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Abstract  

MTF1 is a conserved metal-binding transcription factor in eukaryotes that binds to 

conserved DNA sequence motifs, termed metal response elements (MREs). MTF1 responds 

to metal excess and deprivation, protects cells from oxidative and hypoxic stresses, and is 

required for embryonic development in vertebrates. We used multiple strategies to identify an 

unappreciated role for MTF1 and copper (Cu) in cell differentiation. Upon initiation of 

myogenesis from primary myoblasts, MTF1 expression increased, as did nuclear localization. 

Mtf1 knockdown impaired differentiation, while addition of non-toxic concentrations of Cu
+
 

enhanced MTF1 expression and promoted myogenesis. Cu
+
 bound stoichiometrically to a C-

terminus tetra-cysteine of MTF1. MTF1 bound to chromatin at the promoter regions of 

myogenic genes and binding was stimulated by copper. MTF1 formed a complex with MyoD 

at myogenic promoters, the master transcriptional regulator of the myogenic lineage. These 

studies establish novel mechanisms by which copper and MTF1 regulate gene expression in 

myoblast differentiation. 

Introduction 

Copper (Cu) is an essential micronutrient required for human development and 

function. Cu plays a role in several key cellular functions, such as respiration, antioxidant 

defense, neurotransmitter biogenesis, disproportionation of O
-
, and metal ion homeostasis [1-

3]. Dysregulation of cellular Cu levels is detrimental to human health, and it is associated 

with redox stress, disruption of iron-sulfur cluster proteins, lipid peroxidation, and DNA 

oxidation [4]. Consequently, cells must control Cu levels and prevent the accumulation of 

labile Cu in the cytosol. Cu homeostasis is maintained by a complex cellular network of 

transmembrane transport systems, soluble chaperones, chelating proteins, and transcription 

factors (TFs) [3, 5-8]. Cu depletion or overload leads to pathological conditions, such as 
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Menkes’ disease and Wilson’s disease [8-15]. Menkes’ disease is characterized by severe Cu 

deficiency due to mutations in the Cu
+
-ATPase ATP7A that disrupt dietary Cu absorption. 

These inactivating mutations result in neurological abnormalities, blood vessel and 

connective tissue defects, and weak muscle tone (hypotonia) [16-20]. Wilson’s disease, 

which arises from mutations in the Cu
+
-ATPase ATP7B, results in Cu accumulation in the 

liver, brain, and eyes [19, 21, 22]. This Cu overload leads to a variety of hepatic and 

neurological defects, cardiomyopathies, and muscular abnormalities, such as a lack in 

coordination (ataxia) and repetitive movements (dystonia) [23, 24].  

Copper is a fundamental co-factor for several enzymes, including cytochrome c 

oxidase (COX), and superoxide dismutases (SOD1 and SOD3) [1, 2]. Cu is also an important 

component of enzymes that contribute to proper tissue function [25-28]. Myogenesis 

encompasses several metabolic and morphological changes that are linked to Cu
+
-dependent 

cellular energy production and redox homeostasis [1, 2]. During myoblast differentiation, a 

metabolic shift occurs in which energy is produced via oxidative phosphorylation [29, 30]. 

This metabolic shift involves an increase in the production of mitochondria and associated 

cuproenzymes essential for energy production (e.g. COX) and redox homeostasis (e.g. SOD1) 

[1, 2, 30, 31]. Dysfunction or inhibition of mitochondrial protein synthesis impairs 

myogenesis [32-35].  

We recently demonstrated that copper is required for the proliferation and 

differentiation of primary myoblasts derived from mouse satellite cells, which are adult stem 

cells responsible for skeletal muscle growth and repair from injury [36]. During myogenesis, 

the cellular levels of Cu increased, which is consistent with a high demand for Cu for proper 

function of mature tissue [36]. These changes in Cu levels are dependent on the dynamic 

expression of the Cu
+
-transporters and the post-transcriptional regulation of Atp7a [36]. 

However, the mechanisms by which Cu elicits a differentiation effect are unknown. Here, we 
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hypothesized that Cu may have a fundamental role in the regulation of gene expression that 

drives the differentiation of the skeletal muscle. Activation of the myogenic program at the 

transcriptional level requires a series of signals, including growth factors, TFs, kinases, 

chromatin remodelers, histone modifiers, and metal ions [36-52]. Emerging evidence 

suggests that Cu and potential Cu
+
-binding TFs play significant roles in mammalian 

development [53-56]. Despite this, only three Cu
+
-binding factors are known to regulate gene 

expression in mammalian cells, and little is known about their roles in developmental 

processes [53, 54, 57-66].  

Among these, MTF1 is a highly conserved zinc (Zn)-binding TF that recognizes and 

binds metal responsive elements (MREs) to promote the transcription of genes that maintain 

metal homeostasis [57, 59, 61, 67-70]. MREs are characterized by the -TGCRCNC- 

consensus sequence located near the promoters of genes related to redox and metal 

homeostasis [71-73]. MTF1 transcriptional activity is associated with the availability of Zn 

ions [74]; however, the molecular mechanisms by which metals activate MTF1 remain 

unclear. Current models for MTF1 activation include: (A) stimulation by free cytosolic Zn; 

(B) interaction with Zn released from metallothioneins (MTs); or (C) MTF1 

phosphorylation/dephosphorylation [73, 75-78]. Under normal conditions, MTF1 is primarily 

located in the cytoplasm. When MTF1 is activated, it translocates from the cytoplasm to the 

nucleus, where it recognizes and interacts with MREs of genes that mediate homeostasis [61, 

67, 79-84]. Chromatin immunoprecipitation (ChIP) analysis of Drosophila MTF1 has shown 

that different metal stimuli result in variations in the recognition of single nucleotides in 

genomic DNA sequences, showing that binding specificity can be altered by the presence of 

different metals [85]. Drosophila MTF1 has a Cu
+
 sensing function that is mediated in part 

by a carboxy-terminal tetra-nuclear Cu
+
 cluster [86]. A similar Cu

+
-binding centre has been 

identified in mammalian MTF1, suggesting that it may also respond to Cu [86]. Whether this 
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response is associated with maintenance of metal homeostasis, or if it is related to other 

cellular functions, remains to be elucidated. 

We have found that MTF1 is induced and translocated to the nucleus upon initiation 

of myogenesis in primary myoblasts derived from mouse satellite cells. shRNA and 

CRISPR/Cas9-mediated depletion of Mtf1 causes lethality of differentiating myoblasts, 

indicating that MTF1 is essential for myogenesis. Nuclear levels of Cu increase in 

differentiating primary myoblasts and significantly decrease upon partial deletion of Mtf1. In 

vitro characterization of the murine MTF1 carboxy-terminal binding domain determined it 

bound stoichiometrically to Cu
+
. ChIP-seq and qPCR analyses revealed novel MTF1 target 

genes that are associated with myogenesis in addition to classic metal homeostasis genes. 

MTF1 interaction with myogenic genes is enhanced by supplementation of non-toxic 

concentrations of Cu to the myoblast differentiation media. Finally, our data indicate that one 

potential mechanism by which MTF1 participates in the transcriptional regulation of 

myogenic genes is through an interaction with MyoD. Taken together, our results shed light 

on the under-appreciated role of Cu and Cu-binding TFs in the development of skeletal 

muscle.  

Results 

MTF1 is up-regulated during differentiation of primary myoblasts 

MTF1 is a metal binding transcription factor that is primarily involved in the control 

of metal and redox homeostasis [57, 59, 61, 67, 69, 70, 82, 83, 85, 87-91]. There is also 

evidence to suggest that MTF1 is involved in developmental processes [58, 62, 64, 92]. We 

hypothesized that MTF1 may play an active role in the determination of the myogenic lineage. 

To test this, we analysed both the expression and localization of MTF1 in primary myoblasts 

derived from mouse satellite cells. Western blot analyses showed minimal expression of the 
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MTF1 protein in proliferating primary myoblasts (Fig. 1A, B). However, MTF1 protein 

expression was upregulated when differentiation was induced, as shown by the expression of 

myogenic markers (Fig. 1A). Confocal microscopy imaging of MTF1 is consistent with 

western blot analyses (Fig. 1B). Proliferating primary myoblasts have low levels of MTF1 in 

a punctate cytosolic distribution. Upon induction of myogenic differentiation, MTF1 

expression increased and was primarily localized to the nucleus. At 48 and 72 h after 

initiation of differentiation, the distribution of MTF1 was primarily nuclear, though there was 

an increase in the cytosolic puncta that is consistent with its role in metal sensing. The data 

indicate that differentiation induces MTF1 expression and nuclear localization. 

Mtf1 is required for myoblast differentiation.  

To determine the physiological role of MTF1, we used viral vectors encoding small 

hairpin RNAs (shRNA) to knock down Mtf1, and the CRISPR/Cas9 system to generate Mtf1-

deficient primary myoblasts. Two lentiviral constructs that encode for shRNAs against Mtf1 

mRNA were used to knock down the endogenous protein in proliferating and differentiating 

primary myoblasts. Myoblasts transduced with a lentivirus-encoded non-specific scramble 

shRNA were used as negative controls. The virus-infected cells were selected with 

puromycin and the levels of Mtf1 were examined by Western blot analysis (Fig. 2). 

Differentiating myoblasts transduced with Mtf1 shRNA showed a decrease in the expression 

of MTF1 protein compared to wild type and scr shRNA controls (Fig. 2A). Mtf1 knockdown 

cells had similar growth kinetics compared to wild type cells, suggesting that proliferating 

primary myoblasts can tolerate MTF1 knockdown (Fig. 2B). These results suggests that the 

primary role of MTF1 in proliferating myoblasts is maintenance or metal homeostasis as 

opposed to regulation of the cell cycle. To determine whether the partial loss of MTF1 

impaired myogenesis, Mtf1 shRNA-transduced primary myoblasts were induced to 

differentiate. Western blot analyses for the differentiation marker sarco/endoplasmic 
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reticulum Ca
2+

-ATPase (SERCA) showed decreased levels in myoblasts partially depleted of 

MTF1 (Fig. 2A). Immunohistochemistry (IHC) analyses where differentiating myoblasts 

were stained with an anti-myogenin antibody confirmed that Mtf1 knockdown cells fail to 

differentiate, as they had a decreased incidence of myogenin-positive nuclei compared to 

wild type and scr shRNA transduced myoblasts (Fig. 2C). Detachment of Mtf1 knockdown 

cells was observed upon induction of differentiation (Fig. 2C). Western blot analyses showed 

an increased expression and activation of the apoptotic marker Caspase 3 in differentiating 

myoblasts partially depleted of Mtf1 (Fig. 2A).  

The biological relevance of MTF1 during myogenesis was confirmed by targeting the 

Mtf1 locus with CRISPR/Cas9. Western blot analyses of differentiating primary myoblasts at 

24 h showed over a 90% reduction in MTF1 protein and gene levels (Fig. S1). Consistent 

with our observations using shRNA (Fig. 2), MTF1 loss correlated with a failure to 

differentiate as shown by the decrease in protein and gene expression of myogenic markers 

(Fig. S1A-B). Mtf1-deficient cells proliferated normally and showed no visible phenotype 

during initial passages (Fig. S1C), however extended culture (5 passages) of these cells 

resulted in increased apoptosis relative to control cells (data not shown), suggesting that the 

MTF1-deficient cells are sensitive to extended passage in tissue culture. IHC analysis showed 

that Mtf1-deficient cells detached from the plates at 24 h after induction of myogenesis (Fig. 

S1D), which correlates with increased cleaved Caspase-3 (Casp3), as compared to wild type 

and empty vector sgRNA myoblasts (Fig. S1A). Overall, these results show that MTF1 plays 

an essential functional role in the regulation of the expression of myogenic genes and 

contributes to cell survival upon initiation of myogenic differentiation. 

MTF1 expression is enhanced by Cu ions 
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In order to induce myogenesis in cultured myoblasts, growth factors are depleted by 

serum starvation and insulin is added [93, 94]. Depletion of insulin from the differentiation 

medium partially prevents myogenic differentiation, a phenotype that we have recently 

shown can be rescued by the addition of non-toxic (30 µM) concentrations of CuSO4 [36]. 

Moreover, depletion of Cu from the culture medium inhibits differentiation, which suggests 

that Cu plays a role in differentiation [36]. However, the molecular mechanisms by which Cu 

affects differentiation are largely unknown. To probe for links between Cu ions and MTF1, 

we cultured primary myoblasts under different concentrations of Cu and determined the 

expression levels of MTF1 through Western blot and qPCR. Figure 3 shows that MTF1 

expression was significantly increased in cells grown in medium depleted of insulin and 

supplemented with 30 µM CuSO4 compared to those grown in basal differentiation medium 

containing insulin. By contrast, Cu chelation with tetraethylenepentamine (TEPA) resulted in 

a significant decrease in MTF1 expression. Addition of CuSO4 at a concentration equal to 

that of TEPA restored the expression levels of MTF1 to those observed in cells differentiated 

under normal insulin conditions. These data indicate a role for Cu ions in MTF1 induction 

during myogenesis. Importantly, we detected an increase in the expression of the 

differentiation marker SERCA when the cells were treated with Cu, which was abolished 

when the cells were depleted of Cu by addition of TEPA (Fig. 3A). These data are consistent 

with our previous studies where the expression of myogenin and other differentiation markers 

was enhanced by copper supplementation [36].  

MTF1 binds to the promoters of myogenic genes in differentiating myoblasts 

Our data thus far indicate that MTF1 is required for myogenesis in addition to its role 

in maintaining metal homeostasis. We hypothesized that copper enhances the transcriptional 

activity of MTF1, and that MTF1 globally regulates the expression of genes required for 

skeletal muscle differentiation. To test this, we performed ChIP-seq to identify MTF1 binding 
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sites on chromatin in primary myoblasts differentiated for 24 h under normal insulin 

conditions. Genome wide analyses showed that in the presence of insulin, MTF1 localized 

largely to promoters around transcriptional start sites (TSS; Fig. 4A). MTF1 binding to TSS 

was enhanced by the addition of CuSO4 to the culture media. Cells depleted of insulin from 

the culture media had decreased MTF1 binding that was similar to the input controls (Fig. 

4A). 

Next, we called peaks for MTF1 in differentiating myoblasts. We found 1399 MTF1 

peaks for myoblasts differentiated under normal insulin conditions, 2713 for cells 

differentiated in the presence of Cu, and only 553 peaks for the cells depleted of insulin. 

Strikingly, 993 peaks were shared between the cells differentiated with insulin and the cells 

differentiated with Cu (Fig. 4B, Table S1). Gene ontology (GO) analyses showed that MTF1 

binds to diverse categories of genes associated with muscle development, function and as 

expected, ion homeostasis (Fig. S2; Table S2).  

MTF1 is known to preferentially bind the MRE consensus sequence, -TGCRCNC- 

[71-73]. As expected, ChIP-seq analyses showed MTF1 enriched binding to this motif (Fig. 

4C, Table S1). In the presence of insulin or CuSO4, 32% and 38% of the MTF1 peaks 

contained a consensus MRE, respectively. This result suggests direct binding by MTF1 to 

MREs as one mechanism of MTF1-mediated gene activation, but also suggests that MTF1 is 

interacting with chromatin indirectly through other TF binding sites. We performed a de novo 

motif search on the Cu MTF1 peaks to identify additional binding motifs for MTF1. The 

regions under MTF1 peaks had high GC contents, and the top five motifs are shown (Fig. 4C, 

Table S1). The most significant of these motifs matches to the binding motif for the TF 

nuclear respiratory factor (NRF). NRF-1 and -2 play a role in the expression of nuclear and 

mitochondrial genes involved in oxidative phosphorylation, electron transport complexes I-V, 

and mtDNA transcription and replication [95, 96], all processes important in skeletal muscle 
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function. The second most significant motif matches the binding site of Sp1, a TF that has 

been shown to regulate muscle gene expression in concert with MyoD [97]. The next most 

significant motifs correspond to KLF3, SP5, and KLF9, each of which has been linked to 

skeletal muscle differentiation or function [98-101]. These data suggest that MTF1 may bind 

chromatin in conjunction with multiple diverse regulators to regulate gene expression during 

muscle differentiation. 

We found the conserved MRE sequence for MTF1 binding at some myogenic genes, 

such as Myogenin, which encodes the classic transcriptional activator that is expressed upon 

initiation of myogenesis and is essential for the transcription of muscle-specific genes [41, 48, 

102, 103]. Bioinformatic analyses revealed that two potential MREs, 5’-TGCACAG-3’ and 

5’-TGCACCC-3’, are located at 300 and 400 base pairs upstream, respectively, of the 

Myogenin TSS. Therefore, we hypothesized that MTF1 may bind near the promoter of 

Myogenin. To test this, we assessed our ChIP-seq data over the Myogenin promoter and 

found that MTF1 binding was enriched by Cu supplementation (Fig. 4D). The binding of 

MTF1 to Myogenin was validated by ChIP-qPCR, which showed a significant increase in 

binding when the myoblasts are differentiated in media supplemented with 30 µM CuSO4 

(Fig. 4E). 

Binding of MTF1 was evaluated at additional myogenic genes by ChIP-seq and ChIP-

qPCR. There is enhanced binding of MTF1 to the promoter of A Disintegrin And 

Metalloproteinase 9 (Adam9), a membrane anchored cell surface adhesion protein that 

mediates cell-cell and cell-matrix interactions and muscle development (Fig. S3A, B) [104]. 

MTF1 was also found at the promoters of additional myogenic genes, such as MyoD, Integrin 

7a, Skeletal actin, Myf5 and Cadherin 15 (Table S2). To validate our ChIP-seq analyses, we 

analyzed MTF1 binding to its classic target promoter, Metallothionein 1 (Mt1). ChIP-qPCR 

data showed that MTF1 binding to the Mt1 promoter is enhanced upon addition of 30 µM 
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CuSO4 to the culture media of primary myoblasts, as expected (Fig. S3C, D). As a negative 

control, no binding to the Pax7 promoter was observed (Fig. S4). 

MTF1 interacts with MyoD and binds a subset of MyoD-bound loci  

Interestingly, the classic DNA binding motif (E-box) of MyoD was included among 

the TF binding sites found within MTF1 peaks, suggesting a potential novel interaction at 

promoter regions for both transcription factors (Table S1, line 33). MyoD and MyoD-related 

factors initiate the regulation of skeletal muscle gene expression through direct binding of the 

promoters of myogenic genes during differentiation [97, 105]. We hypothesized that MTF1 

may interact with MyoD, forming a complex that binds the promoters of myogenic genes that 

MyoD regulates. We first investigated whether MTF1 and MyoD physically interact in 

primary myoblasts differentiated for 24 h. Immunoprecipitation (IP) assays using an anti-

MTF1 antibody revealed that MTF1 co-precipitated with MyoD upon initiation of 

myogenesis in both the presence and absence of Cu (Fig. 5A). To further characterize the 

functional relationship between MTF1 and MyoD, we compared the ChIP-seq datasets for 

MyoD in differentiated primary myoblasts (10 and 48 h) from Soleimani et al., [106] with 

our MTF1 ChIP-seq data. We found 714 peaks shared between MyoD and MTF1 when the 

myoblasts were differentiated in the presence of Cu, which represents over 25% of the total 

number of MTF1 peaks (Fig. 4B). GO term analyses of these peaks showed MyoD and 

MTF1 bind to myogenic genes, but also metal ion transport and homeostasis genes (Fig. S2, 

Table S3). De novo motif identification of overlapping MyoD and MTF1 peaks gives a 

similar outcome as the analysis of motifs under MTF1 peaks (Fig. 5C, 4C). Analysis of 

individual genes for MTF1 and MyoD binding showed increased peaks at the same promoter 

region of the Myogenin gene (Fig. 5D). This co-binding was confirmed by sequential re-ChIP 

analyses of MyoD and MTF1, which indicated that both TFs co-occupy the Myogenin 

promoter in myoblasts (Fig. 5E). We did not detect co-binding of the MTF1-MyoD complex 
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to the Pax7 promoter region (Fig. 5F), which further supports our conclusion that MTF1 

regulates differentiation-specific gene expression. Together, these data suggest that MyoD 

and MTF1 form a stable complex on chromatin in differentiating primary myoblasts to 

regulate the transcription of a common set of myogenic target genes. 

MTF1 binds Cu, which may play a role in its nuclear translocation and enhanced 

binding to myogenic promoters. 

We recently reported that differentiating myoblasts accumulate Cu, which is 

consistent with the inherent requirement for this metal during myogenesis [36]. Consistent 

with this hypothesis, atomic absorbance spectroscopy (AAS) analyses showed that the 

increase in Cu levels observed in differentiating myoblasts is prevented upon Cu chelation 

(Fig. S5A). Subcellular fractionation of proliferating and differentiating myoblasts showed 

that Cu is mobilized to the nucleus upon induction of myogenesis (Fig. S5B). Cells grown in 

the presence of Cu had higher levels of Cu in the nucleus than did control cells during 

proliferation. Lower levels of nuclear Cu were detected in myoblasts differentiated in the 

presence of TEPA (Fig. S5B). Cytosolic concentrations of Cu were higher than in the nucleus 

under all conditions tested (Fig. S5C). Purity of the fractions was determined by western blot 

analysis of lysates from primary myoblasts differentiated with insulin wherein the presence of 

RNA polymerase II was used to identify the nuclear fraction, and GAPDH for the cytosolic 

fraction (Fig. S5D). 

We hypothesized that the potential of MTF1 to bind copper may contribute to the 

nuclear translocation and enhanced activation of this TF. Interestingly, Drosophila MTF1 

contains a carboxy-terminal cysteine-rich Cu
+
-binding domain, distinct from its Zn finger 

domains that bind Zn ions, that is proposed to sense excess intracellular Cu and participate in 

the cellular heavy metal response [75, 86]. Mammalian MTF1 has a similar putative Cu
+
-
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binding domain at its C-terminal domain. To test for a similar function, we cloned, expressed, 

and purified wild type murine recombinant MTF1 (Fig. 6A). We first examined the Cu
+
-

binding properties of the purified protein by incubating it with excess Cu
+ 

in the presence of 

ascorbate as reducing agent. Metal determinations by AAS revealed that Cu
+
 interacts with 

MTF1 at a stoichiometry of 1.17 ± 0.06 Cu atoms per protein (Fig. 6B). To test whether Cu 

binds at the C-terminal cysteine-rich domain, we mutated the four key cysteine residues to 

alanines (metal binding site (MBS), Fig. 6A). These mutations strongly impaired the binding 

of Cu
+
 to MTF1 (Fig. 6B), implicating these amino acids in Cu

+
 binding. 

These data raise the possibility that MTF1 contributes to the translocation of Cu ions 

to the nucleus. To test this hypothesis, we took advantage of primary myoblasts partially 

depleted of Mtf1 by shRNA (Fig. 2). We evaluated whether MTF1 knockdown would impair 

the capability of the cells to translocate Cu into the nucleus. Overall, Mtf1 knockdown cells 

exhibited a significant decrease in the total levels of Cu upon induction of differentiation, 

whereas only a non-significant, but consistent small decrease in the levels of Cu in 

proliferating myoblasts was detected (Fig. 6C). Subcellular fractionation showed that Mtf1 

knockdown differentially affected the nuclear Cu content. For instance, proliferating Mtf1 

knockdown myoblasts contain only ~10% of nuclear Cu compared to wild type and scr 

controls. Nuclear fractions of differentiating Mtf1 knockdown cells contained ~50% of Cu 

compared to the control cells (Fig. 6D). Minor changes in the cytosolic levels of proliferating 

and differentiating Mtf1 knockdown myoblasts were detected (Fig. 6E).  These data are 

consistent with a role of MTF1 mobilizing Cu into the nucleus during myogenesis, but does 

not exclude the possibility that other proteins are also part of this process.  

 

Discussion 
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There is a significant gap in our understanding of the roles that Cu plays in 

transcriptional regulation during mammalian development. Previous studies from our 

laboratory have shown that Cu promotes the proliferation and differentiation of primary 

myoblasts derived from mouse satellite cells [36]. The pathways and mechanisms by which 

this transition metal induces this myogenic effect are largely unknown. In this work, we 

characterized the roles of copper and the Cu-binding transcription factor, MTF1, in 

myogenesis. Our data shows that MTF1 expression is essential for myogenesis, and that Cu 

enhances the expression of MTF1. Moreover, we have found that cellular Cu content 

influences the binding of MTF1 to target promoters. Finally, our studies revealed multiple 

mechanisms of MTF1 interaction at target genes, including direct binding to MREs and 

presumed indirect interactions through other transcription factors, including MyoD.  

MTF1 is activated by different mechanisms to control metal and redox homeostasis, 

which include stimulation by cytosolic Zn and/or Zn released from MTs, or regulation by 

phosphorylation events [73, 75-78]. On the other hand, the mechanisms by which MTF1 

stimulates transcription of metal responsive genes (MTs and metal transporters) in response 

to heavy metals and oxidative stress is well-established. A characteristic of the promoters and 

enhancers of most of MTF1 target genes is the presence of MREs in the upstream regulatory 

sequences or just downstream of the TSS of metal-responsive genes that mediate MTF1 

binding and regulation of gene expression [64, 71, 78, 83, 107].  

Activation of MTF1 by copper has been investigated in several vertebrate models. 

Studies have addressed the expression of MT1 as an indirect measure of MTF1 activity upon 

stress induced by copper and other metals. For instance, in vivo studies showing Cu-

dependent changes in the transcription of Mt1 in mouse liver showed that only high doses 

(over 5 mg/kg) of Cu administered to the animals induced the expression of this gene, while 

little effect of Cu was detected in the kidney [108]. Studies in HeLa S3 cells showed that the 
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transcript levels of the metal protective MtIIA gene increased upon treatment with 300 µM 

CuSO4. However, in vitro studies using whole cell extracts obtained from HeLa S3 cells 

exposed to 300 µM CuSO4 failed to induce the MRE-binding activity, attributed to MTF1, 

although this concentration of Cu was able to induce the expression of MtIIA [109]. In 

embryonic stem cells, induction of MT1 and MT2 was only achieved when the cells were 

treated with 500 µM CuSO4 [67]. It is noteworthy that studies from our laboratory showed 

that in differentiating, serum deprived, primary myoblasts derived from mouse satellite cells, 

concentrations over 100 µM are toxic to the cells [36]. The data presented here showed that 

supplementation of differentiating myoblast with 30 µM CuSO4, is sufficient to induce MTF1 

expression and activation, not only to drive the expression of metal-protective genes, but also 

to promote the expression of myogenic genes. Overall, the data suggests that the cellular 

metal response and activation of MTF1 is dependent on the cell lineage. Studies from 

different laboratories suggest that copper treatment is a poor activator of MTF1 in the context 

of its classic metal protective role, as shown by the expression of Mt1. However, the studies 

shown here suggest that low concentrations of Cu contribute to the activation of MTF1 in a 

novel role as a modulator of the expression of genes associated with myogenesis. Studies 

should be now directed to investigate the roles of MTF1 in the development of other lineages. 

Additional roles for MTF1 have been proposed during embryonic development [58]. 

MTF1 knockout leads to embryonic lethality at embryonic day 14 due to liver degeneration 

[58, 62]. The MTF1 target genes MT1 and MT2 are constitutively and highly expressed in 

fetal liver [110-112], suggesting that these proteins are fundamental for liver development. 

However, deletions of both metallothionein genes had no effect in development under normal 

conditions, but mice were sensitive to Cd stress [113, 114]. It is noteworthy that the MTF1 

knockout murine model had no evidence of muscular phenotypes in developing embryos at 

E14 [58]. These findings suggest that 1) MTF1 contributes but is not required for muscle 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 29, 2019. ; https://doi.org/10.1101/534271doi: bioRxiv preprint 

https://doi.org/10.1101/534271
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

development; 2) that MTF1 contributes to early muscle development but is only required for 

developmental stages at or after E14, or 3) that there is an as yet unidentified redundancy for 

the roles of MTF1 in myogenesis. We also note an intriguing link between MTF1, 

Parkinson’s disease, and muscle function in Drosophila. Parkin is an E3 ubiquitin ligase 

mutated in some hereditary forms of Parkinson’s disease. The Drosophila homozygous 

mutant of the human ortholog parkin exhibits severe movement impairment, inability to fly, 

sterility, and short life span [92]. Overexpression of MTF1 in the parkin mutant flies partially 

rescues these phenotypes, likely due to an effect at the muscular and mitochondrial levels, 

supporting a role for MTF1 in muscle development [92]. In addition, myogenic regulatory 

factors such as MyoD, Myogenin, and the Myocyte Enhancer Factor 2 (MEF2) have been 

shown to regulate the expression of MTF1 in differentiating myoblasts, however no 

characterization has been done [115]. Therefore, the specific roles for MTF1 in development 

and in lineage determination remain to be elucidated. Our work suggests three potential 

mechanisms for MTF1 binding to myogenic genes: 1) Direct recognition and binding to 

MREs; 2) indirect binding through additional transcription factor binding sites; and 3) 

indirect binding through MyoD binding sites.  

Studies in Drosophila MTF1 described a novel carboxy-terminal tetra-nuclear Cu center, 

independent of the Zn binding fingers [86]. Functional studies of the mammalian MTF1 

showed a carboxy-terminal 13 amino acid domain that includes four conserved cysteines 

(CQCQCAC) that are necessary for MTF1 Zn and Cd sensing and transcriptional activation 

in vivo under  moderate  metal  stress [116, 117]. Interestingly, these Drosophila and 

mammalian cysteine domains lack significant sequence homology and have been proposed to 

be the result of convergent evolution events of a Cu sensing element [86].  This cysteine 

cluster also mediates the homo-dimerization of MTF1, which is proposed to constitute a 

platform for the recruitment of additional transcriptional cofactors [118]. In this regard, Cu 
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has been proposed to play a relevant role in stabilizing the dimer by constituting 

intermolecular disulphide bonds through oxidation of cysteines to further synergize with zinc 

to enhance transcription [118]. However, the mechanistic role of this domain in regulation of 

metal homeostasis and development genes is not yet clear. Importantly, our data corroborates 

that Cu is internalized during myoblast differentiation and a fraction of the internalized Cu is 

re-localized to the nuclei. Considering the significant increase in MTF1 expression upon 

addition of Cu and the Cu-binding capabilities of the carboxy-terminal cysteine cluster of 

MTF1, it is plausible that MTF1 is partially responsible for the nuclear translocation of 

copper observed in differentiating myoblasts. Studies are under way to further characterize 

the mechanistic roles of this novel Cu-binding domain in the regulation of gene expression 

associated with the myogenic lineage, metal and redox homeostasis, as well as the potential 

interactions between MTF1 and additional metal-dependent protein-protein interactions at 

MREs in promoter regions. 

Current investigations in the field have been directed towards understanding the 

deleterious effects of Cu on the nervous system, liver, and intestine. However, little attention 

has been given to other organs and tissues, such as muscle, adipose, and bone. Strikingly, 

most of the systemic phenotypes observed in Menkes’ and Wilson’s disease patients have 

been attributed to the neurological damage that Cu exerts as a result from deficient systemic 

transport, rather than a direct effect on the different tissues and organs. However, a complex 

developmental process such as myogenesis encompasses metabolic and morphological 

changes linked to Cu-dependent energy production and redox homeostasis [1, 2]. Myoblast 

differentiation requires a metabolic shift in which energy is produced via oxidative 

phosphorylation, a process highly dependent on increased production of mitochondria, Cu 

availability and expression of cuproenzymes essential for energy production (e.g. COX) and 

redox homeostasis (e.g. SOD1) [1, 2, 30, 31]. Our results shed light onto the importance of 
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the function of Cu and MTF1 in the regulation of gene expression during developmental 

processes, such as skeletal muscle differentiation. A better understanding of how tissue Cu 

status affects growth and development at other cellular levels, will be beneficial in the study 

of muscular phenotypes that present in diseases of Cu misbalance, such as Menkes’ and 

Wilson’s diseases. 

Material and methods 

Primary Cell Culture  

Mouse satellite cells were isolated from leg muscle of 3-6 week old wild type 

C57Bl/6 mice. The muscle was extracted and cut into small pieces, washed with Hank’s 

Balanced Salt Solution (HBSS; ThermoFisher Scientific) and incubated with 0.1% Pronase 

for 1 h at 37 ºC. The cells were then filtered using a 100 μm cell sieve and resuspended in 3 

ml of growth media (1:1 v/v DMEM:F-12, 20% FBS, and 25 ng/ml of basic FGF). Cells were 

filtered again using a 40 µm cell sieve and centrifuged at 1,000 x g for 1 min at room 

temperature. The cells were placed at the top of a Percoll step-gradient (35 and 70%) and 

centrifuged 20 min at 1,850 x g at room temperature. The myoblasts were contained in the 

lower interface of the 70% Percoll fraction and were washed with HBSS, centrifuged 5 min at 

1,000 x g, and resuspended in growth media for plating. Myoblasts were grown and 

differentiated on plates coated with 0.02% collagen (Advanced BioMatrix) [119]. The 

different treatments (indicated in the figures) were: proliferation and differentiation (24 h). 

Presence and absence of CuSO4 and/or Tetraethylenepentamine (TEPA); the concentrations 

used were 100 µM for proliferating cells and 30 µM for differentiating cells as previously 

described [36].  

Plasmid construction, virus production, and transduction of primary myoblasts 
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For shRNA viral production, Mission plasmids (Sigma) encoding for two different 

shRNA against Mtf1 and a scramble (scr) are indicated in Table S4. CRISPR/Cas9 plasmid 

construction was performed by custom-designed of four sgRNAs to recognize the exon 1, 

exon 2, exon 4 and exon 8 of MTF1 mouse gene (Reference Sequence: NM_008636.4). Each 

gRNA consisted of 20 nucleotides complementary to the sequence that precedes a 5′-NGG 

protospacer-adjacent motif (PAM) located in the targeted exon. Specificity was validated by 

search through the entire genome to avoid off-target effects. Preparation of CRISPR/Cas9 

lentiviral constructs was performed using the lentiCRISPRv2 oligo cloning protocol [120]. 

Briefly, sense and antisense oligos obtained from Integrated DNA technology (IDT), were set 

according to the designed gRNA and were annealed and phosphorylated to form double 

stranded oligos. Subsequently, they were cloned into the BsmBI–BsmBI sites downstream 

from the human U6 promoter of the lentiCRISPRv2 plasmid [120, 121] that was a kind gift 

from Dr. Feng Zhang (Addgene plasmid # 52961). The empty plasmid that expresses only 

Cas9 but no gRNA was included as null knock out control. The ligation reaction was used to 

transform competent Stbl3 bacteria, and positive cloning was confirmed by sequencing. 

Oligonucleotides used to form double stranded gRNAs are listed in Table S5. 

To generate Lentiviral particles, 5 X 10
6
 HEK293T cells were plated in 10 cm dishes. 

The next day, transfection was performed using 15 µg of each shRNA and the packing 

vectors pLP1 (15 µg), pLP2 (6 µg), pSVGV (3 µg). CRISPR/Cas9 lentiviral particles were 

generated using a mixture of 12 µg of each construct, 9 µg of psPAX2 and 3 µg of pVSV-G 

packaging vectors. Plasmid mistures were diluted in 3 ml OptiMEM (Life Technologies) and 

supplemented with 60 µl Lipofectamine 2000 (Invitrogen). The complete mixture was 

incubated for 15 min before being added to cells. After an overnight incubation, the media 

was changed to 10 ml DMEM (Life Technologies) with 10 % FBS (Life Technologies). The 

viral supernatant was harvested after 48 h of incubation and filtered through 0.45 µm syringe 
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filter (Millipore). To infect primary myoblasts, 5 ml of the filtered supernatant supplemented 

with 8 µg/ml polybrene (Sigma) were used to infect two million cells for overnight. Infected 

cells were then selected in DMEM/F12 (Life Technologies) containing 20% FBS, 0.75 ng/ml 

of Fibroblast Growth Factor and 1.5 µg/ml puromycin (Invitrogen). 

Antibodies 

Primary antibodies (used at 1:1000) were obtained from Santa Cruz Biotechnologies: 

rabbit anti-MTF1 (sc-365090), rabbit anti-PI3K (sc-515646), mouse anti-β-actin (sc-81178), 

mouse anti-SERCA (sc-271669), mouse anti-RNA Polymerase II (sc-55492). From Abclonal: 

rabbit anti-caspase 3 (A2156), rabbit anti-MyoD; and a rabbit anti-GAPDH-HRP was from 

Sigma (G9295). Normal l Rabbit IgG was obtained from Cell signalling Technologies (2729). 

The anti-myosin heavy chain (MF20, deposited by D. A. Fischman), anti-myogenin antibody 

(F5D, deposited by W.E. Wright) was obtained as hybridoma supernatants from the 

Developmental Studies Hybridoma Bank (University of Iowa). The secondary antibodies 

used were: goat anti-rabbit and anti-mouse coupled to HRP (1:1000, Life Technologies).  

Primary myoblast immunofluorescence  

Primary myoblasts for immunofluorescence were grown on glass bottom Cellview 

Advanced TC culture dishes (Grenier Bio One). Samples were obtained for proliferation and 

at 24, 48 and 72 h after induction of differentiation. Cells were fixed in 10% formalin, 

permeabilized with PBT buffer (0.5% Triton-X100 in PBS) and blocked in 5% horse serum 

in PBT. Cells were incubated with the rabbit anti-MTF1 antibody (1:100) in blocking 

solution overnight at 4 ºC. The samples were then washed three times with PBT solution for 

10 min at room temperature. Then, the cells were incubated with the goat anti-rabbit Alexa-

488 secondary antibody (1:500) in blocking solution for 2 h at room temperature and 30 min 
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with DAPI. Cells were counterstained with DAPI and imaged with a Leica TCS SP5 

Confocal Laser Scanning Microscope (Leica) using a 40X water immersion objective. 

Immunohistochemistry 

Proliferating and differentiating primary myoblasts at the desired time points were fixed 

overnight in 10% formalin-PBS at 4 °C. Samples were washed with PBS and permeabilized 

for 10 min in PBS containing 0.2% Triton X-100. Immunohistochemistry was performed 

using universal ABC kit and developed with Vectastain Elite ABC HRP kit (Vector Labs) 

following manufacturer’s instructions.  

Gene expression analyses 

Three independent biological replicates of proliferating and differentiating (24 h) 

primary myoblasts were washed with ice cold PBS and RNA extracted using Trizol 

(Invitrogen). cDNA synthesis was performed using 1 μg of RNA, DNase I amplification 

grade (Invitrogen 18068-015) and Superscript III (Invitrogen 18080-400) according to 

manufacturer’s instructions. Changes in gene expression were analyzed by quantitative RT-

PCR using Fast SYBR-Green master mix (Thermofisher Scientific) on the ABI StepOne Plus 

Sequence Detection System (Applied Biosystems) using the comparative Ct method [122] 

using Ef1α as control. The primers are listed in Table S5. 

 Chromatin Immunoprecipitation (ChIP) Assays 

Three independent biological replicates of proliferating and differentiating (24 h) 

primary myoblasts were crosslinked with 1% Formaldehyde and incubated for 10 min at 

room temperature on an orbital shaker. To inactivate the formaldehyde, 1 ml of 1 M glycine 

was added and cells were incubated for 5 min on an orbital shaker at room temperature. Cells 

were washed 3 times with 10 ml of ice cold PBS supplemented with Complete Protease 
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Inhibitor (Roche). Crosslinked myoblasts were resuspended in 1 ml of ice cold PBS 

supplemented with Complete Protease Inhibitor. The cell suspension was centrifuged for 5 

min at 5,000 x g at 4 ºC. The PBS was removed and the cell pellet was resuspended in 200 µl 

of ice cold SDS lysis buffer (50 mM Tris pH 8; 10 mM EDTA, 1% SDS) for 10 min. 

Proliferating myoblasts were sonicated three times for 5 min, 30” by 30” at mild intensity for 

myoblasts and five times for nascent myotubes using a Bioruptor UCD-200 (Diagenode). The 

samples were diluted to a final volume of 1 ml in ChIP buffer (16 mM Tris pH 8.1; 1.2 mM 

EDTA; 0.01% SDS; 1.1% Triton X100; 167 mM NaCl). ChIP was performed using a rabbit 

anti-MTF1 and a rabbit IgG antibodies. Samples were incubated for 2 h at 4 ºC in a rotating 

platform and subsequently, 80 µl of Magna ChIP protein A+G Magnetic Beads (Millipore) 

were added to each sample and incubated overnight in a rotating platform at 4 ºC. The 

samples were then placed in a magnetic rack and sequentially washed using 1 ml each of the 

wash buffer sequence A-D (Buffer A: 20 mM Tris pH 8.1, 2 mM EDTA, 0.1% SDS, 1% 

Triton-X100, 167 NaCl, Buffer B: 20 mM Tris pH 8.1, 2 mM EDTA, 0.1% SDS, 1% Triton-

X100, 500 NaCl; Buffer C: 10 mM Tris pH 8.1, 1 mM EDTA, 1% NP40, 1% Sodium 

deoxicholate, 0.25 M LiCl2; Buffer D: 10 mM Tris pH 8.1, 1 mM EDTA). Immune 

complexes were eluted in 100 µl of buffer containing 0.1 M NaHCO3, 1% SDS, 1 µg/µl 

proteinase K. Samples were then reverse-crosslinked by adding 20 µl of 5 M NaCl and 

incubating overnight at 65 ºC. The reverse crosslinked DNA was purified using the ChIP 

DNA clean concentrator, following the manufacturer’s instructions (Zymo Research). The 

DNA was stored at -80 ºC until further analysis by semi-quantitative real time PCR or library 

preparation for ChIP-Seq. 

ChIP-seq 

Library construction - Libraries of ChIP-enriched DNA were prepared from two 

biological replicates following the Illumina strategy. Samples were end-repaired, A-tailed, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 29, 2019. ; https://doi.org/10.1101/534271doi: bioRxiv preprint 

https://doi.org/10.1101/534271
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

and adaptor-ligated using barcoded inline adaptors according to the manufacturer’s 

instructions (Illumina). DNA was purified over a Zymo Research PCR purification column 

between each enzymatic reaction. DNA was PCR amplified with KAPA HiFi polymerase 

using 16 cycles of PCR. Each library was size-selected for 200-300 bp fragments on a 1.5% 

agarose gel and the library concentrations were determined using a QuBit 3.0 Fluorometer 

(Thermo Scientific). Libraries were sequenced on an Illumina HiSeq2000 using single-end 50 

bp sequencing at the University of Massachusetts Medical School deep sequencing core 

facility. 

Data Analysis - Single-end fastq reads were split by barcode adapter sequences and 

adapter sequences were removed using the Fastx toolkit. Reads were mapped to the mm10 

genome using bowtie, allowing up to three mismatches. Aligned reads were processed using 

HOMER [123].  UCSC genome browser tracks were generated using the “makeUCSCfile” 

command”. Mapped reads were aligned over all annotated mm10 TSSs using the 

“annotatePeaks” command, generating 20 bp bins and summing the reads within each 

window. After anchoring mapped reads over reference TSSs, aggregation plots were 

generated by averaging data obtained from two biological replicates. Peaks were called 

individually from replicate datasets using the “findPeaks” command and then overlapping 

peaks were identified using the “mergePeaks” command. For peak calling, a false discovery 

rate (FDR) of 0.001 was used as a threshold. Motifs were identified using the “findMotifs” 

command.  

Analysis of data from GSE24852 [106] was performed similarly. Data was 

downloaded from GSE24852 and converted to fastq files using SRAtoolkit fastq-dump and 

mapped reads were converted to mm10. Aligned reads were processed in HOMER [123], as 

described above.   
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Gene Ontology (GO) term identification – GO term analysis was performed on metascape 

http://metascape.org [124].  

Sequential chromatin immunoprecipitation (Re-ChIP) 

Primary myoblasts were lysed using the SimpleChIP® Plus Sonication Chromatin IP 

Kit (Cell Signaling Technologies), following the manufacturer’s instructions. Briefly, after 

incubating the samples with MTF1 antibody and collecting immunoprecipitated material with 

magnetic beads, the samples were incubated with an equal volume of 10 mM dithiothreitol 

(DTT) for 30 min at 37 ºC [125-127]. The supernatant was used for the second 

immunoprecipitation by adding a rabbit anti-MyoD antibody and incubating the samples 

similarly to the first immunoprecipitation. IgG substituted for the MTF1 and MyoD 

antibodies served as a negative control. 

Western blot analysis 

Proliferating and differentiating primary myoblasts were washed with PBS and 

solubilized with RIPA buffer (10 mM PIPES, pH 7.4, 150 mM NaCl, 2 mM EDTA, 1% 

Triton X-100, 0.5% sodium deoxycholate, and 10% glycerol) containing Complete Protease 

Inhibitor. Protein was quantified by Bradford [128]. Samples (20 µg) were prepared for SDS-

PAGE by boiling in Laemmli buffer. The resolved proteins were electrotransferred to PVDF 

membranes (Bio-Rad). The proteins of interest were detected with the specific polyclonal or 

monoclonal antibodies. Then the membranes were incubated for 2 h at room temperature with 

the species-appropriate peroxidase-conjugated antibodies (Invitrogen). Chemiluminescent 

detection was performed with ECL PLUS (GE Healthcare). Experiments were performed 

using samples from three independent biological experiments. 

Immunoprecipitation 
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Cells were washed three times with ice-cold PBS and resuspended in IP lysis buffer 

(50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, and 

Complete Protease Inhibitor). Cell extracts were incubated with the anti-MTF1 primary 

antibody at 4 °C for 2 h, followed by an overnight incubation with PureProteome Protein A/G 

mix magnetic beads (Millipore). Samples were washed as indicated by the manufacturer, and 

immunoprecipitated proteins were eluted in freshly prepared IP-elution buffer (10% glycerol, 

50mM Tris HCl, pH 6.8, and 1 M NaCl) at room temperature for 1 h [42]. Samples were 

analyzed by SDS-PAGE and Western blot. 

Subcellular fractionation of primary myoblasts and metal content analysis  

Three independent biological replicates of proliferating and differentiating (24 h) 

primary myoblasts were fractionated using the Rapid Efficient And Practical (REAP) nuclear 

and cytoplasmic separation method [129]. Briefly, cells were washed with ice cold PBS, 

scraped and transferred to a 1.5 ml microcentrifuge tube. Samples were centrifuged for 10 

seconds at 13,000 x g and the supernatant was discarded. The samples were resuspended in 

500 µl of ice cold PBS containing 0.1% NP40 (Calbiochem) and 100 µl of the cell 

suspension were collected as the whole cell fraction. The remaining 400 µl were used to 

obtain nuclear and cytosolic fractions by disrupting the cells by pipetting using a 1 ml pipette 

tip. Cell suspension was centrifuged for another 10 sec and the supernatant was collected as 

the cytosolic fraction. The nuclear pellet was then washed twice in 1 ml of ice cold PBS 

containing 0.1% NP40 and once again centrifuged for additional 10 sec. The supernatant was 

removed and pellet was resuspended in 100 µl of PBS. Nuclear integrity was verified by light 

microscopy. All samples were sonicated at medium intensity for 5 min in 30 s on 30 s off 

cycles. Protein was quantified by Bradford method [128]. Purity of the fractions was 

evaluated by western blot.  
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The comparative analysis of copper concentrations from each sample was carried out 

using an AAS equipped with a graphite furnace (PerkinElmer, AAnalyst 800). A known mass 

of sample was acid digested in concentrated HNO3, using a single-stage digestion method 

[130, 131]. All measurements were performed in triplicate, resulting in a limit of detection 

for Cu of 15 ppb, calculated as 3σ. Analytical grade standards were used and diluted in 18 

MΩ purified water.  Copper content on each sample was normalized to the initial mass of 

protein. 

Expression and purification of recombinant MTF1 

MTF1 wild type pET-GST/TEV/mMtf1[NM_008636.4] plasmid was purchased from 

Vector Builder. This plasmid was used as a template to introduce the mutations coding for the 

multiple Alanine substitutions in the putative carboxy-terminus Cu
+
-binding site (MBS) using 

the oligos indicated in Table S5. Mutations were introduced using the quick change 

mutagenesis kit following the manufacturer’s instructions (Agilent Technology). The pET 

vector places a GST tag at the amino-terminus, which was used for purification of the 

recombinant proteins. DNA sequences were confirmed by automated sequencing. 

Plasmids coding for MTF1 wild type and the MBS mutant proteins were transformed 

into Stbl3 cells for propagation and transformed into BL21 DE3 bacteria for expression. 

Recombinant protein expression was performed according to an auto-inducing medium 

protocol [132]. Purification of GST-tagged wild type and mutated MTF1 recombinant 

proteins was carried out using Glutathione Agarose resin as described by the manufacturer 

(Pierce). Purified proteins were stored at -20 ºC in Buffer containing 10% glycerol, 100 mM 

Tris, pH 8, and 150 mM NaCl. Protein concentrations were determined by Bradford assay 

[128]. Molar protein concentrations were estimated using MW 81,000 Da for both MTF1 

proteins. In order to eliminate any bound metal, all purified proteins were treated with metal 
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chelators as described previously [133-136]. Briefly, the proteins were incubated for 45 min 

at room temperature with 0.5 mM EDTA and 0.5 mM tetrathiomolybdate. Chelators were 

removed by buffer exchange using either 50 kDa cut-off Centricons (Millipore). The final 

purity of all protein preparations was at least 95%, as verified by SDS-PAGE followed by 

Coomassie Brilliant Blue staining and Western blot. 

Cu Loading to MTF1 and metal binding analyses 

Cu
+
 loading was performed by incubating each apo-protein (10 µM) in the presence 

of 10 M excess of CuSO4, 25mM Hepes (pH 8.0), 150 mM NaCl and 10 mM ascorbate for 10 

min at room temperature with gentle agitation, as previously described [136]. The unbound 

Cu was removed by washing in 50 kDa cut-off Centricons. Levels of Cu bound were verified 

by AAS, Varian. Briefly, before determinations, sample aliquots were mineralized with 35% 

HNO3 (trace metal grade) for 1 h at 80 °C, and digestions were concluded by making the 

reaction 3% H2O2. Metal bound to wild type and mutant MTF1 was measured in triplicate 

using a method similar to the subcellular fractionation of primary myoblasts (vide supra). 

Statistical analyses 

 In all cases, the data represent the average of three independent biological replicates ± 

SE. Two-tailed t tests were performed for statistical analyses using Graphpad Prism, Version 

7 

Data availability 

Genomic datasets have been deposited within GEO.  
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Figures and figure legends  

Figure 1 

 

 

 

 

 

Figure 1. MTF1 is induced upon induction of differentiation of primary myoblasts. (A) 

Representative western blot of MTF1 expression; the myogenic differentiation markers 

examined were myosin heavy chain (MHC), and the sarco/endoplasmic reticulum Ca
2+

-

ATPase (SERCA) from proliferating and differentiating primary myoblasts at 24, 48 and 72 h. 

PI3K was used as loading control. (B) Representative confocal microscopy images of 

proliferating and differentiating primary myoblasts at 24, 48 and 72 h for MTF1 (green), and 

DAPI (blue). Images depicted are representative of at least three independent biological 

experiments. 
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Figure 2 

 

 

 

 

Figure 2. Partial depletion of MTF1 using shRNA impairs myogenesis and partially 

leads to death of differentiating myoblasts. (A) Representative Western blot of primary 

myoblasts and myoblasts transduced with either scramble shRNA (scr) or two different 

shRNAs against Mtf1 (1 and 2) during proliferation and 24 h after inducing differentiation. 

SERCA levels were monitored as a differentiation marker, cleaved Caspase 3 as marker of 

cell death, and PI3K as a loading control. (B) Proliferation curves comparing wild type, 

scramble control (scr), and MTF1 (shRNA 1 and 2) partially depleted primary myoblasts. No 

significant differences were found between the four strains. Data represent the average of 

three independent experiments ± SE. (C) Representative light micrographs of differentiating 

myoblasts immunostained for myogenin at 24 and 48 h.  
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Figure 3 

 

 

 

 

 

 

 

 

 
 

Figure 3. Copper enhances the expression of MTF1 in differentiating myoblasts. (A) 

Representative Western blots of MTF1 and SERCA in proliferating and differentiating 

myoblasts differentiated in the presence or absence of insulin, Cu and TEPA as indicated. 

GAPDH was used as loading control. (B) Densitometric quantification of MTF1 bands in 

proliferating and differentiating (24, 48 and 72 h) primary myoblasts. (C) Steady-state mRNA 

levels of Mtf1 determined by qRT-PCR from proliferating and differentiating primary 

myoblasts cultured in the same conditions described in (A). The data represent the average of 

three independent biological experiments ± SE; *P < 0.01. 
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Figure 4 

 

 

 

 

 
 

 

Figure 4. MTF1 binding in differentiating primary myoblasts. (A) Aggregation plots of 

MTF1 ChIP-Seq data showing occupancy over annotated TSS. (B) Overlap of ChIP-Seq 

peaks of MTF1 across the genome observed in differentiating cells in the presence of insulin 

or Cu. (C) Novel consensus DNA-binding motifs identified within MTF1 peaks. Shown are 

MRE and the top five most significant motifs enriched, including the DNA logo, its 

corresponding TF, and its p-value. (D) Genome browser tracks of replicate ChIP-Seq 

experiments examining MTF1 binding to the Myogenin promoter in differentiating myoblasts 

(24 h) under different culture conditions. (E) ChIP-qPCR validation for MTF1 binding to the 

Myogenin promoter. Data represent the average of three independent biological replicates ± 

SE; *P < 0.01. 
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Figure 5 

 

 

 

 

 

 

 

 
 

 

 

Figure 5. MTF1 interacts with MyoD at the promoter regions of myogenic genes. 
Representative Western blot of MTF1-MyoD immunoprecipitation (IP). Pulldown with IgG 

was used as a negative control. (B) Overlap of MTF1 ChIP-seq peaks from primary 

myoblasts differentiated with Cu MTF1 and MyoD peaks extracted from datasets published 

by Solemaini et al., 2012 (GSE24852). (C) Consensus binding motifs identified for sequences 

bound by MTF1 and MyoD. Shown are the top five most significant motifs enriched, 

including the DNA logo, its corresponding TF, and its p-value. (D) Genome browser tracks 

of ChIP-seq data comparing MTF1 occupancy at the myogenin locus in cells 24 h after 

differentiation with Cu and MyoD occupancy at the myogenin locus in proliferating (GM) 

cells or cells differentiated for 10 or 48 hours. MyoD ChIP-seq data was downloaded and 

analyzed from GSE24852 (Soleimani et al., 2012) [106]. (E-F) Reciprocal chromatin 

immunoprecipitation (Re-ChIP)-qPCR for MTF1-MyoD co-binding to the Myogenin 

promoter (E) and to the Pax7 promoter (F) as a negative control. Data represent the average 

of three independent biological replicates ± SE; *P < 0.01. 
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Figure 6 

 

 

 

 

 

 

Figure 6. MTF1 binds Cu, which correlates with nuclear translocation of the metal. (A) 

Upper panel depicts the sequence containing the tetra-cysteine cluster at the carboxy-terminal 

of the murine MTF1 that is required for transcriptional response to Zn and Cd (amino acids 

632, 634, 636 and 638) [86]. These residues were mutated to Alanine to asses Cu-binding 

capabilities of this putative metal-binding site (MBS). Lower panel shows a representative 

Coomassie Brilliant Blue-stained SDS/PAGE and a Western blot immunostained with anti-

MTF1. (B) Cu binding stoichiometry of purified wild type and MTF mutated at the Cu-

binding site (MBS) determined by AAS.  (C) Whole cell Cu content of proliferating and 

differentiating primary myoblasts determined by AAS. Nuclear (D) and cytosolic (E) Cu 

content of proliferating and differentiating primary myoblasts cultured under different Cu 

conditions. Metal determination was performed by AAS. Data represent the mean Cu 

concentration of three independent biological replicates ± SE.  
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