12.8; 332 

p<0.001). Bonferroni-corrected post hoc comparisons show that participants were faster to 333 

name the congruently coloured (701ms) than the incongruently coloured (750ms) objects (pbonf 334 

< 0.001; 95%CI for mean difference [23.8, 72.8]). It took participants on average 717ms to 335 

name the greyscale objects which was significantly faster than naming the incongruently 336 

coloured objects (pbonf = 0.007; 95%CI for mean difference [7.8, 56.8]) but not significantly 337 

slower than naming the congruently coloured objects (pbonf = 0.33.; 95%CI for mean difference 338 

[-40.5, 8.5]). These results suggest that the objects we used here do indeed have associations 339 

with specific canonical colours, and we replicate that these objects are consistently associated 340 

with a particular colour (Bannert & Bartels, 2013; Joseph, 1997; Lloyd-Jones et al., 2012; 341 

Naor-Raz et al., 2003; Tanaka & Presnell, 1999; Therriault et al., 2009). 342 

 343 

In the main task, participants were asked to indicate every 80 trials whether they had seen a 344 

certain target object or not. The aim of this task was to keep participants motivated and 345 

attentive throughout the training session. On average, participants reported whether the 346 

targets were present or absent with 90% accuracy (SD = 5%, range: 81.25% - 100%).  347 

 348 

MEG results 349 
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The aim of our decoding analyses was to examine the interaction between object-colour 350 

knowledge and object representations. First, we tested for a difference in the brain activation 351 

pattern for congruently and incongruently coloured objects. The results show distinct patterns 352 

of neural activity for congruent compared to incongruent objects in a cluster of consecutive 353 

timepoints stretching from 250 to 325ms after stimulus onset, demonstrating that brain activity 354 

is modulated by colour congruency in this time window (Figure 2B). Thus, binding of colour 355 

and form must have occurred by ~250ms and stored object-colour knowledge is integrated 356 

with incoming information. An exploratory searchlight (Carlson et al., 2019; Collins et al., 2018; 357 

Kaiser et al., 2016) across small clusters (9 at a time) of MEG sensors suggests that this effect 358 

is driven a range of frontal, temporal and parietal sensor clusters (Figure 2C). 359 

 360 

  361 
Figure 2. Cross-validation and results of the congruency analysis contrasting trials from the 362 
congruent and incongruent conditions. (A) shows the leave-one-matched-exemplar-out cross 363 
validation approach for a single fold for the congruency decoding analysis. The classifier was 364 
trained on the trials shown on the left and tested on the trials on the right, ensuring that the 365 
classifier is not tested on the exemplars that it trained on. This limits the effect features other 366 
than congruency can have on classifier performance. (B) shows the classification accuracy 367 
over time. Shading represents the standard error across participants. Black dashed line 368 
represents chance level (50% - congruent versus incongruent). Filled dots highlight significant 369 
timepoints, corrected for multiple comparisons. The horizontal bar above the curve shows the 370 
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95% confidence interval of the peak. (C) is an exploratory sensor searchlight analysis in which 371 
we run the same analysis across small clusters of sensors. The colours highlight the decoding 372 
accuracy for each sensor cluster averaged over the 95% confidence interval of the peak 373 
timepoints. 374 

 375 

 376 

To examine the timecourse of colour processing separately from congruency, we decoded the 377 

surface colours of the abstract shapes (Figure 3A). Consistent with earlier results (Teichmann 378 

et al., 2019), we found that colour can be decoded above chance from the abstract shape 379 

trials in a cluster stretching from 70 to 350ms (Figure 3B). Looking at data from an exploratory 380 

sensor searchlight analysis across small clusters of sensors shows that colour information at 381 

peak decoding is mainly distinguishable from occipital and parietal sensors. To examine 382 

whether all colours could be dissociated equally well, we also looked at confusion matrices 383 

displaying how frequently each colour category was predicted for each colour (Figure 3D). 384 

The results show that at the decoding peak (140ms), red and green are most easily 385 

distinguishable and that the prediction errors are not equally distributed: Red trials are more 386 

frequently misclassified as being orange than green or yellow and green trials are more 387 

frequently misclassified as being yellow than orange or red. This indicates that colours that 388 

are more similar evoke a more similar pattern of activation than colours that are dissimilar 389 

(Figure 3E).  390 

 391 
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 392 
Figure 3. (A) depicts the colour decoding analysis when training the classifier to distinguish 393 
between the different colour categories of the abstract shapes and testing on a block of 394 
independent abstract shape trials. (B) shows the decoding accuracy for the colour decoding 395 
analysis over time. Shading represents the standard error across participants. Black dashed 396 
line represents chance level (25% - red versus green versus orange versus yellow). Filled dots 397 
highlight significant timepoints, corrected for multiple comparisons. The horizontal bar above 398 
the curve shows the 95% confidence interval of the peak. (C) shows the results of a 399 
exploratory searchlight analysis over small sensor clusters averaged across the timepoints of 400 
the 95% confidence interval for peak decoding. Colours indicate the decoding accuracies at 401 
each sensor. (D) depicts a confusion matrix for peak decoding (140ms) showing the 402 
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frequencies at which colour categories were predicted given the true class. (E) shows the 403 
similarity of the colour categories which might underlie the results in (D).   404 

 405 

 406 

To assess whether congruency influences colour processing, we trained a classifier to 407 

distinguish between the colours in the abstract shape condition and then tested it on the 408 

congruent and incongruent trials separately (Figure 4A). Colour can be successfully classified 409 

in a cluster stretching from 75 to 125ms for the congruent condition and in a cluster stretching 410 

from 75 to 185ms for the incongruent trials (Figure 4B). These results suggest there may be 411 

a difference in the way colour information is processed depending on the congruency of the 412 

image, specifically evident in the decoding peaks and decoding duration. To test whether there 413 

is a true difference in decoding timecourses, we bootstrapped the data and looked at the peak 414 

decoding and the longest consecutive streak of above chance decoding. Comparing the peak 415 

decoding times for the congruent and the incongruent condition, we find that they are different 416 

from each other (Figure 4C, top). However, comparing the confidence intervals of the 417 

decoding durations we find no consistent differences between the congruent and the 418 

incongruent condition (Figure 4C, bottom). This could be due to the fact that on- and offsets 419 

in above chance decoding are affected by signal strength and thresholds (cf. Grootswagers 420 

et al., 2017). The peak differences are a more robust measure and suggest that colour 421 

stronger colour decoding occurs later in the incongruent compared to congruent condition. To 422 

get a complete picture of how these signals evolve over time, we used time-generalisation 423 

matrices (Figure 4D and 4E). To create time-generalisation matrices, we trained the classifier 424 

on each timepoint of the training dataset and then tested it on all timepoints of the test set. 425 

The diagonal of these matrices corresponds to the standard time-resolved decoding results 426 

(e.g., training at 100ms and testing at 100ms). A decodable off-the-diagonal effect reflects a 427 

temporal asynchrony in information processing in the training and testing set (cf. Carlson et 428 

al., 2011; King & Dehaene, 2014). Our data show that colour category was decodable from 429 

both conditions early on (~70ms). In the incongruent condition, the activation associated with 430 

colour seems to be sustained longer (Figure 4E) than for the congruent condition (Figure 4D), 431 

but for both, decoding above chance occurs mainly along the diagonal. This suggests that the 432 

initial pattern of activation for colour signals occurs at the same time but that the signals 433 

associated with colour are prolonged when object-colour combinations are unusual relative to 434 

when they are typical. 435 

 436 
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  437 
Figure 4. Results of the colour decoding analysis for the congruent and incongruent trials. 438 
Here, the classifier was trained to distinguish the colour of all abstract shape trials and tested 439 
on the congruent and incongruent trials separately (A). (B) shows the classification accuracy 440 
over time for the congruent (blue) and incongruent (green) trials. Shading represents the 441 
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standard error across participants. Black dashed line indicates chance level (25% - red versus 442 
green versus orange versus yellow). Blue (congruent) and green (incongruent) dots highlight 443 
timepoints at which we can decode the surface colour significantly above chance, corrected 444 
for multiple comparisons. (C) shows the bootstrapped differences in peak time (top) and the 445 
bootstrapped differences in decoding duration (bottom) for the congruent and the incongruent 446 
conditions. (D) shows the results of the same analysis across all possible training and testing 447 
timepoint combinations. These time-time matrices allow us to examine how the signal for the 448 
congruent colours (left) and incongruent colours (right) evolves over time. The top row shows 449 
the classification accuracy at every timepoint combination with lighter pixels reflecting higher 450 
decoding accuracies. The bottom row shows clusters where decoding is significantly above 451 
chance (yellow), corrected for multiple comparisons.  452 

 453 

 454 

In an exploratory colour analysis, we also examined which errors the classifier made when 455 

predicting the colour of the incongruently coloured objects. We looked at whether the implied 456 

object colour is predicted more often than the surface colour or the other colours. However, 457 

as errors were not equally distributed across the incorrect labels in the training (abstract 458 

shape) dataset, we need to compare the misclassification results for the incongruent condition 459 

to the results from the congruent condition, to take these differing base rates into account. For 460 

each object in the incongruent condition (e.g., yellow strawberry), we have a colour-matched 461 

object in the congruent condition (e.g., yellow banana). We made use of these matched stimuli 462 

by looking at misclassifications and checking how frequently the implied colour of an 463 

incongruent object (e.g., red for a yellow strawberry) was predicted in comparison to the 464 

matched congruent object (e.g., red for a yellow banana). If the implied colour of incongruently 465 

coloured objects was activated along with the surface colour, we should see a higher rate of 466 

implied colour predictions (e.g., red) for the incongruent object (e.g., yellow strawberry) than 467 

for the colour-matched congruent object (e.g., yellow banana).  468 

The results (Figure 5) do not show this pattern: at the first peak (~80-110ms), the “other” 469 

colours are actually more likely to be chosen by the classifier than the implied colour, for both 470 

the congruent and incongruent condition. A possible explanation for not seeing an effect of 471 

implied colour in the colour decoding analysis is that the decoding model is based on the 472 

actual colour pattern, whereas the timing and mechanisms of implied colour activation may be 473 

different (Teichmann et al., 2019).  474 
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  475 
Figure 5. (A) shows the frequency of a predicted class when the classifier is trained on 476 
distinguishing colours in the abstract shape condition and tested on trials from the congruent 477 
(dotted lines) and incongruent (full lines) conditions. Shading represents the standard error 478 
across participants. There are clear peaks for the correct prediction of the surface colour 479 
between 100and 150ms (purple lines). In cases where the classifier makes an error, there is 480 
no evidence that the classifier picks the implied object colour (blue lines) more frequently than 481 
the other incorrect colours (green lines). Note that the classifier is trained on the abstract 482 
shape condition which has an uneven colour similarity, the errors in the incongruent condition 483 
have to be interpreted in relation to how often the matched implied colour in the congruent 484 
condition is predicted. (B) shows the difference of the classifier predicting the implied over the 485 
other colours for the congruent (purple) and incongruent (blue) conditions.  486 

 487 

 488 

 489 

The goal of the third analysis was to examine whether shape representations are affected by 490 

colour congruency. It could be the case, for example, that the representation of banana-491 

shapes compared to strawberry-shapes is enhanced when their colours are correct. First, we 492 

tested when shape representations can be decoded independent of colour congruency. We 493 

trained the classifier to distinguish between the five different abstract shapes in a pairwise 494 

fashion and then tested its performance on independent data (Figure 6A). The data show that 495 

shape information can be decoded in a cluster stretching from 60 to 500ms (Figure 6B). 496 

Running an exploratory searchlight analysis on small clusters of sensors (9 at a time) shows 497 

that shape information at peak decoding is mainly driven by occipital sensors (Figure 6C). 498 

 499 
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 500 
Figure 6. (A) depicts the shape decoding analysis when training the classifier to distinguish 501 
between the different categories of the abstract shapes and testing on a block of independent 502 
abstract shape trials. (B) shows the decoding accuracy for the shape decoding analysis over 503 
time. Shading represents the standard error across participants. Black dashed line represents 504 
chance level (50% - pairwise comparison of all shapes). Filled dots highlight significant 505 
timepoints, corrected for multiple comparisons. The horizontal bar above the curve shows the 506 
95% confidence interval of the peak. (C) shows the results of an exploratory searchlight 507 
analysis over small sensor clusters averaged across the timepoints of the 95% confidence 508 
interval for peak decoding. Colours indicate the decoding accuracies at each sensor.  509 

 510 

 511 

To examine whether colour affects object processing, we trained a classifier to distinguish 512 

between trials in which the participant saw one of the exemplars of each of the twenty objects 513 

in greyscale (e.g., greyscale strawberry 1, greyscale cherry 1, etc.). We then tested at which 514 

timepoint the classifier could successfully cross-generalise to the other exemplar of that object 515 

in the congruent and incongruent condition separately (Figure 7A). If object representations 516 

(e.g., banana) are influenced by the typicality of their colours, then cross-generalisation should 517 
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be different for congruent and incongruent trials. Note that although the exact images are 518 

unique, there are shared shape characteristics between exemplars (e.g., the two frog 519 

exemplars share some shape aspects despite being different postures), which can be 520 

expected to drive an effect. The results show the neural data has differential information about 521 

the object in a cluster stretching from 65 to 500ms for both the congruent and the incongruent 522 

test sets (Figure 7B).  These results show that we can decode the object class early on, at a 523 

similar time to when we can decode the abstract shape conditions, suggesting that the 524 

classifier here is driven strongly by low-level features (like shape), rather than being influenced 525 

by colour congruency. The timecourse for congruent and incongruent object decoding is very 526 

similar in terms of peak decoding and decoding duration (Figure 7C). Thus, our data suggest 527 

that there is no effect of colour congruency on object processing. 528 

   529 

 530 
Figure 7. Results of the object exemplar decoding analysis. The classifier was trained to 531 
distinguish between all pairwise object categories in the greyscale object condition. We used 532 
one exemplar of each class for the training and the other exemplar for testing the classifier.  533 
Testing was done for the congruent and incongruent trials separately (A). (B) shows the 534 
classification accuracy over time for the object decoding analysis when testing the classifier’s 535 
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performance on congruent (blue) and incongruent (green) trials. Shading represents the 536 
standard error across participants. Black dashed line represents chance level (50% - pairwise 537 
decoding for all 20 different object categories). Blue (congruent) and green (incongruent) dots 538 
highlight significant timepoints (p<0.05), corrected for multiple comparisons. (C) shows the 539 
bootstrapped differences in peak time (top) and the bootstrapped differences in decoding 540 
duration (bottom) for the congruent and the incongruent conditions. 541 

 542 

 543 

Overall, the results here show that single features present within the incoming visual stimuli 544 

are decodable earlier than the congruency between them, which can be seen as an index for 545 

accessing stored conceptual knowledge (Figure 8). When we compare colour and shape 546 

decoding for abstract shapes and for congruently and incongruently coloured objects, the 547 

decoding onsets are very similar, suggesting the initial processes of single feature processing 548 

are not influenced by congruency. However, peak colour decoding occurs later for 549 

incongruently coloured in comparison to congruently coloured objects suggesting that colour 550 

congruency influences colour processing to some degree. 551 

 552 
Figure 8. Overview of the findings. Each coloured bar shows the the onset (x axis) and duration 553 
(length of coloured bar) at which feature and conjunction information was contained in the 554 
neural signal. Darker shadings surrounded by dotted black lines show the bootstrapped 95% 555 
confidence interval for peak decoding. The dotted vertical line represents stimulus onset. 556 
 557 

 558 

Discussion 559 

A crucial question in object recognition concerns how incoming visual information interacts 560 

with stored object concepts to create meaningful vision under varying situations. The aims of 561 
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the current study were to examine the temporal dynamics of object-colour knowledge and to 562 

test whether activating object-colour knowledge influences the early stages of colour and 563 

object processing. Our data provide three major insights: First, congruently and incongruently 564 

coloured objects evoke a different neural representation after ~250ms suggesting that, by this 565 

time, visual object features are bound into a coherent representation and compared to stored 566 

object representations. Second, colour can be decoded at a similar latency (~70ms) 567 

irrespective of whether participants view coloured abstract shapes, or congruently and 568 

incongruently coloured objects. However, peak decoding occurs later when viewing 569 

incongruently coloured objects compared to congruent ones. Third, we do not find an influence 570 

of colour congruency on object processing, which may suggest that behavioural congruency 571 

effects are due to conflict at a later stage in processing.  572 

 573 

Colour congruency can act as an index to assess when prior knowledge is integrated with 574 

bound object features. When comparing brain activation patterns of the same objects 575 

presented in different colours, there was a decodable difference between congruent and 576 

incongruent conditions from ~250ms onwards suggesting a stored object representation that 577 

contains information about the typical colour of an object must have been activated by this 578 

stage. Prior to this time, the signal is primarily driven by processing of early perceptual features 579 

such as colour and shape, which were matched for the congruent and incongruent conditions 580 

(same objects, same colours, only the combination of colour and shape differed). Although 581 

from our data we cannot draw direct conclusions about which brain areas are involved in the 582 

integration of incoming visual information and stored object knowledge, our congruency 583 

analysis adds to the fMRI literature by showing the relative timecourse at which a meaningful 584 

object representation emerges. Activating object-colour knowledge from memory has been 585 

shown to involve the ATL (e.g., Coutanche & Thompson-Schill, 2014) and there is evidence 586 

that object-colour congruency coding occurs in perirhinal cortex (Price et al., 2017). Further 587 

support on the involvement of the ATL in the integration of incoming sensory information and 588 

stored representations comes from work on patients with semantic dementia (e.g., Bozeat et 589 

al., 2002) and studies on healthy participants using TMS (e.g., Chiou et al., 2014). Higher level 590 

brain areas in the temporal lobe have also been shown to be part of neuronal circuits involved 591 

in implicit imagery, supporting visual perception by augmenting incoming information with 592 

stored conceptual knowledge (e.g., Albright, 2012; Miyashita, 2004). The latency of 593 

congruency decoding here may thus reflect the time it takes to compare visual object 594 

representations with conceptual templates in higher-level brain areas such as the ATL, or the 595 
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time it takes for feedback or error signals about colour congruency to arrive back in early visual 596 

areas.  597 

 598 

Our results also show that colour congruency has an effect on colour processing. We found 599 

colour decoding onset at a similar time (~70ms) for abstract shapes and congruently and 600 

incongruently coloured objects. This indicates that colour signals are activated initially 601 

independently of object shape, consistent with previous work showing that single features are 602 

processed first and that the conjunction of colour and shape occurs at a later stage (e.g., 603 

Seymour et al., 2015). However, we also found differences between colour processing in 604 

congruent and incongruent conditions: The colour signal peaked later in the incongruent 605 

relative to the congruent condition, suggesting that congruency influences the timecourse of 606 

colour processing to some degree. Our time-generalisation analysis (Figure 4D) supports this 607 

by showing that there is a different dynamic for congruent and incongruent trials. One possible 608 

explanation for this finding is that unusual feature pairings (e.g., shape and colour or texture 609 

and colour) might lead to local feedback signals that prolong colour processing. Alternatively, 610 

consistent with the memory colour literature (e.g., Hansen et al., 2006; Olkkonen et al., 2008; 611 

Witzel et al., 2011), it is possible that typical colours are co-activated along with other low-612 

level features. For incongruent trials, this would then lead to two potential colours needing to 613 

be distinguished, extending the timeframe for processing and delaying the peak activation for 614 

the surface colour of the object.  615 

 616 

The timecourse of exemplar decoding we present is consistent with previous studies on object 617 

recognition. Here, we found that exemplar identity could be decoded at ~65ms. Similar 618 

latencies have been found in other M/EEG decoding studies (Carlson et al., 2013; Cichy et 619 

al., 2014; Contini et al., 2017; Grootswagers et al., 2019; Isik et al., 2013) and single unit 620 

recordings (e.g., Hung, Kreiman, Poggio, & DiCarlo, 2005). Behavioural data, including the 621 

reaction times collected from our participants, show that colour influences object identification 622 

speed (e.g., Bramão, Faísca, Petersson, & Reis, 2010). The neural data, however, did not 623 

show an effect of object colour on the classifier’s performance when distinguishing the neural 624 

activation patterns evoked by different object exemplars. For example, the brain activation 625 

pattern in response to a strawberry could be differentiated from the pattern evoked by a lemon, 626 

regardless of the congruency of their colours. This finding is consistent with previous results 627 

(Proverbio et al., 2004) but might seem puzzling because colour congruency has been shown 628 

to have a strong effect on object naming  (e.g., Chiou et al., 2014; Nagai & Yokosawa, 2003; 629 

Tanaka & Presnell, 1999). One plausible possibility is that the source of behavioural 630 
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congruency effects may be at the stage of response selection, which would not show up in 631 

these early neural signals. More evidence is needed, but there is no evidence in the current 632 

data to suggest colour congruency influences early stages of object processing. 633 

 634 

Our data demonstrate that object representations are influenced by object-colour knowledge 635 

but not at the initial stages of visual processes. Consistent with a traditional hierarchical view, 636 

we show that visual object features are processed before the features are bound into a 637 

coherent object that can be compared with existing, conceptual object representations. 638 

However, our data also suggest that the temporal dynamics of colour processing are 639 

influenced by the typicality of object-colour pairings. Building on the extensive literature on 640 

visual perception, these results provide a timecourse for the integration of incoming visual 641 

information with stored knowledge, a process that is critical for interpreting the visual world 642 

around us. 643 
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