
Centromere-mediated chromosome break drives karyotype evolution in closely related 1 

Malassezia species 2 

 3 

Sundar Ram Sankaranarayanan
1
, Giuseppe Ianiri

2
, Md. Hashim Reza

1
, Bhagya C. Thimmappa

1,#
, Promit 4 

Ganguly
1
, Marco A. Coelho

2
, Sheng Sun

2
, Rahul Siddharthan

3
, Christian Tellgren-Roth

4
, Thomas L 5 

Dawson Jr.
5,6

, Joseph Heitman
2,
* and Kaustuv Sanyal

1,
*

 6 

 
7 

1
Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for 8 

Advanced Scientific Research, Jakkur P.O, Bengaluru- 560064.  9 

2
Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 10 

27710, USA 11 

3
The Institute of Mathematical Sciences/HBNI, Taramani, Chennai 600 113, India  12 

4
National Genomics Infrastructure, Science for Life Laboratory, Department of Immunology, Genetics 13 

and Pathology, Uppsala University, 75108 Uppsala, Sweden  14 

5
Skin Research Institute Singapore, Agency for Science, Technology and Research (A*STAR), 138648, 15 

Singapore  16 

6
Medical University of South Carolina, School of Pharmacy, Department of Drug Discovery, 29425, USA 17 

#
 Present address: Department of Biochemistry, Robert-Cedergren Centre for Bioinformatics and 18 

Genomics, University of Montreal, 2900 Edouard-Montpetit, Montreal, H3T1J4, QC, Canada 19 

E-mail address of authors 20 

SRS (sundar_ram@jncasr.ac.in), GI (giuseppe.ianiri@duke.edu), MHR (hashimreza@jncasr.ac.in), BCT 21 
(bhagyathimmappa@gmail.com), PG (promitganguly1@gmail.com), MAC 22 
(marco.dias.coelho@duke.edu), SS (sheng.sun@duke.edu), RS (rsidd@imsc.res.in), CTR 23 
(christian.tellgren@igp.uu.se), TLD (thomas_dawson@sris.a-star.edu.sg)  24 

*Corresponding authors 25 

Joseph Heitman (heitm001@duke.edu)  26 

Kaustuv Sanyal (sanyal@jncasr.ac.in) 27 

Classification   28 

Biological sciences, Genetics 29 

Keywords 30 

Centromere loss, chromosome fusion, skin microbe, merotelic attachment, double strand breaks, 31 
kinetochore. 

  32 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/533794doi: bioRxiv preprint 

mailto:sundar_ram@jncasr.ac.in
mailto:giuseppe.ianiri@duke.edu
mailto:hashimreza@jncasr.ac.in
mailto:bhagyathimmappa@gmail.com
mailto:promitganguly1@gmail.com
mailto:marco.dias.coelho@duke.edu
mailto:sheng.sun@duke.edu
mailto:rsidd@imsc.res.in
mailto:christian.tellgren@igp.uu.se
mailto:thomas_dawson@sris.a-star.edu.sg
mailto:heitm001@duke.edu
mailto:sanyal@jncasr.ac.in
https://doi.org/10.1101/533794


Abstract 1 

Intra-chromosomal or inter-chromosomal genomic rearrangements often lead to speciation (1). Loss or 2 

gain of a centromere leads to alterations in chromosome number in closely related species. Thus, 3 

centromeres can enable tracing the path of evolution from the ancestral to a derived state (2). The 4 

Malassezia species complex of the phylum Basiodiomycota shows remarkable diversity in chromosome 5 

number ranging between six and nine chromosomes (3-5). To understand these transitions, we 6 

experimentally identified all eight centromeres as binding sites of an evolutionarily conserved outer 7 

kinetochore protein Mis12/Mtw1 in M. sympodialis. The 3 to 5 kb centromere regions share an AT-rich, 8 

poorly transcribed core region enriched with a 12 bp consensus motif. We also mapped nine such AT-rich 9 

centromeres in M. globosa and the related species Malassezia restricta and Malassezia slooffiae. While 10 

eight predicted centromeres were found within conserved synteny blocks between these species and M. 11 

sympodialis, the remaining centromere in M. globosa (MgCEN2) or its orthologous centromere in M. 12 

slooffiae (MslCEN4) and M. restricta (MreCEN8) mapped to a synteny breakpoint compared with M. 13 

sympodialis. Taken together, we provide evidence that breakage and loss of a centromere (CEN2) in an 14 

ancestral Malassezia species possessing nine chromosomes resulted in fewer chromosomes in M. 15 

sympodialis. Strikingly, the predicted centromeres of all closely related Malassezia species map to an AT-16 

rich core on each chromosome that also shows enrichment of the 12 bp sequence motif. We propose that 17 

centromeres are fragile AT-rich sites driving karyotype diversity through breakage and inactivation in 18 

these and other species.  19 

 20 

Significance statement 21 

The number of chromosomes can vary between closely related species. Centromere loss destabilizes 22 

chromosomes and results in reduced number of chromosomes to drive speciation. A series of evidence 23 

from studies on various cancers suggest that an imbalance in kinetochore-microtubule attachments results 24 

in breaks at the centromeres. To understand if such events can cause chromosome number changes in 25 

nature, we studied six species of Malassezia, of which three possess eight chromosomes and others have 26 

nine chromosomes each.  We find signatures of chromosome breakage at the centromeres in organisms 27 

having nine chromosomes.  We propose that the break at the centromere followed by fusions of acentric 28 

chromosomes to other chromosomes could be a plausible mechanism shaping the karyotype of 29 

Malassezia and related organisms.   30 
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Introduction 1 

Centromeres are the genomic loci on which the kinetochore, a multi-subunit complex, assembles to 2 

facilitate high fidelity chromosome segregation. The centromere-specific histone H3 variant CENP-A is 3 

the epigenetic hallmark of centromeres, and acts as the foundation to recruit other proteins of the 4 

kinetochore. A series of evidence suggest that centromeres are species specific and are among the most 5 

rapidly evolving regions in the genome even between closely related species (6-9). This is accompanied 6 

by concomitant evolution of CENP-A and the associated kinetochore proteins (10). Functional 7 

incompatibilities between centromeres result in uniparental genome elimination in interspecies hybrids 8 

(11, 12). The divergent nature of centromere is proposed to be a driving force for speciation (13, 14).  9 

Recent studies show that asexual organisms, also by virtue of inter- and intra-chromosomal 10 

rearrangements, diversify into species clusters that are distinct in genotype and morphology (15). These 11 

genotypic differences include changes in both, the organization and the number of chromosomes. 12 

Centromere function is directly related to stabilization of the karyotype when a change in chromosome 13 

number occurs (2). Rearrangements in the form of telomere-telomere fusions and nested chromosome 14 

insertions (NCIs) are some of the major sources of chromosome number reduction (16). Such cases result 15 

in the formation of dicentric chromosomes that are subsequently stabilized by breakage-bridge-fusion 16 

cycles (17) or via inactivation of one of the centromeres through other mechanisms (18, 19). Well known 17 

examples of telomere-telomere fusion include, the formation of extant human chromosome 2 by fusion of 18 

two ancestral chromosomes (20), the reduction in karyotype seen within members of Saccharomycotina 19 

such as Candida glabrata, Vanderwaltozyma polyspora, Kluyveromyces lactis, and Zygosaccharomyces 20 

rouxii (2), and the exchange of chromosomal arms seen in plants (21). NCIs have predominantly shaped 21 

the karyotype evolution in grasses (22). Unlike the above cases, chromosome number reduction can also 22 

be driven by centromere loss. 23 

The centromere-kinetochore complex is the chromosomal attachment site of spindle microtubules and 24 

experiences extensive physical forces through kinetochore-microtubule attachments during chromosome 25 

segregation. DNA double strand breaks (DSBs) have been mapped at the centromeres when improper 26 

kinetochore-microtubule attachments especially merotelic attachments remain unresolved (23-25). Such 27 

observations in various cancers are suggestive of centromere fission to be a potential source of 28 

chromosome breakage and aneuploidy (reviewed in 26). Merotelic attachments are common during 29 

normal cell division and occasionally such improper attachments remain undetected even in normal cells 30 

(27, 28).  31 

To investigate if centromere break can be a natural source of karyotype diversity in closely related 32 

species, we sought to identify centromeres in a group of Malassezia species that show variations in 33 
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chromosome number. Malassezia species are lipid-dependent basidiomycetous fungi that are a part of 1 

animal skin microbiome (29). The electrophoretic karyotype of some of these species is known and the 2 

chromosome number ranges between six and nine chromosomes (4, 5). This species complex includes 18 3 

Malassezia species that are divided into three clades.  Fungemia-associated species like Malassezia furfur 4 

belong to clade A, common inhabitants of skin such as Malassezia sympodialis form clade B, and clade C 5 

includes Malassezia slooffiae as the basal species that diverged from the common ancestor (30, 31).  6 

Strikingly, most of these species have a compact genome of less than nine megabases in size. In this 7 

study, we experimentally validated all the eight centromeres of M. sympodialis. We traced the transition 8 

between karyotype of 8 and 9 chromosomes within clade B by predicting centromeres in five other 9 

Malassezia species carrying either eight or nine chromosomes.  Based on our results, we propose that the 10 

event of centromere break can act as a potential source of karyotype diversity and speciation in asexually 11 

propagating organisms. 12 

Results  13 

The predicted centromeres of M. sympodialis that maps to the GC troughs on each chromosome (32), 14 

resemble the AT-richness of CDEII of point centromeres in Saccharomyces cerevisiae. Organisms with 15 

point centromeres possess the CBF3 complex, a cognate protein complex specific to point centromeres 16 

(33). None of the point centromere-specific proteins could be detected in M. sympodialis (Table S1). We 17 

could however detect homologs of CENP-A, CENP-C, and most of the outer kinetochore proteins (Figure 18 

1A and Table S1). Strikingly, none of the Ctf19 complex homologs that form the Constitutively 19 

Centromere Associated Network  (CCAN) could be found (Table S1) suggesting at a loss of this protein 20 

complex in M. sympodialis as observed in other basidiomycetes such as Cryptococcus neoformans (34).  21 

Kinetochores cluster and localize to the nuclear periphery in M. sympodialis 22 

We functionally expressed an N-terminally GFP-tagged Mtw1 protein (Protein ID: SHO76526.1) from its 23 

native promoter and expression was confirmed by western blotting (Figure 1B). Upon staining with anti-24 

GFP antibodies and DAPI (4′,6-diamidino-2-phenylindole), we could detect punctate localization of 25 

Mtw1 at the nuclear periphery (Figure 1C) consistent with the clustered kinetochore localization in other 26 

yeast species (35-37). Live-cell images of MSY001 (GFP-MTW1) cells show that the kinetochores (GFP-27 

Mtw1) remain clustered throughout the cell cycle, starting from unbudded G1 cells in interphase to large 28 

budded cells in mitosis (Figure 1D). 29 

Mtw1 localized to a single region at the GC minima of each M. sympodialis chromosome 30 
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To identify the centromeres, we performed ChIP-sequencing using the GFP-Mtw1 strain of M. 1 

sympodialis MSY001. Mapping the reads to the reference genome of M. sympodialis strain ATCC42132 2 

(32) revealed one significantly enriched locus on each of the eight chromosomes (Figure 2A). The length 3 

of the Mtw1-enriched centromere regions identified from the ChIP-seq analysis range between 3167 bp 4 

and 5143 bp with an average length of 4165 bp (Table S2). However, the region of maximum enrichment 5 

(based on the number of sequenced reads aligned) mapped to the intergenic region harboring the GC 6 

trough (Figure S1A-B). The regions of enrichment we observed overlap and span the GC troughs that are 7 

predicted to be the centromeres in M. sympodialis, including the active genes located proximal to these 8 

troughs (Figure S1B). However, these ORFs do not show consensus in features such as direction of 9 

transcription or functional classification. We validated this enrichment by ChIP-qPCR analysis using 10 

primers homologous to the predicted centromeres and a control region distant from the centromere 11 

(Figure 2B).   12 

Histone H3 is depleted at the core centromere with active genes at the pericentric regions in M. 13 

sympodialis 14 

The presence of CENP-A nucleosomes should result in reduced histone H3 enrichment at the 15 

centromeres. To test this, we performed ChIP with anti-H3 antibodies and analyzed the 16 

immunoprecipitated (IP) DNA by qPCR. As compared to a control ORF region (190 kb away from 17 

CEN1), the pericentric regions flanking the core centromeres showed a marginal reduction in histone H3 18 

enrichment which was further reduced at the core that maps to the GC minima with the highest 19 

enrichment of the kinetochore protein. That the core centromere region showing the maximum depletion 20 

of histone H3 coincided with the regions most enriched with Mtw1 further supports that histone H3, in 21 

these regions, is possibly replaced by its centromere specific variant CENP-A (Figure S1D).  22 

Centromere sequences share a 12 bp long AT-rich consensus sequence motif 23 

To understand the features of M. sympodialis centromeres, we analyzed the centromere DNA sequences 24 

for the presence of consensus motifs or structures such as inverted repeats. PhyloGibbs-MP (38, 39) 25 

predicted a 12 bp long AT-rich motif common to all of the centromere sequences of M. sympodialis 26 

(Figure 2C).  We swept the Position Weight Matrix (PWM) across each chromosome of M. sympodialis 27 

and calculated the average log-likelihood ratio (LLR) in 500 bp sliding windows spaced at 100 bp, 28 

averaged over each 12 bp substring of each window.  The LLR is the natural logarithm of the ratio of the 29 

likelihood of the 12 bp substring arising as a sample from the PWM, to the likelihood of it being generic 30 

“background”. In each case, the global peak coincides with the centromere.  This suggests that the AT-31 

rich motif is more enriched at the centromeres than at any other region in the genome (Figure S3A).  We 32 
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also searched for specific matches to the motif, genome-wide, by looking for site matches with a LLR 1 

greater than 7.5.  There is one global peak per 500 bp window per chromosome, again matching the 2 

centromeres. A dot-plot aligning all the 10 kb bins containing centromere sequences against themselves 3 

generated using SyMap (40) further confirmed a lack of direct/inverted repeat structures (Figure S1E). 4 

The only unique feature of all eight centromere sequences is the presence of an AT-rich core (average AT 5 

content of 78% as compared to genome average of 41.5%) along with the 12 bp motif and a uniform 6 

kinetochore protein-bound region of 3 to 5 kb.  7 

Chromosome number variation in Malassezia species Clade B 8 

The basal species M. slooffiae (clade C) was reported to have 9 chromosomes (5). Within clade B, M. 9 

globosa and M. restricta were reported to have 9 chromosomes and M. sympodialis shown to have 8 10 

chromosomes (4, 32). To validate the karyotype of M. globosa and M. slooffiae, we assembled their 11 

genomes de novo using long reads generated by PacBio sequencing technology. The M. globosa genome 12 

is a complete assembly in 9 chromosomes. We assigned each band on the pulsed field gel based on the 13 

sizes from our genome assembly and confirmed by Southern hybridization that chromosome 5 containing 14 

the rDNA locus (renamed as ChrR) migrates along with chromosome 3, higher than the expected size of 15 

902 kb (Figure 3A, S2A).  The assembled genome of M. slooffiae has 14 contigs of which 9 contigs have 16 

telomeres on both ends indicative of 9 chromosomes. The sizes from the genome assembly could be 17 

assigned to the bands observed in the pulsed field gel (Figure S2B). To further confirm the assigned 18 

karyotype and elucidate the basis of changes observed in the karyotype in more detail, we sought to map 19 

the centromeres of M. globosa, M. slooffiae and M. restricta. 20 

CEN2 maps to a synteny breakpoint in M. globosa 21 

Similar to M. sympodialis centromeres, we predicted the distinct GC minimum in each of the nine 22 

chromosomes of M. globosa, M. slooffiae, and M. restricta as the centromeres. The 12 bp AT-rich motif 23 

identified in M. sympodialis centromeres were enriched in these predicted centromeres as well (Figure 2C 24 

and S3B-D). The gene order and synteny across centromeres is largely conserved within closely related 25 

species (8, 41, 42). We mapped these regions in the context of gene synteny between each of these 26 

species and M. sympodialis. From this analysis, we find 8 GC troughs in M. globosa and M. slooffiae that 27 

share synteny with centromere regions of M. sympodialis (Figure 3B-C), supporting the fact that these 28 

regions are candidate centromeres in the corresponding species. In M. restricta, we find 7 predicted 29 

centromeres that are completely syntenous with M. sympodialis centromeres and one other centromere 30 

where partial synteny is maintained (Figure S4). However, a lack of synteny conservation was observed 31 
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in the centromeres of Chr2 in M. globosa, scaffold 4 in M. slooffiae, and scaffold 8 in M. restricta (Figure 1 

S4).  2 

The GC trough corresponding to MgCEN2 is flanked by genes that map to MsChr2 on one arm and 3 

MsChr4 on the other (Figure 3D). This putative centromere region marks a synteny breakpoint showing 4 

no homology in the M. sympodialis genome indicative of a loss of this centromere. We also observed that 5 

the genes flanking the breakpoint are conserved in M. sympodialis suggesting that the specific intergenic 6 

region was involved (Figure S2B). Evidence for internalization of telomere adjacent ORFs or presence of 7 

interstitial telomere repeats indicative of telomere-telomere fusions were not detected in the M. 8 

sympodialis genome. These observations strongly support our hypothesis that breakage of CEN2 (or the 9 

orthologous ancestral CEN) and fusion of the two acentric arms to other chromosomes resulted in the 10 

chromosome number reduction observed between these species.  11 

To map the first common ancestor to have experienced this break, we analyzed the regions flanking 12 

CEN2 of M. globosa, and the centromeres of scaffold 4 of M. slooffiae and scaffold 8 of M. restricta. 13 

Conservation of synteny between M. globosa and M. slooffiae chromosomes at this locus suggests that the 14 

last common ancestor species contained 9 chromosomes (Figure 4A, yellow and blue circles). In scaffold 15 

8 of M. restricta, the gene order is maintained with the centromere on one side while the genes on the 16 

other side were rearranged to a region 220 kb away from the centromere on the same scaffold consistent 17 

with further recombination at the locus. Besides M. sympodialis, Malassezia nana, Malassezia caprae, 18 

Malassezia equina, and Malassezia dermatis are some other species that form the clade B (Figure 4A). 19 

We identified putative centromeres using gene synteny and GC troughs in M. nana and M. dermatis 20 

because of their relatively better assembled genomes distributed in 13 and 18 scaffolds respectively. In 21 

both of these species, we detected 8 centromeres that share complete synteny conservation with M. 22 

sympodialis centromeres indicative of 8 chromosomes in these species (Figure S4 and Table S3). This 23 

was further supported by the enrichment of the 12 bp AT-rich motif at these predicted centromeres 24 

(Figure S3E-F).  Based on this synteny analysis, we propose that centromere breakage would have 25 

occurred in the common ancestor with 9 chromosomes giving rise to an 8-chromosome karyotype that 26 

was inherited by M. sympodialis and related species. 27 

Sequence conservation at centromeres 28 

The orthologous centromeres in M. sympodialis and M. globosa were aligned using FSA (43), and 391 29 

orthologous intergenic regions, identified with neighboring gene orthology and synteny, were similarly 30 

aligned. We found no significant difference in conservation rate between centromeric sequence and other 31 

intergenic sequence. 32 
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Discussion 1 

A distinguishing feature of fungal centromeres/kinetochores is their clustered localization in the vicinity 2 

of SPBs at the nuclear periphery (44). Kinetochores in ascomycetes are clustered throughout the cell cycle 3 

with the exception of Schizosaccharomyces pombe and Zymoseptoria tritici (45, 46). The kinetochore 4 

proteins in the basidiomycetous yeast C. neoformans assemble in a stepwise manner and transit between 5 

unclustered and clustered states during interphase and mitosis respectively (47). The dynamics of the 6 

outer kinetochore in M. sympodialis reveals two features that distinguish the kinetochore assembly from 7 

another basidiomycete yeast C. neoformans: (a) the kinetochores are clustered across different stages of 8 

budding/cell cycle, and (b) the presence of clustered kinetochores across all cell cycle stages is suggestive 9 

of a constitutively assembled kinetochore. At the composition level, we could not detect the homologs of 10 

Constitutive Centromere Associated Network (CCAN) proteins similar to the observations in C. 11 

neoformans. With the advent of genetic manipulations (48-50), Malassezia species serve as an 12 

unconventional model system to understand structural and function diversity of kinetochores.  13 

Most yeast species having single nucleosome-length long point centromeres have smaller genomes (< 14 14 

Mb).  While most Malassezia species including M. sympodialis and M. globosa have genomes that are 15 

highly compact (< 9 Mb), the centromeres are 3 to 5 kb in length. These small regional centromeres are 16 

distinct from the large, transposon-associated repetitive centromeres of the Cryptococcus species 17 

complex, the only other known basidiomycete centromere (42, 51). However, centromeres of similar 18 

lengths are reported in ascomycetous yeasts that include various Candida species (8, 52-54). Inverted 19 

repeats flanking the CENP-A enriched core have been reported to promote de novo centromere formation 20 

and subsequent stabilization of a replicative plasmid in S. pombe, C. tropicalis, and Komagataella phaffii 21 

(52, 55-58). No such structures were detected in the M. sympodialis and M. globosa centromeres (Figure 22 

S1E, S1F). Within the 3 to 5 kb long centromere, the region showing maximum Mtw1 enrichment 23 

mapped to the intergenic region containing the AT-rich centromere core. This is suggestive of a bipartite 24 

structure comprised of (a) a CDEII -like AT-rich core that shows maximum kinetochore enrichment and 25 

(b) the flanking pericentric regions that show basal levels of enrichment. Centromeres are known to be 26 

among the most rapidly evolving genomic loci (7-9). Strikingly, the centromeres identified in M. 27 

sympodialis show no signs of enhanced sequence divergence when compared to other orthologous 28 

intergenic regions in M. globosa. Adding to this, the 12 bp AT-rich consensus motif is enriched at the 29 

centromeres across different Malassezia species. While the functional significance of this conservation is 30 

unknown, it will be intriguing to test the role of the 12 bp centromere-specific AT-rich motif, the core, 31 

and the flanking sequence in centromere function. Testing these domains for centromere function in vivo 32 

by making centromeric plasmids in various Malassezia species is challenging due to technical limitations. 33 
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Besides M. sympodialis, M. pachydermatis and M. furfur, no other Malassezia species have been 1 

successfully transformed (48-50). Even in all the above cases, the genetic manipulations are performed by 2 

Agrobacterium-mediated transconjugation, which is not suitable for inserts to be maintained as circular 3 

plasmids. However, based on the conservation at the centromeres across species in this study 4 

(representative of Clade B and C), the 12 bp AT-rich motif can be a potential signature of centromeres in 5 

the Malassezia species complex. 6 

The transcriptional state of chromatin has been reported to be a key determinant of centromere identity 7 

(59-64). Apart from heterochromatic histone marks, DNA marks such as cytosine DNA methylation are 8 

also enriched in N. crassa and C. neoformans centromeres (42, 65). The centromeres in M. sympodialis 9 

contain many ORFs that are transcribed (Figure S1B). The presence of transcribing ORFs has been 10 

documented earlier in centromeres of rice, maize and Z. tritici (46, 66, 67). Unlike these cases, our read 11 

count analysis did not reveal any significant difference in the transcription (RPKM values) of centromeric 12 

ORFs to that elsewhere in the genome (Figure S1C). In line with these results, homologs of the proteins 13 

commonly involved in heterochromatin formation such as Clr4, members of the RNAi complex, Swi6 14 

and Dnmt5 could not be detected in M. sympodialis.  15 

In this study, we provide evidence for loss of a centromere by breakage resulting in a karyotype change 16 

between two closely placed group of species, the species with 9 chromosomes such as M. globosa and the 17 

ones with 8 chromosomes including M. sympodialis. Synteny breakpoints adjacent to the centromeres 18 

have been reported in C. tropicalis that has seven chromosomes - one less than that of C. albicans (52). 19 

Centromere loss by breakage in the pre-WGD ancestor was proposed to have reduced the Ashbya gossypii 20 

karyotype by one (2). Breakpoints of conserved synteny between mammalian and chicken chromosomes 21 

were also mapped to the centromeres (68). Similar consequences in the karyotype have been reported in 22 

cases where centromeres were experimentally excised. Besides neocentromere formation, survival by 23 

fusion of acentric chromosome arms has been shown in S. pombe (69). This strongly suggests that any 24 

compromise in centromere function has a direct role in shaping chromosome structure and karyotype of 25 

organisms. 26 

What is the driving force for the karyotypic diversity observed within the Malassezia species? The 27 

centromere are the primary attachment sites for microtubules. Dysregulated mitotic spindles in the form 28 

of unchecked merotelic attachments has been implicated in the generation of intra-mitotic DSBs at 29 

centromeres, indicated by the accumulation of γH2AX in a majority of mammalian cells (23). This 30 

fragility is more pronounced in cases where AT-rich DNA is present.  Studies of human fragile site 31 

FRA16D show that the AT-rich DNA (Flex1) results in fork stalling as a consequence of cruciform 32 

structure formation (70). The AT-rich core centromere sequence in M. globosa is also predicted to form 33 
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secondary structures. The replication fork stalling commonly observed in centromeres (71-73) can result 1 

in accumulation of single stranded DNA, providing impetus to form such secondary structures. In 2 

conjunction with unresolved merotelic attachments, these can result in DSBs at the centromere. 3 

Chromosomal breakage and aneuploidy results when cells fail to rectify these defects, as seen in cancers 4 

(74). In mammals, centromeric DSBs are repaired efficiently compared to regions elsewhere in the 5 

genome largely due to the presence of several homology tracts in the form of repetitive DNA sequences 6 

or the stiffness provided by the inherent heterochromatic state to facilitate ligation (75). In the absence of 7 

pericentric heterochromatin in Malassezia species, how efficiently NHEJ might repair the centromeric 8 

DSBs is not known. Merotelic attachments routinely occur in normal cells and are corrected early in 9 

mitosis prior to anaphase by various means (24, 27). When unchecked, this results in DSBs that elicit a 10 

stop anaphase signal by activation of the mitotic checkpoint (76). This delay facilitates the tension sensor 11 

protein Aurora B kinase-mediated detachment of microtubules from the kinetochore and establishment of 12 

proper attachments (77). Besides these, additional mechanisms such as the monopolin complex-mediated 13 

recruitment of condensins have been proposed to suppress merotely in organisms that lack pericentric 14 

heterochromatin (78-81). We could not detect homologs for any proteins of the monopolin complex in 15 

Malassezia except Csm1. Based on these lines of evidence, we propose that unresolved merotelic 16 

attachments could cause breaks at the centromere resulting in the diverse karyotypes seen within the 17 

Malassezia species complex (Figure 4B).  18 

Materials and Methods 19 

The strains, plasmids and primers used in this study are mentioned in the SI appendix. Malassezia strains 20 

were grown on modified-Dixon’s media (Malt extract 36 g/L, Desiccated oxbile 20 g/L, Tween40 10 21 

mL/L, Peptone 6g/L, Glycerol 2mL/L, Oleic acid 2.89 mL/L). M. sympodialis and M. globosa strains 22 

were grown at 30°C and 32°C respectively. M. sympodialis was transformed by Agrobacterium mediated 23 

transconjugation. All experimental procedures and sequence analysis are described in detail in SI 24 

Materials and Methods. The Mtw1 ChIP sequencing reads and the genome sequences assemblies of M. 25 

globosa and M. slooffiae reported in this paper have been deposited under NCBI BioProject (Accession 26 

number PRJNA509412). 27 

Acknowledgments 28 

We thank Clevergene Biocorp Pvt. Ltd., Bengaluru for generating the Mtw1 ChIP-sequencing data. S.R.S 29 

is a Senior Research Fellow supported by intramural funding from JNCASR. M.H.R is a National 30 

Postdoctoral Fellow (PDF/2016/002858), supported by the Science and Engineering Research Board 31 

(SERB), Department of Science and Technology (DST), Government of India. K.S is a Tata Innovation 32 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/533794doi: bioRxiv preprint 

https://doi.org/10.1101/533794


Fellow (grant number BT/HRT/35/01/03/2017), is supported by a grant for Life Science Research, 1 

Education and Training (BT/INF/22/SP27679/2018) of Department of Biotechnology, Govt. of India and 2 

intramural funding from JNCASR. Studies are supported in part by NIH/NIAID R37 award AI39115-21 3 

and R01 award AI50113-15 to J.H. T.L.D acknowledges the A* STAR Industry alignment fund 4 

H18/01a0/016, Asian Skin Microbiome Program. We thank the members of K.S lab and J.H lab for 5 

valuable discussions and comments during bi-weekly Skype meetings. 6 

Author contributions 7 

J.H, and K.S conceived and secured funding for the study. S.R.S, G.I, M.H.R, and S.S performed the 8 

experiments. R.S performed centromere sequence conservation analysis and identified the motif reported 9 

in this study. S.R.S, M.H.R, B.C.T, P.G, and M.D.C performed all the other bioinformatic analysis. 10 

T.L.D, and C.T.R sequenced and assembled the genomes of M. globosa and M. slooffiae. S.R.S and K.S 11 

wrote the manuscript with inputs from all the authors. 12 

Declaration of Interests 13 

The authors declare no competing interests. 14 

References 15 

1. Coghlan A, Eichler EE, Oliver SG, Paterson AH, & Stein L (2005) Chromosome evolution in 16 
eukaryotes: a multi-kingdom perspective. Trends Genet 21(12):673-682. 17 

2. Gordon JL, Byrne KP, & Wolfe KH (2011) Mechanisms of chromosome number evolution in 18 
yeast. PLoS Genet 7(7):e1002190. 19 

3. Theelen B, et al. (2018) Malassezia ecology, pathophysiology, and treatment. Med Mycol 20 
56(suppl_1):S10-S25. 21 

4. Boekhout T & Bosboom RW (1994) Karyotyping of Malassezia Yeasts - Taxonomic and 22 
Epidemiologic Implications. Syst Appl Microbiol 17(1):146-153. 23 

5. Boekhout T, Kamp M, & Gueho E (1998) Molecular typing of Malassezia species with PFGE and 24 
RAPD. Med Mycol 36(6):365-372. 25 

6. Roy B & Sanyal K (2011) Diversity in requirement of genetic and epigenetic factors for 26 
centromere function in fungi. Eukaryot Cell 10(11):1384-1395. 27 

7. Bensasson D, Zarowiecki M, Burt A, & Koufopanou V (2008) Rapid evolution of yeast 28 
centromeres in the absence of drive. Genetics 178(4):2161-2167. 29 

8. Padmanabhan S, Thakur J, Siddharthan R, & Sanyal K (2008) Rapid evolution of Cse4p-rich 30 
centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida 31 
dubliniensis. Proc Natl Acad Sci U S A 105(50):19797-19802. 32 

9. Rhind N, et al. (2011) Comparative functional genomics of the fission yeasts. Science 33 
332(6032):930-936. 34 

10. Talbert PB, Bryson TD, & Henikoff S (2004) Adaptive evolution of centromere proteins in plants 35 
and animals. J Biol 3(4):18. 36 

11. Ravi M & Chan SW (2010) Haploid plants produced by centromere-mediated genome 37 
elimination. Nature 464(7288):615-618. 38 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/533794doi: bioRxiv preprint 

https://doi.org/10.1101/533794


12. Sanei M, Pickering R, Kumke K, Nasuda S, & Houben A (2011) Loss of centromeric histone H3 1 
(CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley 2 
hybrids. Proc Natl Acad Sci U S A 108(33):E498-505. 3 

13. Henikoff S, Ahmad K, & Malik HS (2001) The centromere paradox: stable inheritance with rapidly 4 
evolving DNA. Science 293(5532):1098-1102. 5 

14. Malik HS & Henikoff S (2009) Major evolutionary transitions in centromere complexity. Cell 6 
138(6):1067-1082. 7 

15. Barraclough TG, Birky CW, Jr., & Burt A (2003) Diversification in sexual and asexual organisms. 8 
Evolution 57(9):2166-2172. 9 

16. Lysak MA (2014) Live and let die: centromere loss during evolution of plant chromosomes. New 10 
Phytol 203(4):1082-1089. 11 

17. McClintock B (1941) The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 12 
26(2):234-282. 13 

18. Han F, Gao Z, & Birchler JA (2009) Reactivation of an inactive centromere reveals epigenetic and 14 
structural components for centromere specification in maize. Plant Cell 21(7):1929-1939. 15 

19. Sato H, Masuda F, Takayama Y, Takahashi K, & Saitoh S (2012) Epigenetic inactivation and 16 
subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr Biol 17 
22(8):658-667. 18 

20. JW IJ, Baldini A, Ward DC, Reeders ST, & Wells RA (1991) Origin of human chromosome 2: an 19 
ancestral telomere-telomere fusion. Proc Natl Acad Sci U S A 88(20):9051-9055. 20 

21. Schubert I & Lysak MA (2011) Interpretation of karyotype evolution should consider 21 
chromosome structural constraints. Trends Genet 27(6):207-216. 22 

22. Murat F, et al. (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of 23 
genome shuffling as a source of plant evolution. Genome Res 20(11):1545-1557. 24 

23. Guerrero AA, et al. (2010) Centromere-localized breaks indicate the generation of DNA damage 25 
by the mitotic spindle. Proc Natl Acad Sci U S A 107(9):4159-4164. 26 

24. Guerrero AA, Martinez AC, & van Wely KH (2010) Merotelic attachments and non-homologous 27 
end joining are the basis of chromosomal instability. Cell Div 5:13. 28 

25. Cimini D, et al. (2001) Merotelic kinetochore orientation is a major mechanism of aneuploidy in 29 
mitotic mammalian tissue cells. J Cell Biol 153(3):517-527. 30 

26. Martinez AC & van Wely KH (2011) Centromere fission, not telomere erosion, triggers 31 
chromosomal instability in human carcinomas. Carcinogenesis 32(6):796-803. 32 

27. Cimini D, Moree B, Canman JC, & Salmon ED (2003) Merotelic kinetochore orientation occurs 33 
frequently during early mitosis in mammalian tissue cells and error correction is achieved by two 34 
different mechanisms. J Cell Sci 116(Pt 20):4213-4225. 35 

28. Rupa DS, Hasegawa L, & Eastmond DA (1995) Detection of chromosomal breakage in the 1cen-36 
1q12 region of interphase human lymphocytes using multicolor fluorescence in situ 37 
hybridization with tandem DNA probes. Cancer Res 55(3):640-645. 38 

29. Saunders CW, Scheynius A, & Heitman J (2012) Malassezia fungi are specialized to live on skin 39 
and associated with dandruff, eczema, and other skin diseases. PLoS Pathog 8(6):e1002701. 40 

30. Wu G, et al. (2015) Genus-wide comparative genomics of Malassezia delineates its phylogeny, 41 
physiology, and niche Adaptation on human skin. PLoS Genet 11(11):e1005614. 42 

31. Lorch JM, et al. (2018) Malassezia vespertilionis sp. nov.: a new cold-tolerant species of yeast 43 
isolated from bats. Persoonia-Molecular Phylogeny and Evolution of Fungi 41::56-70. 44 

32. Zhu Y, et al. (2017) Proteogenomics produces comprehensive and highly accurate protein-coding 45 
gene annotation in a complete genome assembly of Malassezia sympodialis. Nucleic Acids Res 46 
45(5):2629-2643. 47 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/533794doi: bioRxiv preprint 

https://doi.org/10.1101/533794


33. Meraldi P, McAinsh AD, Rheinbay E, & Sorger PK (2006) Phylogenetic and structural analysis of 1 
centromeric DNA and kinetochore proteins. Genome Biol 7(3):R23. 2 

34. van Hooff JJ, Tromer E, van Wijk LM, Snel B, & Kops GJ (2017) Evolutionary dynamics of the 3 
kinetochore network in eukaryotes as revealed by comparative genomics. EMBO Rep 4 
18(9):1559-1571. 5 

35. Euskirchen GM (2002) Nnf1p, Dsn1p, Mtw1p, and Nsl1p: a new group of proteins important for 6 
chromosome segregation in Saccharomyces cerevisiae. Eukaryot Cell 1(2):229-240. 7 

36. Goshima G, Saitoh S, & Yanagida M (1999) Proper metaphase spindle length is determined by 8 
centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev 9 
13(13):1664-1677. 10 

37. Roy B, Burrack LS, Lone MA, Berman J, & Sanyal K (2011) CaMtw1, a member of the 11 
evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner 12 
kinetochore assembly in the pathogenic yeast Candida albicans. Mol Microbiol 80(1):14-32. 13 

38. Siddharthan R (2008) PhyloGibbs-MP: module prediction and discriminative motif-finding by 14 
Gibbs sampling. PLoS Comput Biol 4(8):e1000156. 15 

39. Siddharthan R, Siggia ED, & van Nimwegen E (2005) PhyloGibbs: a Gibbs sampling motif finder 16 
that incorporates phylogeny. PLoS Comput Biol 1(7):e67. 17 

40. Soderlund C, Bomhoff M, & Nelson WM (2011) SyMAP v3.4: a turnkey synteny system with 18 
application to plant genomes. Nucleic Acids Res 39(10):e68. 19 

41. Byrne KP & Wolfe KH (2005) The Yeast Gene Order Browser: combining curated homology and 20 
syntenic context reveals gene fate in polyploid species. Genome Res 15(10):1456-1461. 21 

42. Yadav V, et al. (2018) RNAi is a critical determinant of centromere evolution in closely related 22 
fungi. Proc Natl Acad Sci U S A 115(12):3108-3113. 23 

43. Bradley RK, et al. (2009) Fast statistical alignment. PLoS Comput Biol 5(5):e1000392. 24 
44. Duan Z, et al. (2010) A three-dimensional model of the yeast genome. Nature 465(7296):363-25 

367. 26 
45. Liu X, McLeod I, Anderson S, Yates JR, 3rd, & He X (2005) Molecular analysis of kinetochore 27 

architecture in fission yeast. EMBO J 24(16):2919-2930. 28 
46. Schotanus K, et al. (2015) Histone modifications rather than the novel regional centromeres of 29 

Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenetics Chromatin 8:41. 30 
47. Kozubowski L, et al. (2013) Ordered kinetochore assembly in the human-pathogenic 31 

basidiomycetous yeast Cryptococcus neoformans. mBio 4(5):e00614-00613. 32 
48. Ianiri G, Averette AF, Kingsbury JM, Heitman J, & Idnurm A (2016) Gene function analysis in the 33 

ubiquitous human commensal and pathogen Malassezia Genus. mBio 7(6). 34 
49. Celis AM, et al. (2017) Highly efficient transformation system for Malassezia furfur and 35 

Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. J 36 
Microbiol Methods 134:1-6. 37 

50. Ianiri G, Applen Clancey S, Lee SC, & Heitman J (2017) FKBP12-dependent inhibition of 38 
calcineurin mediates immunosuppressive antifungal drug action in Malassezia. mBio 8(5). 39 

51. Sun S, et al. (2017) Fungal genome and mating system transitions facilitated by chromosomal 40 
translocations involving intercentromeric recombination. PLoS Biol 15(8):e2002527. 41 

52. Chatterjee G, et al. (2016) Repeat-associated fission yeast-like regional centromeres in the 42 
ascomycetous budding yeast Candida tropicalis. PLoS Genet 12(2):e1005839. 43 

53. Kapoor S, Zhu L, Froyd C, Liu T, & Rusche LN (2015) Regional centromeres in the yeast Candida 44 
lusitaniae lack pericentromeric heterochromatin. Proc Natl Acad Sci U S A 112(39):12139-12144. 45 

54. Sanyal K, Baum M, & Carbon J (2004) Centromeric DNA sequences in the pathogenic yeast 46 
Candida albicans are all different and unique. Proc Natl Acad Sci U S A 101(31):11374-11379. 47 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/533794doi: bioRxiv preprint 

https://doi.org/10.1101/533794


55. Baum M, Ngan VK, & Clarke L (1994) The centromeric K-type repeat and the central core are 1 
together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol Biol 2 
Cell 5(7):747-761. 3 

56. Coughlan AY, Hanson SJ, Byrne KP, & Wolfe KH (2016) Centromeres of the yeast Komagataella 4 
phaffii (Pichia pastoris) have a simple inverted-repeat structure. Genome Biol Evol 8(8):2482-5 
2492. 6 

57. Takahashi K, et al. (1992) A low copy number central sequence with strict symmetry and unusual 7 
chromatin structure in fission yeast centromere. Mol Biol Cell 3(7):819-835. 8 

58. Luiza Cesca Piva JDM, Lidia Moraes, Viviane Reis, Fernando Araripe Goncalves Torres (2018) 9 
Genetic analysis of the Komagataella phaffii centromeres by a color-based plasmid stability 10 
assay. bioRxiv 433417; . 11 

59. Chan FL & Wong LH (2012) Transcription in the maintenance of centromere chromatin identity. 12 
Nucleic Acids Res 40(22):11178-11188. 13 

60. Volpe TA, et al. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 14 
methylation by RNAi. Science 297(5588):1833-1837. 15 

61. Freire-Beneitez V, Price RJ, & Buscaino A (2016) The chromatin of Candida albicans 16 
pericentromeres bears features of both euchromatin and heterochromatin. Front Microbiol 17 
7:759. 18 

62. Bobkov GOM, Gilbert N, & Heun P (2018) Centromere transcription allows CENP-A to transit 19 
from chromatin association to stable incorporation. J Cell Biol 217(6):1957-1972. 20 

63. Du Y, Topp CN, & Dawe RK (2010) DNA binding of centromere protein C (CENPC) is stabilized by 21 
single-stranded RNA. PLoS Genet 6(2):e1000835. 22 

64. Talbert PB & Henikoff S (2018) Transcribing centromeres: noncoding RNAs and kinetochore 23 
assembly. Trends Genet 34(8):587-599. 24 

65. Selker EU, et al. (2003) The methylated component of the Neurospora crassa genome. Nature 25 
422(6934):893-897. 26 

66. Nagaki K, et al. (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 27 
36(2):138-145. 28 

67. Wang K, Wu Y, Zhang W, Dawe RK, & Jiang J (2014) Maize centromeres expand and adopt a 29 
uniform size in the genetic background of oat. Genome Res 24(1):107-116. 30 

68. International Chicken Genome Sequencing C (2004) Sequence and comparative analysis of the 31 
chicken genome provide unique perspectives on vertebrate evolution. Nature 432(7018):695-32 
716. 33 

69. Ishii K, et al. (2008) Heterochromatin integrity affects chromosome reorganization after 34 
centromere dysfunction. Science 321(5892):1088-1091. 35 

70. Zhang H & Freudenreich CH (2007) An AT-rich sequence in human common fragile site FRA16D 36 
causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 27(3):367-379. 37 

71. Greenfeder SA & Newlon CS (1992) Replication forks pause at yeast centromeres. Mol Cell Biol 38 
12(9):4056-4066. 39 

72. Mitra S, Gomez-Raja J, Larriba G, Dubey DD, & Sanyal K (2014) Rad51-Rad52 mediated 40 
maintenance of centromeric chromatin in Candida albicans. PLoS Genet 10(4):e1004344. 41 

73. Smith JG, et al. (1995) Replication of centromere II of Schizosaccharomyces pombe. Mol Cell Biol 42 
15(9):5165-5172. 43 

74. Kops GJ, Weaver BA, & Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic 44 
checkpoint. Nat Rev Cancer 5(10):773-785. 45 

75. Rief N & Lobrich M (2002) Efficient rejoining of radiation-induced DNA double-strand breaks in 46 
centromeric DNA of human cells. J Biol Chem 277(23):20572-20582. 47 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/533794doi: bioRxiv preprint 

https://doi.org/10.1101/533794


76. Dotiwala F, Harrison JC, Jain S, Sugawara N, & Haber JE (2010) Mad2 prolongs DNA damage 1 
checkpoint arrest caused by a double-strand break via a centromere-dependent mechanism. 2 
Curr Biol 20(4):328-332. 3 

77. Strunnikov AV (2010) One-hit wonders of genomic instability. Cell Div 5(1):15. 4 
78. Brito IL, Monje-Casas F, & Amon A (2010) The Lrs4-Csm1 monopolin complex associates with 5 

kinetochores during anaphase and is required for accurate chromosome segregation. Cell Cycle 6 
9(17):3611-3618. 7 

79. Burrack LS, Applen Clancey SE, Chacon JM, Gardner MK, & Berman J (2013) Monopolin recruits 8 
condensin to organize centromere DNA and repetitive DNA sequences. Mol Biol Cell 9 
24(18):2807-2819. 10 

80. Rumpf C, et al. (2010) Laser microsurgery provides evidence for merotelic kinetochore 11 
attachments in fission yeast cells lacking Pcs1 or Clr4. Cell Cycle 9(19):3997-4004. 12 

81. Tada K, Susumu H, Sakuno T, & Watanabe Y (2011) Condensin association with histone H2A 13 
shapes mitotic chromosomes. Nature 474(7352):477-483. 14 

82. Kim M, et al. (2018) Genomic tandem quadruplication is associated with ketoconazole 15 
resistance in Malassezia pachydermatis. J Microbiol Biotechnol 28(11):1937-1945. 16 

 17 

  18 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/533794doi: bioRxiv preprint 

https://doi.org/10.1101/533794


Figures and figure legends 1 

 2 

 3 

Figure 1. Kinetochores cluster and localized at the nuclear periphery in M. sympodialis. (A) 4 

Schematic of the organization of the kinetochore in M. sympodialis. Gray boxes indicate proteins absent 5 

in M. sympodialis. The outer kinetochore protein Mtw1 has been used as the kinetochore marker in the 6 

present study.  (B) Line diagram representation of the tagging of GFP at the N-terminus of Mtw1. 7 

Immunoblot analysis using whole cell lysates prepared from the untagged strain (M. sympodialis 8 

ATCC42132) and GFP-Mtw1 expressing cells probed with anti-GFP antibodies and anti-PSTAIRE 9 

antibodies. PSTAIRE was used as a loading control. (C) Logarithmically grown cells expressing GFP-10 

Mtw1 were fixed and stained with DAPI (blue) and anti-GFP antibodies (pseudo-colored as red). Bar, 2.5 11 

µm. (D) Cell cycle stage-specific localization dynamics of GFP-Mtw1 from interphase (unbudded) 12 

through mitosis (large budded). Scale bar, 2.5 µm. 13 

  14 
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 1 

Figure 2. Single-peak localization of Mtw1 identifies centromeres on each of the eight chromosomes 2 

of M. sympodialis. (A) GFP-Mtw1 ChIP-seq reads mapped along each chromosome. The x-axis indicates 3 
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chromosome coordinates (in kb) and the y-axis indicates distribution of sequenced reads. “Input”, reads 1 

from total DNA; “IP,” reads from immunoprecipitated sample; CEN, Mtw1-enriched regions derived by 2 

subtracting input reads from those of the IP sample (peak values 0-2250). Additional peaks observed in 3 

both IP and input tracks on Chr5 are from the rDNA locus. (B) ChIP-qPCR assays validating the 4 

enrichment of Mtw1 at the centromeres. The x-axis indicates individual CEN regions and the y-axis 5 

indicates enrichment as normalized % input immunoprecipitated. Error bars indicate standard error mean 6 

(SEM). (C) Logo of consensus DNA sequence identified from M. sympodialis centromeres, graphically 7 

represented with the size of the base correlating to the frequency of occurrence. 8 
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 1 

Figure 3. Centromere of chromosome 2 of M. globosa (MgChr2) maps to a synteny breakpoint. 2 

(A) Chromosomes of M. globosa were resolved on CHEF gels and stained with ethidium bromide (EtBr) 3 

along with S. cerevisiae chromosomes used as size markers (also see Figure S2A). The gels were blotted 4 

and probed with unique sequences from Chr3, Chr4, Chr5, and ChrR (right panel). (B) The panel 5 

represents the karyotype and the position of centromeres, telomeres, rDNA loci, and the HD and P/R 6 

MAT loci of M. globosa and M. sympodialis as a linear bar diagram. M. sympodialis chromosomes are 7 

color coded based on their synteny with M. globosa chromosomes. (C) A circos plot depicting the 8 

conserved synteny blocks between the M. globosa (CBS7966 strain) and M. sympodialis chromosomes. 9 

Tracks from outside to inside represent- positions of centromeres and telomeres, GC content (red/blue 10 

line diagram) and colored connectors indicate regions of synteny between the two species. (D) Linear 11 

chromosome plot depicting the synteny between chromosome 2 of M. globosa and chromosomes 2, 4, 12 

and 5 of M. sympodialis. GC content (in %) is shown as red/blue line diagram above each chromosome. 13 

Pink connectors represent regions with synteny to MgChr2 and blue connectors represent those of 14 

MgChr4. Labels in black circles mark the synteny breakpoints. Synteny breakpoint of MgChr2 is marked 15 

as MgCEN2(III). The regions on MsChr2 and MsChr4 where the homologs of ORFs flanking the 16 
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breakpoint are located are marked II and IV. The synteny block start site between MgChr4 and MsChr4 of 1 

M. globosa is labeled V. 2 

 3 

 4 

Figure 4. Karyotype evolution by centromere breakage and loss in Malassezia species  5 

(A) Cladogram of closely related Malassezia species with their chromosome number in brackets (adapted 6 

from (31)). The chromosome numbers mentioned for M. slooffiae and M. globosa are based on results 7 

from this study. In case of M. sympodialis, M. restricta, M. pachydermatis, and M. furfur, the numbers are 8 

based on previous reports (4, 5, 32, 82). For M. dermatis and M. nana, the number of predicted 9 

centromeres, indicative of chromosome number, is mentioned in the brackets. Blue and green lines/circles 10 

indicate karyotype with 9 and 8 chromosomes respectively. The yellow circle marks the ancestral 11 
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karyotype with 9 chromosomes. (B) Schematic of the centromere break and the resulting reduction in 1 

chromosome number as a consequence of unresolved merotelic attachment and fusion of chromosome 2 

arms to other chromosomes. A karyotype with 9 chromosomes (as shown for M. globosa) is depicted as 3 

the ancestral state. 4 

 5 
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