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Abstract 
Bacteria often live in spatially structured groups such as biofilms. In these groups, cells can collectively generate 
gradients through the uptake and release of compounds. In turn, individual cells adapt their activities to the envi-
ronment shaped by the whole group. Here we studied how these processes can generate phenotypic variation in 
clonal populations and how this variation contributes to the resilience of the population to antibiotics. We grew 
two-dimensional populations of Escherichia coli in microfluidic chambers where limiting amounts of glucose were 
supplied from one side. We found that the collective metabolic activity of cells created microscale gradients where 
nutrient concentration varied over a few cell lengths. As a result, growth rates and gene expression levels varied 
strongly between neighbouring cells. Furthermore, we found evidence for a metabolic cross-feeding interaction 
between glucose fermenting and acetate respiring subpopulations. Finally, we found that subpopulations of cells 
were able to survive an antibiotic pulse that was lethal in well-mixed conditions, likely due to the presence of a 
slow growing subpopulation. Our work shows that emergent metabolic gradients can have important conse-
quences for the functionality of bacterial populations as they create opportunities for metabolic interactions and 
increase the populations’ tolerance to environmental stressors.  

Introduction 
Many bacteria live in spatially structured groups where they experience cell densities a hundred to a thousand 
times higher than in a typical batch-culture [1].  Due to these high densities, cells can modify their environment 
with their collective metabolic activity [2,3]. Cells living in spatially structured populations can thus create envi-
ronmental conditions that are not accessible to cells living in isolation and this can have important consequences 
for the functioning of these populations. 

For example, by consuming resources and excreting metabolites cells can generate gradients in the environment 
[2,3]. In turn, the different microenvironments can induce phenotypic differentiation in the population [4–6]. 
This differentiation can allow parts of the population to specialize on different tasks, as has been observed in 
bacterial colonies and biofilms [7–10]. 

When different subpopulations specialize on complementary metabolic pathways, these subpopulations can en-
gage in cross-feeding interactions [11–14]. Two examples of such metabolic cross-feeding have recently been ob-
served in Escherichia coli and in Bacillus subtilis. In E. coli, cells in the interior of a three-dimensional colony, close to 
the nutrient source, ferment glucose to acetate, which diffuses to the surface of the colony where it is consumed 
by a second subpopulation [11,13]. Likewise, in B. subtilis it was found that cells in the interior of a two-dimensional 
biofilm produce ammonium, which is consumed by a second subpopulation on the periphery of the colony [15]. 
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In both these examples metabolic specialization was observed in large populations (of 100’000 cells or more) and 
the different subpopulations were separated by distances that were much larger than a typical cell length [11,15]. 
However, in nature bacteria regularly live in nutrient poor environments where population sizes can be much 
smaller [16]. This raises the question how relevant these metabolic interactions are in natural environments. 

Here we hypothesized that phenotypic specialization and metabolic interactions can also occur in small popula-
tions and can thus be of general importance in nature. We recently found that, in dense multi-genotype commu-
nities, cells are able to create gradients of metabolites on a spatial scale of a few cell lengths, when these metabolites 
are present in low amounts [17]. In general, the spatial scale over which cells deplete nutrients depends on the 
density of cells and the concentration of nutrients in the external environment.  We thus hypothesized that nutrient 
gradients could also arise in small clonal populations of densely packed cells growing in nutrient poor environ-
ments. As a result, individuals could specialize on different metabolic activities at a very local scale and metabolic 
cross-feeding could occur even in small populations.  

To test our hypothesis, we studied the growth of E. coli cells inside microfluidic chambers which open on one side 
into a flow channel where we supplied low amounts of glucose. In these chambers, cells form two-dimensional 
populations of about 1000 cells with cell densities comparable to those observed in dense biofilms. While natural 
biofilms are typically three-dimensional, essential features of life in structured populations can also be observed in 
two-dimensional populations. This pertains especially to the formation of gradients: typically, nutrients enter a 
three-dimensional population either from the substrate on which cells grow or from the surrounding liquid envi-
ronment; in both cases, nutrient gradients are created predominantly along a single dimension, like in our cham-
bers. Therefore, we expect qualitatively similar gradients in two- and three-dimensional populations.  

Our microfluidic chambers have multiple advantages: unlike in biofilms, we can easily quantify the properties of 
individual cells inside the population; furthermore, we can rapidly change the external environment in a controlled 
way. Our system can thus be used as a model for natural habitats where small populations grow under rapidly 
changing environmental conditions. Such conditions are for example likely to be found in fluid-filled porous 
environments, such as the soil [16], or in host compartments such as the lungs in cystic fibrosis patients [18]. 

We hypothesized that cells in our microfluidic chambers would engage in a glucose-acetate cross-feeding interac-
tion. When glucose is abundant, E. coli cells respire glucose only in part, and ferment the rest to acetate [19,20]. 
In batch cultures glucose and acetate are consumed sequentially: acetate accumulates while cells ferment glucose 
and is only consumed after glucose becomes depleted [19]. However, in spatially structured populations such as 
colonies, two different subpopulations are able to metabolize glucose and acetate synchronously [11]. According 
to our hypothesis, such glucose-acetate cross-feeding could even occur in small populations when the external 
glucose concentration is low: the cells closest to the glucose source would rapidly consume all available glucose 
and excrete acetate, while cells only a few cell lengths away would be deprived of glucose and consume the excreted 
acetate.   

We furthermore hypothesized that gradients created by the combined metabolic activity of the population, could 
provide resilience to changing environmental conditions. As cells adapt their phenotypes to the local conditions in 
the gradients, phenotypically distinct subpopulations are generated and some of these subpopulations could be 
more tolerant to stressful environments. For example, biofilms often show tolerance to antibiotic treatments that 
are lethal to cells growing in batch culture [21]. Tolerance of biofilms to these treatments is partly explained by 
the formation of slow or non-growing subpopulations [22–24]. We expected that small populations could show 
similar tolerance to antibiotic treatments whenever strong local gradients in nutrients create subpopulations with 
high phenotypic variation.   

Results and Discussion 
Cells generate metabolite gradients on micrometre scale 
We grew cells inside microfluidic chambers of 40µm wide and 60µm deep, which are closed on three sides and 
open on one side into a flow channel (Fig 1A). In the microfluidic chambers, which are 0.76µm high, cells grow in  
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Figure 1. Two-dimensional microfluidic chambers allow for single cell measurements in dense populations. A) Cells were 
grown in chambers of 40𝜇m by 60𝜇m that open on one side into the flow channels. The chambers have a height of 0.76µm 
forcing cells to grow in a monolayer; the flow channel has a height of 23µm.  B) Phase contrast image of a single chamber 
(left) with corresponding growth rates as function of depth (right). Average growth rates decrease towards the back of the 
chamber and were estimated using an optical-flow (blue) and cell-tracking (grey) based method. Growth rates were averaged 
over a one-hour time window, along the width of the chamber, and over a moving window with a depth of 6𝜇m (flow) or 2𝜇m 
(tracking). Shaded area indicates 95% confidence interval. Image brightness has been adjusted. The phase contrast image 
shows a band (halo) of higher brightness near the chamber opening: this is an imaging artifact caused by the proximity of the 
flow channel.  

two-dimensional monolayers (Fig 1B). In the flow channel we continuously pumped fresh media (M9 minimal 
medium with 800µM of glucose as the only growth limiting nutrient). In preliminary experiments we established 
that this concentration is high enough to allow for maximal growth rates close to the chamber opening but low 
enough to be depleted towards the chamber back. We developed two techniques to automatically quantify the 
growth of cells: 1) a method quantifying single cell elongation rates using single cell segmentation and tracking and 
2) a method quantifying average population growth using optical flow (Fig 1B and Methods).  

We found that growth rates were maximal close to the chamber opening and decreased (but did not become zero) 
towards the chamber’s back (Fig 1B, 2B). This suggests that cells collectively form a gradient in glucose along the 
depth of the chamber and grow slower as glucose becomes depleted. These gradients are created on a micrometre 
scale: growth rates have decreased by half within 25µm of the chamber opening, a distance that corresponds to 
only ten cell lengths.  

To further quantify the behaviour of cells along the glucose gradient, we measured the expression level of ptsG, a 
high affinity glucose importer that is expressed when cells are exposed to glucose concentrations that are so low 
that they limit cellular growth rates [25–27].  ptsG expression started at depths greater than 30µm and reached 
maximal expression levels at a depth of 40µm, suggesting that cells in these regions are limited by glucose (Fig 
2AB). Near the back of the chamber, ptsG expression was almost completely absent, suggesting that glucose is fully 
depleted in this region (Fig 2AB).   

To confirm that the gradients in growth rate and ptsG expression are caused by the depletion of glucose, we re-
peated our experiments while varying the glucose concentration supplied in the flow channel.  We observed that 
both the depth at which growth rate was low (<0.05) and at which ptsG expression peaked moved further to the 
back of the chamber as we increased the glucose concentration (Fig 2C). This data shows that the consumption of 
glucose by the cells in our chamber depletes glucose to such low concentrations that it leads to a decrease in growth 
rate along the depth of the chamber. This finding is compatible with previous work in batch and chemostat cul-
tures, where the growth rate of cells was found to reach half its maximal value in a range of glucose concentrations 
between 200nM to 550µM, depending on culture conditions [28].  

Together, our data shows that the collective metabolism of cells generates gradients in glucose. In our chambers, 
cells likely create gradients in several compounds other than glucose, through the consumption of nutrients and  
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Figure 2. Phenotypic variation arises from nutrient gradients. A) False color image of single chamber. Cells limited by glucose 
express ptsG (magenta), cells consuming acetate express acs (green). Image brightness and contrast have been adjusted for each 
color channel separately.  B) Average gene expression profiles (left) and growth rates (right) of cells when 800𝜇M of glucose 
is supplied in the flow channel.  Gene expression levels were estimated as the normalized fluorescence intensity of an RFP 
(ptsG) and GFP (acs) transcriptional reporter located on the same plasmid. Expression levels were averaged over a moving 
region with a depth of 2𝜇m and normalized by their maximal values. Profiles show average of three biological replicates (28 
chambers), shaded areas indicate 95% confidence intervals. C) Depth of gradient measured as the depth at which ptsG reaches 
maximum expression level (magenta circles) or where growth rates reach a value of 0.05 1/h (grey squares) as function of 
glucose concentration in the flow channel. Data shows average value of ten chambers (five for 1400𝜇M) from one biological 
replicate, bars indicate 95% confidence intervals 

the release of metabolites and signalling molecules. As a result, cells at different locations in the chambers vary 
strongly in their growth rates and gene expression. 

Nutrient gradients induce emergence of glucose-acetate cross-feeding interactions 
We hypothesized that cells near the opening of the chamber produce acetate, which is consumed by cells at the 
back of the chamber where glucose is not available. To test this hypothesis, we measured the expression level of 
acs, a gene required for growth on low concentrations of acetate [19,27,29]. Expression levels of acs peak at the 
very back of the chamber, where ptsG expression decreases (Fig 2AB), suggesting that cells in the back are exposed 
to acetate but not to glucose. This is consistent with our hypothesis that cells in the back of the chamber grow on 
the acetate produced by cells near the opening.   

To verify that cells in the back of the chamber grow on acetate, we compared the growth of a wildtype strain with 
that of an Δacs mutant strain. E. coli primarily uses the Acs enzyme to grow on low acetate concentrations; Δacs 
mutant cells should thus be severely impaired in their ability to grow on the low amounts of acetate present in the 
microfluidic chambers [19,29]. We observed that the Δacs mutant cells consistently grew slower than the wildtype 
cells in the back of the chamber (Fig 3A). The slow growth we still observed for the Δacs mutant in the back of the 
chambers could be due to small amounts of remaining glucose, or other metabolites excreted by cells near the 
chamber opening (e.g. succinate [19]). The Δacs mutant could also potentially metabolize acetate using the PKA 
pathway [19].  

We quantified the growth defect of the Δacs mutant in the back of the chamber while accounting for the possibility 
that the two strains have different maximal growth rates. Specifically, we compared the maximal growth rates of 
cells near the chamber opening (depth < 12.5µm) with the growth rate of cells at a depth of 45µm, where the 
wildtype is expected to consume acetate (acs expression reaches 50% of its maximal level at this depth, Fig. 2B). 
We performed an ANOVA on log transformed growth rates and found significant effects of strain (p<0.001) depth 
(p<0.001) and the interaction between strain and depth (p=0.001 3B, SI Table 1). The latter indicates that the 
wildtype cells have a smaller growth decrease between the chamber opening and the chamber’s back relative to 
the Δacs mutant. This is consistent with the hypothesis that only wildtype cells consume acetate in the back of the 
chamber. Our data thus suggest that a cross-feeding interaction occurs between glucose fermenting cells near the 
opening of the chamber and acetate respiring cells in the back of the chamber.  
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Figure 3. Glucose-Acetate cross-feeding interaction emerges between subpopulations. A) Growth rate (top) and ptsG 
expression levels (bottom) compared between wildtype (WT) and Δacs mutant. Profiles show average of three biological 
replicates, shaded areas indicate 95% confidence intervals. B) The growth rate of wildtype (WT, red) and Δacs mutant (blue) 
are compared at a depth of 45𝜇m and in the region directly adjacent to the chamber opening (depth < 12.5𝜇m). Each dot 
corresponds to the average growth rate in a single replicate, with six to ten chambers per replicate at 45𝜇m and one chamber 
per replicate at 12.5𝜇m. The Δacs mutant strain has a growth defect in the back of the chamber (ANOVA analysis, SI Table 
1). In one replicate of the Δacs strain the average growth rate close to the outlet is lower compared to the other two replicates; 
this is due to the growth curve being shifted by approximately 6𝜇m toward the chamber outlet (see SI Fig. 1). 

Glucose-acetate cross-feeding was reported previously in E. coli colonies [11,13]. Cole et al. observed that above a 
certain size of the colony two large subpopulations emerge, one fermenting glucose and the other respiring acetate, 
which are separated by a large non-growing population [11]. Here we found that cells growing within a few cell 
lengths from each other can differ in their metabolic activity as much as these two subpopulations. Specifically, 
cells with maximal ptsG expression levels are located only five cell lengths (11µm) from cells with maximal acs 
expression levels and the subpopulations expressing acs or ptsG are both found over a region of only 6 cell lengths 
in depth (14µm, quantified as the region over which expression levels are above 50% of their maximal value).  

Our study complements previous work on metabolic cross-feeding in spatially structured bacterial populations. 
Specifically, the study by Cole et al. used much higher glucose concentrations (14mM versus 0.8mM in our study); 
as the length scale of the gradient scales with the external glucose concentration, we observed gradients and cross-
feeding on much smaller scales. Second, in the previous study, glucose and oxygen entered the colony from op-
posing sites generating an internal non-growing population separating the glucose and acetate consuming subpop-
ulations; in our system oxygen enters both with the medium (along with the glucose) and through all surfaces of 
the chamber (the microfluidic devices are fabricated from a material that is permeable to oxygen [30]) and the 
glucose and acetate consuming cells are located directly adjacent to each other.  

Our work, combined with previous studies, shows that cross-feeding interactions between glucose fermenting cells 
and acetate respiring cells form both in large colonies of billions of cells in nutrient rich environments and in small 
populations of just a thousand cells in nutrient poor environments. This suggests that glucose-acetate cross-feeding 
is a robust feature of spatially structured E. coli populations. More generally, we can expect cross-feeding interac-
tions to emerge in spatial populations of other bacterial species whenever energetically rich intermediates are 
released by part of the population [15]. 

Cells in structured environments are tolerant to antibiotic exposure  
We now turn to our hypothesis that cells in structured environments are more resilient to environmental stressors 
due to the presence of slow or non-growing subpopulation.  We exposed the populations in the microfludic cham-
bers to 50µg/ml streptomycin for three hours. Both before and during antibiotic exposure we supplied low con-
centrations of glucose (800µM) in the flow channel to allow for the formation of phenotypically diverse subpopu-
lations. After antibiotic treatment we switched to high concentrations of glucose (10mM) to test whether cells in 
the back of the chamber survived the antibiotic treatment and could grow.  

We observed that spatially structured populations were tolerant to antibiotic exposure. While in batch cultures a 
three-hour pulse of 50µg/ml streptomycin led to more than a two-million-fold reduction in cell numbers, we  
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Figure 4. Spatially structured populations are tolerant to antibiotics. Cells were first grown on low glucose medium for nine 
hours, exposed to three hours of 50𝜇g/ml streptomycin (AB), and finally grown in high glucose medium for 35 hours. A) Cells 
in 60𝜇m deep chambers (green) cope better with antibiotic treatment than cells in 30𝜇m shallow chambers (pink).  In shallow 
chambers population growth rates decrease strongly during antibiotic treatments and take a long time to recover (eight 
chambers have zero growth even after 32 hour), while in deep chambers growth rates remain high during the entire treatment. 
Horizontal bars on top of timeline indicate the analyzed time periods.  B) Cells in the back of the chamber (blue) tolerate 
antibiotics better than cells in the front (red). During antibiotic treatment, the average growth rates in the front of the chamber 
decreases, while that in the back of the chamber increases. Two hours after treatment, the average growth rate in the front of 
the chamber is high again as the non-growing population is fully replaced by growing cells coming from the back (see SI Movie 
1). Horizontal bars on top of timeline indicate the analyzed time periods.  A,B)  Each dot shows the average population growth 
rate inside the colored region shown in the schematics. Negative growth rates were set to 0. Bars show median values. Growth 
rates were averaged over the time windows indicated by the horizontal bars at the top of the timelines. C)  Cells in batch 
cultures cannot survive antibiotic treatment. Colony forming units (CFU) per ml are shown for 8 replicate batch cultures just 
before and three hours after addition of 50𝜇g/ml streptomycin. After three hours of antibiotic exposure all 8 cultures had a 
CFU count below the detection limit (of 200 CFU/ml), corresponding to a decrease in CFU counts by at least a factor 2 ∙ 10'.  

observed that in all 38 chambers (with each about 1000 cells) parts of the populations were able to survive the 
antibiotic pulse (Fig 4A).  

We hypothesized that the populations in the microfluidic chambers survived antibiotic treatment due to the in-
creased tolerance of the slow growing subpopulation of cells in the back of the chamber. Visual inspection of the 
chambers suggested indeed that most cell death happened near the opening of the chamber, while cells in the 
back could survive the antibiotic treatment (SI Movie 1). To test this idea, we compared the effect of antibiotic 
treatment in our standard deep chambers (depth=60µm) with that in shallow chambers (depth=30µm).   

We observed that populations in deep chambers could cope much better with the antibiotic treatment than pop-
ulations in shallow chambers. Before antibiotic treatment, the growth rate of cells in the shallow chambers was 
similar to those observed in the front 30µm of the deep chambers but the slow and non-growing subpopulations 
found in the back of the deep chambers was not present in the shallow chambers (SI Fig. 3). During antibiotic 
exposure population growth rates decreased in both deep and shallow chambers, however they recovered much 
faster in the deep chambers: two hours after removing the antibiotic the average growth rate in the deep chambers 
was as high as before the antibiotic treatment, while the average growth rate in the shallow chamber was much 
lower (Fig 4A). This lower growth rate was largely due to a difference in cell survival: whereas in deep chambers 
a large fraction of cells survived (SI Movie 1), in shallow chambers often only a single or very few cells could 
resume growth after the antibiotic treatment (SI Movie 2). The low survival in the shallow chamber also explains 
why eight out of 37 populations in the shallow chambers went extinct, while all 38 populations in the deep cham-
bers survived antibiotic exposure. 

To further test whether cells in the back of the chambers were indeed the main source of population survival, we 
compared the average growth rates between the front and the back of the chamber. Before antibiotic exposure 
cells in the back on average grew slower than cells in the front as a result of the glucose gradient (Fig 4B). However, 
during antibiotic treatment cells in the back started growing faster while the ones in the front rapidly stopped 
growing (Fig 4B). Why did the cells in the back grow faster during the antibiotic treatment than before? Most 
likely, as cells in the front of the chamber died, nutrients became available for cells in the back, allowing them to 
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grow faster. Directly after antibiotic exposure, these cells grew even faster as a result of the high glucose concen-
tration we supplied in the flow channel. While most cells in the back had survived the antibiotic treatment, most 
cells at the front were not growing (and presumably dead), thus causing the low average growth rate at the front 
(Fig 4B, SI Movie 1). Two hours after the end of the antibiotic pulse, most non-growing cells at the front were 
pushed out of the chamber and replaced by rapidly growing cells from the back. As a result, the difference between 
the front and back of the chamber disappeared (Fig 4B).   

Together our data supports the hypothesis that many fast-growing cells near the chamber opening die, while the 
slow growing cells in the back of the chamber are able to survive the antibiotic treatment. This finding is consistent 
with a number of previous studies that found a positive correlation between slow growth and antibiotic survival 
[22–24,31]. While we cannot exclude that other factors (e.g. gradients in antibiotic concentration) also contribute 
to the survival of cells at the back of the chambers, their low growth rate, which result from the emergent glucose 
gradient, could play a decisive role in their survival. 

Conclusion 
In dense, spatially structured environments, cells can collectively change their environment and create strong 
gradients in metabolites.  Generally, whenever cellular densities are high and nutrient concentrations are low, 
steep gradients can occur locally, on length scales of only a few cell lengths. As cells adapt to their local conditions, 
these gradients give rise to phenotypically distinct subpopulations that specialize at a very local scale on different 
metabolic tasks and that can engage in metabolic cross-feeding interactions.   

Although our study focused on E. coli, we expect our findings to be of direct relevance to natural populations of 
many microbial species, as often the natural environments of bacteria and other microorganisms are characterized 
by low nutrient availability and dense spatially structured populations.  Microscale phenotypic variation can thus 
be an important aspect of natural microbial populations. The experimental and analysis techniques developed in 
this work provide tools to investigate in details how bacteria behave in dense spatial populations and how they 
achieve collective functionality. 

Microscale phenotypic variation can have important consequences for the functionality of bacterial populations 
as it promotes metabolic interactions between distinct subpopulations and tolerance to environmental stressors. 
Living together in structured environments thus allows cells to achieve functionality collectively that they cannot 
achieve alone.  

Methods  
Strains and plasmids 
All experiments were done with E. coli MG1655 (WT) or E. coli MG1655 acs::frt (Δacs mutant) carrying the low 
copy number pSV66-acs-gfp-ptsG-rfp dual transcriptional reporter. This plasmid was constructed from pSV66-
rpsM-gfp-rpsM-rfp by replacing the promoter sequences upstream of rfp and gfp using a one-step Gibson assembly 
[32]. The following 4 fragments were amplified using the Q5 high fidelity polymerase (NEB) and combined using 
Gibson assembly (NEB): 1) acs promoter, amplified from plasmid pUA66-acs-gfp [14] using primer pGFP-fw and 
pGFP-rv; 2) ptsG promoter, amplified from pUA66-ptsG-gfp [33] using primers pRFP-fw and pRFP-rv; 3) pSV66 
gfp-rfp region, amplified from pSV66-rpsM-gfp-rpsM-rfp using primers GFP_vec-fw and RFP_vec-rv; 4) pSV66 
backbone region, amplified from pSV66-rpsM-gfp-rpsM-rfp using primers GFP_vec-rv and RFP_vec-fw (see SI 
Table 2 for primer sequences). The sequences of the promoter regions were verified with Sanger sequencing. 
Kanamycin was added to all growth media to select for plasmid maintenance. However, even in the absence of 
kanamycin, we expect plasmid loss to be minimal during the duration of our experiment because the reporter 
plasmid carries the pSC101 replication origin which has very low copy number variation [34]. The E. coli MG1655 
acs::frt was constructed from MG1655 acs::kanR obtained from the Keio collection [35], by removal of the kana-
mycin cassette using Flp-FRT recombination.     

Media and growth conditions  
Cells were grown in M9 medium (47.76 mM Na2HPO4, 22.04 mM KH2PO4, 8.56 mM NaCl and 18.69 mM 
NH4Cl) supplemented with 1mM MgSO4 and 0.1 mM CaCl2 (all from Sigma-Aldrich). Glucose was added to the 
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medium to a final concentration of 10mM (high glucose medium), 800µM (low glucose medium), or as specified 
in the figure captions. All media was supplemented with 50µg/ml kanamycin and 0.1% of Tween-20 (Polysorbate-
20, Sigma-Aldrich) to reduce sticking of cells to the sides of microfluidic devices. Overnight cultures were started 
from a single colony from a LB agar plate and grown in M9 medium supplemented with 10mM glucose and 5% 
LB. All cultures were grown at 37°C in a shaking incubator. For the experiments on antibiotic tolerance in the 
microfluidic chambers 50µg/ml of streptomycin was added to the low glucose medium.  

We used two different batches of M9 growth media (same manufacturer and article number, but different lot 
number) and observed some quantitative differences between experiments done with the different batches: growth 
and expression profiles were shifted towards the back of the chamber in one batch compared to the other. We 
observed qualitatively the same results with both batches of media and all our conclusions are robust to differences 
between the batches. To account for the quantitative difference between the two batches, we never made direct 
comparison between data obtained from experiments done with different batches: specifically, we used batch one 
to measure how the gradient changes with glucose concentration and how the cells respond to antibiotics (Fig 2C, 
4AB) and batch two for all other experiments.  

Antibiotic tolerance in well-mixed conditions.   
Eight independent cultures were started from separate colonies from a LB agar plate and grown overnight in LB 
medium supplemented with 50µg/ml kanamycin. The next day cultures were diluted to a final optical density at 
600nm (OD600) of 0.1 into 1.5 ml of fresh LB medium (supplemented with 50µg/ml kanamycin) in a 24-well 
plate and grown for three hours to mid-exponential phase. From each culture, a 20ul sample was taken and a 
dilution series was spot-plated on LB agar plates to obtain the cell density before antibiotic exposures, measured 
as colony forming units (CFUs). Subsequently, streptomycin was added to a final concentration of 50µg/ml (MIC 
< 25µg/ml) and the cultures were grown for another 3 hours before being sampled again to obtain the cells den-
sities after antibiotic exposure. All cultures were grown at 37°C in a shaking incubator. 

Right before antibiotic exposure cell densities were 4.0 ± 1.2 ⋅ 10,	CFU/ml (mean ±	95% confidence interval, 
n=8). After antibiotic exposure we had no detectable CFUs in any replicate. As our detection limit was 200 
CFU/ml. This implies that the antibiotic exposure caused at least a two-million-fold decrease in cell densities.  

Microfluidic devices 
Molds for the microfluidic devices were constructed using a two-layer photolithography process using SU8 pho-
toresist on Silicon wafers. Microfluidic devices were made by pouring polydimethylsiloxane (PDMS, Sylgard 184) 
on the SU8 molds, after which air bubbles were removed using a desiccator before baking the devices at 80°C for 
one hour.  Subsequently, the PDMS devices were bound to microscope cover glass slides by treating them with 
oxygen plasma (PDC-32G-2 Plasma Cleaner, Harrik Plasma, New York, USA), and leaving them on a heated 
plate at 100°C for one minute. 

The device consists of a long (≈2cm) flow channel of 100µm wide and 23µm high which connects to chambers 
that are 0.76µm high, 40µm wide and 30 or 60µm deep. The small height of the chambers ensures that cells grow 
in a monolayer. In preliminary experiments we observed that the height of the chambers is of critical importance: 
when chambers are too high (>0.8µm), cells are lost from the chambers easily and they cannot form a densely 
packed layer; when chambers are too low (<0.7µm), cell growth is impaired. We chose a height of 0.76µm as this 
is the lowest value that allows for normal cell growth. We expect some variation in height within each chamber 
because cells exert pressure and can deform the elastic PDMS material.  

Microscopy 
Time-lapse microscopy was done using a fully-automated Olympus IX81 inverted microscope controlled with the 
CellSens software (Olympus). Imaging was done with a 100X NA1.3 oil phase objective (Olympus) and an ORCA-
flash 4.0 v2 sCMOS camera (Hamamatsu). Fluorescent imaging was done with the Chroma N49002 (GFP) and 
N49008 (RFP) filters and X-Cite120 120-Watt high pressure metal halide arc lamp (Lumen Dynamics). The 
Olympus Z-drift compensation system was used to maintain focus. A microscope incubator (Life imaging services) 
maintained the sample at 37°C.  
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Microfluidic Experiments   
The microfluidic devices were wetted with culture medium using a pipette to facilitate subsequent cell loading. An 
overnight culture of cells was concentrated by centrifugation and loaded into each flow channels by pipette and 
cells were pushed into the side chambers. Subsequently the inlets of the flow channels were connected via tubing 
(Microbore Tygon S54HL, ID 0.76 mm, OD 2.29 mm, Fisher Scientific) to 50ml syringes and media was flown 
continuously at 0.5ml/h using syringe pumps (NE-300, NewEra Pump Systems).  

Response to nutrient gradients. Cells were first grown in high glucose medium (10mM) until they had filled 
the chambers (≈18 hours).  Subsequently the medium was switched to the low glucose medium (800µM) for nine 
hours. In preliminary experiments we established that it takes about three to four hours for cells to form and adapt 
to the nutrient gradients. To ensure that all measurements were taken at steady state we thus started imaging the 
chambers six hours after switching to low glucose medium.   

We imaged the population with two regimes: for the first hour we imaged in phase contrast, taking an image every 
one minute and 45 seconds; for the next two hours we imaged the population in phase contrast (to measure bio-
mass), GFP (acs expression), and RFP (ptsG expression) taking an image every six minutes.  

We used this strategy because accurate determination of growth rates (using either optical flow or single cell track-
ing techniques) requires high frequency imaging, which is not compatible with the time required for the acquisition 
of fluorescent images. 

Response to antibiotic pulse.  Cells were first grown in high glucose medium (10mM) until they had filled 
the chambers (≈18 hours).  Subsequently the medium was switched to the low glucose medium (800µM) for nine 
hours, to establish the gradient in growth rates. Finally, cells were submitted to antibiotic treatment and recovery, 
applying 3 hours of low glucose medium with 50µg/ml streptomycin, followed by 35 hours of high glucose medium 
without streptomycin. We used high glucose medium after the streptomycin pulse to ensure that all cells had access 
to glucose so we could observe growth of surviving cells irrespective of their location in the chamber.  

The population was imaged in phase contrast (to measure biomass), GFP (acs expression), and RFP (ptsG expres-
sion) taking an image every six minutes for 40 hours. The imaging was started two hours before the start of the 
(three hour long) antibiotic pulse and continued for 35 hours after the end of the pulse. To compare the growth 
rate profiles in 30 and 60µm deep chambers we furthermore imaged a subset of the data at high frequencies (taking 
an image every one minute and 45 seconds) in phase contrast only for one hour starting three hours before the 
antibiotic pulse. 

Image analysis  
Time-lapse movies where analysed using the custom build Vanellus image analysis software (Daan Kiviet, [17]), 
Ilastik [36] and Matlab (version 2016a and newer). Movies were registered to compensate for stage movement 
and cropped to the region of the growth chambers.  

Segmentation. Cells were segmented using the phase contrast images and two independent segmentation tech-
niques. We segmented the single cells using Ilastik software based on supervised machine learning.  The Ilastik 
classifier was trained to maximize accuracy in identification of individual cells (i.e. to accurately separate nearby 
cells). As this technique tends to underestimate the total biomass (part of the cell contour is excluded), we used a 
second technique to accurately identify total biomass in the chamber. This second technique is optimized to max-
imize accuracy in detection of biomass, without attempting to separate neighbouring cells. This technique was 
implemented in custom built Matlab code and uses and algorithm combining edge detection with subsequent 
filtering on cell size and texture (Hessian eigen values).  

Tracking. Cell tracking was done using the optical-flow based tracking algorithm described in ref. [17]. In short: 
cells were tracked by estimating the movement between two subsequent images with optical flow and using this to 
predict the location of each cell in subsequent frames.  

Fluorescent images. Fluorescent images were deconvolved using the Lucy-Richardson method and back-
ground corrected as 𝐼/011 =

345
6745

, where I is the uncorrected background intensity, D is the median pixel value of 
an image taken with closed shutter (dark count), and BG is the background intensity measured in the flow channel 
directly adjacent to the chamber exit.  
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Growth rate calculation 
Population average growth rate. The average population growth rate can be estimated as follows: Consider 
a region in the chamber of width Δ𝑦 centered at depth y (the y axis is oriented from the chamber opening to the 
chamber’s back), and let 𝐵(𝑡, 𝑦) be the biomass in this region at time t.  During a time period Δ𝑡 the biomass 
𝐵(𝑡, 𝑦) varies due to growth and movement of biomass in and out of the region. The variation due to growth is 
given by 𝜇(𝑡, 𝑦) ⋅ 𝐵(𝑡, 𝑦) ⋅ Δ𝑡, where 𝜇(𝑡, 𝑦) is the average population growth rate; the variation due to movement 
is the balance between movement of biomass in and out of the region, thus if Φ(𝑡, 𝑦) is the velocity field this is 

given by: Φ?𝑡, 𝑦 − AB
C
D ⋅ Δ𝑡 − Φ?𝑡, 𝑦 + AB

C
D ⋅ Δ𝑡. The total change in biomass Δ𝐵(𝑡, 𝑦) is thus given by: 

Δ𝐵(𝑡, 𝑦)
Δ𝑡 = 𝜇(𝑡, 𝑦) ⋅ 𝐵(𝑡, 𝑦) +Φ?𝑡, 𝑦 − AB

C
D − Φ?𝑡, 𝑦 + AB

C
D 

This equation can be used to calculate the growth rate as: 

	𝜇(𝑡, 𝑦) =
1

𝐵(𝑡, 𝑦) ⋅
F
Δ𝐵(𝑡, 𝑦)
Δ𝑡 +

ΔΦ(t, y)
Δ𝑦

I 

We estimated 𝐵(𝑡, 𝑦) from the segmented images as the number of pixels occupied by cells, and we estimated 
Φ(t, y) using Farneback optical flow algorithm applied to the phase contrast images [37]. All quantities are calcu-
lated over a time window Δ𝑡 around t (typically 1h) and over a spatial region Δ𝑦	around y: 𝐵(𝑡, 𝑦) is the biomass 

averaged over Δ𝑡	and	Δ𝑦; A6(M,B)
AM

 is the average slope of the linear regression of 𝐵(𝑡, 𝑦) with t, for t within Δ𝑡; 
AN(O,P)
AB

 is the slope of the linear regression of Φ(t, y) with y, for y within Δ𝑦. The main source of error in this 

estimation of growth rates is the velocity field Φ,	which sometimes wrongly detects movement between two frames. 
To automatically correct for this, we excluded the four time points (10%) with the worst quality before averaging 
AN(O,P)
AB

 over the remaining time points. The quality of each time point was automatically assessed as the mean 

squared error of the linear regression averaged over all y for a given time point.  

The velocity field cannot be correctly estimated close to the opening of the chamber because of the presence of a 
halo in the phase contrast images (this imaging artefact is well visible around ~12.5µm from the chamber opening 
and is caused by the proximity of the flow channel). The growth rate cannot be estimated in this halo region using 
the formula above. As the halo region is small, we can still estimate the growth profile along most of the chamber 
depth and particularly how growth decreases with depth. The growth profiles are automatically cutoff at the depth 
where they reach their maximal value to exclude regions where growth rate cannot be estimated well with this 
method.  

Single cell growth rates. Single cell growth rates were measured as the elongation rate of cells: 𝑙(𝑡) = 𝑙(0) ⋅
𝑒S⋅M; 𝜇 was estimated as the slope of the linear regression of the log-transformed cell length over a moving time 
window of 7 points (12 minutes).  Thus, only cells for which length measurements were available for at least 7 time 
points were included in the analysis. Both cell segmentation and tracking were fully automated with no manual 
correction applied at any stage. To automatically exclude tracking mistakes, we screened for cells whose length 
displayed large fluctuation in time. This was done by calculating the reduced Chi-squared value for each regression 
as ΧC = U

VWU
∑ (𝑙Y − 𝑙Z)C	Z , where N is the number of time points over which the regression is done, 𝑙Y is the length 

predicted by the linear regression and 𝑙Z is the measured cell length. Visual inspection of a subset of the data 
suggested that excluding trajectories with a ΧC > 4 ⋅ 104\ resulted in reliable estimates of single cell growth rates. 

Single cell growth rates near the chamber opening 

Within 10	𝜇m of the chamber opening the automatic procedure described above is no longer able to measure 
single cell growth rates. The rapid movement of cells in this region complicates automatic tracking, while the 
phase contrast artefact caused by the proximity of the flow channel affects both the automatic segmentation and 
tracking quality. To still obtain growth rates in this region for both the wild type and Δacs mutant populations, we 
selected a subset of our data (one chamber per replicate) based on the quality of the image segmentation. We 
subsequently manually corrected the segmentation and tracking of cells in the region up to 20𝜇m from the opening 
for twelve frames (17 minutes). Afterwards, the single cells growth rates were obtained as described above.  
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Statistical treatment of data 
Data exclusion. We only included chambers that were fully packed with cells during the full observation win-
dow, based on visual inspection. Chambers where part of the population was lost at any time (large groups of cells 
leaving the chamber likely because of pressure fluctuations) were excluded from the analysis.  

Spatial averaging.  Our system is quasi-1D: there is no systematic variation along the width of the chamber. 
We thus averaged all quantities along the chamber width to obtain 1D profiles of phenotype versus depth in the 
chamber.  To obtain smooth profiles along the depth of the chamber we used moving averages. Specifically, 
population average growth rates (optical flow based) were calculated over a 6µm (91 pixel) window, while single 
cell growth rates and fluorescent profiles were averaged over a 2µm (31 pixel) window. 

Time averaging. All gradient measurements where averaged over 1h. Growth rates and gene expression level 
measurements were taken in two non-overlapping but directly adjacent time windows. As the growth rate and 
gene expression profiles are approximately constant during the experiment we can superpose these two measure-
ments despite the small time offset. For the analysis of the response to antibiotics, growth rates before antibiotic 
treatment were averaged over a time window of two hours (for one replicate only 6 minutes of data were recorded 
before the switch, in this case averaging was done only over this interval); growth rate during and after antibiotic 
treatment were averaged over a time window of one hour.  

Replicates. For the gradient measurements we imaged three flow channels with nine to ten chambers each (28 
chambers in total) for the wildtype and three flow channels with six to nine chambers (22 chambers in total) for 
the Δacs mutant. Each flow channel was inoculated with a different overnight culture and was considered to be an 
independent biological replicate. We treated chambers within the same flow channel as technical replicates. For 
the antibiotics we measured 38 deep and 37 shallow chambers, both from the same four independent flow chan-
nels.   

Chamber averaging. For the data shown in Figures 1-3 all chambers of a given flow channel were first averaged 
together. Simple averages were used for the optical flow based population growth rate and fluorescent measure-
ments; weighted averages were used for the single cell growth rates, with weights corresponding to the number of 
cells measured in each chamber at a given depth (chambers with less than 20 cells at a given depth were excluded 
from the analysis).  

Data availability 
The data and code required to reproduce the figures and conclusions are available on the Scholars Portal 
Dataverse repository: https://doi.org/10.5683/SP2/CBVYXB [38]. 
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