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Abstract
Pharmacogenomics (PGx) studies how individual gene variations impact drug response phenotypes,
which makes knowledge related to PGx a key component towards precision medicine. A significant part
of the state-of-the-art knowledge in PGx is accumulated in scientific publications, where it is hardly
usable to humans or software. Natural language processing techniques have been developed and are
indeed employed for guiding experts curating this amount of knowledge. But, existing works are limited
by the absence of high quality annotated corpora focusing on the domain. This absence restricts in
particular the use of supervised machine learning approaches. This article introduces PGxCorpus, a
manually annotated corpus, designed for the automatic extraction of PGx relationships from text. It
comprises 945 sentences from 911 PubMed abstracts, annotated with PGx entities of interest (mainly
genes variations, gene, drugs and phenotypes), and relationships between those. We present in this
article the method used to annotate consistently texts, and a baseline experiment that illustrates how
this resource may be leveraged to synthesize and summarize PGx knowledge.

Keywords: natural language processing, NLP, pharmacogenomics, corpus, manual annotation, entity
recognition, relationship extraction

Background & Summary
Pharmacogenomics (or PGx) studies how individual gene variations impact drug response phenotypes
[54]. This is of particular interest for the implementation of precision medicine, i.e. a medicine tailoring
treatments (e.g. chosen drugs and dosages) to every patient, in order to reduce the risk of adverse
effects and optimize benefits. Indeed, examples of PGx knowledge have already translated into clinical
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guidelines and practices [4,13], recommending the consideration of individual genotypes when prescribing
some particular drugs. For example, patients with the allele *57:01 of the HLA gene are at high risk to
present a hypersensitivity reaction if treated with abacavir, an anti-retroviral, thus should be genotyped
for this gene before prescription [34].

Many scientific publications are reporting the impact of gene variants on drug responses, and Medline
size (29 million articles) makes it hard for humans or machines to get a full understanding of the state of
the art of this domain. NLP (Natural Language Processing) techniques have been consequently developed
and employed to structure and synthesize PGx knowledge [9, 16]. Previous works investigated mainly
rule-based approaches [6,10,42] and unsupervised learning [24,38], because of the absence of annotated
corpora. Supervised learning has also been experimented [5,28,37,43,55], but without a more appropriate
corpus, most studies build train and test sets on the basis of PharmGKB, the reference database for
PGx [52]. Because it is manually curated, PharmGKB provides a high quality referential for such task.
Annotations provided by PharmGKB (i.e. 2 associated entities and the identifier of the PubMed article
in support) result from the consideration by human curators of various knowledge sources: article text;
tables and figures; and curator’s own knowledge of the domain. Consequently PharmGKB annotations
result from a high level process that can hardly be compared to an NLP-only approach. In particular,
most NLP efforts are restricted to open-access texts only, without considering background knowledge.
In this sense, evaluating an extraction system on PharmGKB enables to evaluate how it may guide the
curation, but not how it can capture what is actually stated in texts.

In domains close to PGx, corpora have been annotated with biomedical entities, but only few of them
include relationships (see Hahn et al. [16] for a panorama, plus [29,48]). The most interesting are related
to pharmacovigilance or oncology, then focusing on drug–adverse response or drug–drug interactions.
To our knowledge, no corpus has been constructed for PGx relationships, which requires a focus on drug
response phenotypes and their relations with genomic variations. Developed for pharmacovigilance, EU-
ADR [49] is a corpus of PubMed abstracts, annotated with drugs, disorders and targets (proteins/genes
or gene variants). It is composed of three subcorpora, focusing on target-disease, target-drug and drug-
disease relationships, each made of 100 abstracts. In the same vein, ADE-EXT (Adverse Drug Effect
corpus, extended) [14] consists of 2,972 MEDLINE case reports, annotated with drugs and conditions
(e.g. diseases, signs and symptoms) and their relationships. SNPPhenA [2] is a corpus of 360 PubMed
abstracts, annotated with single nucleotide polymorphisms (SNPs), phenotypes and their relationships.
Domains covered by EU-ADR, ADE-EXT or SNPPhena are related to PGx, but fit only partially with
our purpose of PGx relation extraction. In particular EU-ADR and ADE-EXT encompass drug reactions
without considering their genetic factor, and SNPPhena does not focus on drug response phenotypes and
considers only SNPs whereas other genomic variations are also of importance in PGx. In addition, the
size of EU-ADR and SNPPhena are relatively small (only a few hundreds of annotated sentences), which
limits the use of supervised learning approaches that require large train sets such as TreeLSTM [47].
These elements motivated us to construct a new corpus, focused on PGx, and large enough to train deep
neural network models.

Despite the existence of reference resources, in particular PharmGKB, and of alternative to supervised
learning, such as weak supervision or active learning, we believe that high quality training data sets
remain an asset for a domain and that the PGx community will benefit from PGxCorpus.

This manuscript presents: the construction of PGxCorpus, in Methods; the corpus itself, in Data
Records; and a baseline experiment, in Technical Validation.

Methods
In this section, we detail the steps of the construction of our corpus named PGxCorpus, as presented in
Figure 1. This process consists in two main steps: (1) the automatic pre-annotation of named entities
and (2) the manual annotation that encompasses the correction of the pre-annotation and the addition
of typed relationships between named entities.

We followed good practices proposed in [30], as well as practical examples provided by EU-ADR,
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ADE-EXT, SNPPhena and other corpora used in NLP shared tasks such as GENIA [22], SemEval
DDI [17]. We particularly considered reports on the MERLOT corpus, which focuse on its annotation
guidelines [3, 36] and inter-annotator agreement [12].
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Figure 1. Overview of the construction of PGxCorpus.

Abstract retrieval and sentence splitting
The very first step consists in retrieving abstracts of publications related with PGx from PubMed [33].
This was performed with the tool EDirect [21] queried with:

Pharmacogenetics [MeSH Terms] OR

( ( Therapeutics [MeSH Terms] OR

Pharmaceutical Preparations[MeSH Terms] OR

ChemicallyInduced Disorders[MeSH Terms] ) (query 1)

AND

( Genome Components[MeSH Terms] OR

Genetic Variation[MeSH Terms] OR

Genetic Testing[MeSH Terms] )

)

This query aims at retrieving article abstracts concerned with PGx or with at least one treatment and
one genetic factor. It has been built by browsing manually the hierarchy of the MeSH vocabulary, which
annotates PubMed entries. The use of MeSH terms allows PubMed to retrieve articles using synonyms
and descendant terms of those used in the query. The query is voluntarily made general to retrieve a
large set of abstracts that may mention PGx relationships.

Every retrieved abstract is subsequently split into its constitutive sentences, using GeniaSS [44].

Automated pre-annotation
To facilitate the manual annotation of PGx relationships, we pre-annotate automatically sentences with
various types of entities of interest for PGx. This pre-annotation is composed of two phases: First,
PGx key entities, i.e. Gene, Mutation, Disease and Chemicals, are recognized and annotated with a
state-of-the-art Named Entity Recognition (NER) tool. Second, these annotations are extended when
they take part in the description of a PGx composite entity, such as a gene expression or a drug response
phenotype.
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Entity type Tool Evaluated on Performance
P R F1

Chemicals Dictionary-based [53] n/a n/a n/a 53.82

Disease DNorm [26] NCBI Disease 82.8 81.9 80.9Corpus

Gene GeneTUKit [20] n/a n/a n/a 82.97
GNAT-100 43.0 56.7 48.9

Mutation tmVar [50] MutationFinder 98.80 89.62 93.98Corpus

Table 1. Performances reported for PubTator. PubTator is the NER tool used during the pre-
annotation step of PGxCorpus. P, R and F1 stand for Precision, Recall and F1-score, respectively. n/a
denotes we were not able to find information to fill the cell.

Recognition of key PGx entities

Pre-annotation is initiated using PubTator [51], which recognizes the following biomedical entities from
PubMed abstracts: chemicals, diseases, genes, mutations and species. PubTator integrates multiple
challenge-winning text mining algorithms, listed in Table 1 along with their performances on various
benchmark corpora. Disease recognition is performed with DNorm, which uses BANNER [25], a trainable
system using Conditional Random Fields (CRF) and a rich feature set for disease recognition. For
genes, GeneTUKit uses a combination of machine learning methods (including CRFs) and dictionary-
based approaches. For mutations, tmVar also uses a CRF-based model with a set of features including
dictionary, linguistic, character, semantic, case pattern and contextual features. PubTator was chosen
for three reasons: it offers a wide coverage of the key entities for PGx; it provides an easy-to-use API to
recover PubMed abstracts along with entity types and their boundaries; and it includes high performance
NER tools.

Extension of the annotations with the PHARE ontology

The second phase of the pre-annotation consists in extending automatically key entity annotations, when
possible, with the PHARE (PHArmacogenomic RElationships) ontology [10]. This ontology encompasses
frequent terms that, associated in nominal structure with PGx key entities, form PGx composite entities.
These terms were obtained by analyzing dependency graphs of nominal structures in which a key entity
syntactically modifies another term, and in turn were structured in the PHARE ontology. In the exam-
ple provided in Figure 2, the drug name acenocoumarol syntactically modifies the term sensitivity.
According to the PHARE ontology, the term sensitivity, when modified by a drug, forms a compos-
ite entity belonging to the DrugSensitivity class. Since this class is a subclass of the Phenotype class,
acenocoumarol sensitivity may also be typed as a Phenotype. Following this principle, annotations
of PGx key entities made by PubTator are extended, when possible, to PGx composite entities, then
typed with classes of the PHARE ontology. For this matter, the dependency graph of each sentence is
constructed with the Stanford Parser [11] and in each graph, the direct vicinity of key entities is explored
in the search for terms defined in PHARE.

To homogenize the types of entities in PGxCorpus, we defined a reduced set of entities of interest,
listed in Figure 3 and then defined mappings from PubTator entities and PHARE classes on one side to
the types allowed in PGxCorpus on the other side. These mappings are reported in Table 2. Note that
we decided to use a type Chemical, instead of Drug, first because we rely on PubTator that recognizes
chemicals (without distinguishing between those and drugs), second because it allows to include broadly
more candidate entities that may be involved in PGx relationships, such as drug metabolites or not yet
approved drugs. Also, we decided on a type named Gene_or_protein, broader to Gene, because it is
hard to disambiguate between gene and protein names in NLP, and commonly assumed that the task of
gene name recognition is indeed a gene-or-protein name recognition [56].
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Figure 2. Example of sentence with PGx key and composite entities. The key entities, in red,
correspond to entities retrieved by PubTator. Composite entities, in green, were obtained using the
PHARE ontology. The syntactic dependency analysis is presented on the bottom of the figure and the
entities on top.

Origin Initial type Type in PGxCorpus

PubTator

Chemical Chemical
Disease Disease
Gene Gene_or_protein
Mutation Limited_variation

PHARE

Drug Chemical
DrugMetabolite Chemical
Gene Gene_or_protein
GenomicRegion Genomic_factor
GenomicVariation Genomic_variation
GeneProduct Gene_or_protein
Mutation Limited_variation
Phenotype Phenotype

Table 2. Mapping between PubTator entities types, PHARE classes and PGxCorpus entity types.

Manual annotations
Before the manual annotation itself, malformed sentences (sentence tokenization errors) and sentences
that did not contain at least one drug and one genetic factor, according to PubTator or PHARE are
filtered out.

Out of the remaining sentences, we randomly select 1,897 of them to be manually annotated. The
annotation process is realized by 11 annotators, out of which 5 are considered senior annotators. An-
notators are either pharmacists (3), biologists (3) or bioinformaticians (5). Each sentence is annotated
in three phases: First, it is annotated independently by two annotators (senior or not); Second, their
annotations are, in turn, compared and revised by a third, senior annotator; Last, a homogenization
phase ends the process.

During the first phase, annotators are provided with sentences and entity pre-annotations. At this
stage, they correct pre-annotations, add potential relationships between them, and discard sentences
which are ambiguous or not related with PGx domain. Sentences discarded by at least one annotator
are not considered for the second phase. During both first and second phases, sentences are randomly
assigned to annotators, but we ensure that senior annotators revise only sentences they did not annotate
in the first phase.

In order to ensure the consistency of the manual annotations, annotators are provided with detailed
guidelines [32]. Those describe the type of entities and relationships to annotate (reported here in
Figures 3 and 4), relationship attributes (affirmed, negated, hypothetical), the main rules to follow,
along with examples. Entity and relationship types are organized in simple hierarchies. Some of the
relationship types are directly related to PGx (denoted with 4 in Figure 4), whereas some have a
broader scope (i.e. isEquivalentTo and treats). This document also provides an how-to-use guide for
the annotation tool and answers frequently-asked questions. The first version of the guidelines has been
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written before the first phase of the annotation. Additional examples and clarifications were added
regularly during the first phase of the annotation. Guidelines were subject to an important revision
between the two first annotation phases, to clarify how to annotate ambiguous cases, which have been
raised by annotators themselves or by the evaluation of agreement score between annotators (see Section
Inter-annotator agreement).

The final phase of homogenization ends the corpus construction process to reduce heterogeneity
remained in the annotations after the second phase. Two expert annotators review together sentences in
two times: the first time is a complete pass on all annotated sentences to identify sources of heterogeneity.
The second time consists in (a) listing sentences associated with each source of heterogeneity using
programmatic scripts and keywords, (b) reaching a consensus for their annotation, and (c) accordingly
modifying the annotations. Sources of heterogeneity identified at this stage include: the annotation
of drug combinations, of dose-related phenotypes, of mutation-related cancer types (e.g. p53-positive
breast cancer), of behavior-related phenotypes (e.g. drug abuse, drug dependence), of genomic factors
(e.g. exons, promoters, regulatory regions), of treated conditions (e.g. transplantations or post-surgery
treatments), uncommon type of relationships. Concerning the latter, annotations made with uncommon
types (i.e. ‘metabolizes’ and ‘transports’) are turned into their upper-level type of annotations (i.e.
‘influences’). For some heterogeneity sources, guidelines were specific, but sometimes disregarded by
annotators; for others, they were caused by unexpected cases, absents from the guidelines.

ChemicalGenomic factor Phenotype

Gene/Protein

Haplotype Limited variation

Pharmacokinetic
phenotypeGenomic variation Pharmacodynamic

phenotype Disease

Figure 3. Types of entities annotated in PGxCorpus and their hierarchy.

increases

influences

decreasescauses  metabolises

isEquivalentToisAssociatedWith

transports

treats

Figure 4. Types of relationships annotated in PGxCorpus and their hierarchy. Types directly related
to PGx are marked with 4, wheras isEquivalentTo and treats have a broader scope.
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PubTator entity Number
recognized

Chemical 90,816
Disease 125,487
Gene 196,460
Mutation 25,417

Table 3. Type and number of entities recognized by PubTator in the pre-annotation.

Code availability
AGit repository of the whole project is accessible at https://github.com/practikpharma/PGxCorpus/.
It includes the annotation guidelines, the corpus itself and the programmatic code of the baseline exper-
iments presented in Technical Validation.

Data Records

Data availability
PGxCorpus is available in the BioNLP shared task file format [39] at three locations:

• figshare, an open access data repository, at the following address: https://figshare.com/s/
9d315cec6bb629d04210

• A BRAT server [46], enabling a friendly online visualization of the annotations: https://
pgxcorpus.loria.fr/

• A Git repository of the whole project that also includes the annotation guidelines and program-
matic code of the baseline experiments presented in Technical Validation https://github.com/
practikpharma/PGxCorpus/.

Statistics on the preparation of PGxCorpus
PubMed has been queried with our initial query (query 1) in July 2017, to retrieve 86,520 distinct
abstracts, split out in 657,538 sentences. Statistics of pre-annotations obtained with PubTator and
PHARE on these sentences are provided in Table 3 and 4, respectively. After filtering malformed
sentences and sentences that do not contain at least one genomic factor and one drug, we obtain 176,704
sentences, out of which we randomly pick 1,897 sentences that are subsequently manually annotated.
This number of sentences is chosen in regards of constraints of the distribution of the annotation task.
These sentences come from 1,813 distinct abstracts.

PHARE entity Discontiguous All
Chemical 430 87,764
Disease 0 29,589
Gene_or_protein 4,690 10,1326
Genomic_variation 8,698 13,601
Phenotype 10,935 16,770

Table 4. Number of entities pre-annotated after extending PubTator annotation with the PHARE on-
tology. Because discontiguous entities are excluded from our baseline experiments (see Section Technical
Validation), their number is specified.

The first phase of manual annotation, by 11 annotators, took roughly four months. The mean number
of sentences annotated by an annotator is of 344.73 (standard deviation=126.33) sentences for this phase.
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The second phase, by 5 senior annotators, took four other months. Each senior annotator revised 258.6
(sd=0.54) sentences. Annotations were made on a voluntary basis, which explains the relatively long
length of this process.

Statistics on PGxCorpus
PGxCorpus encompasses 945 sentences, from 911 distinct PubMed abstracts, annotated with 6,761 PGx
entities and 2,875 relationships between them. Detailed statistics on the type of entities and relationships
annotated are provided in Table 5 and 6, respectively. Note that we distinguish two types of particular
entities: nested and discontiguous ones. Nested entities are entities that encompass fully or partially
at least one other entity in their offset. In Figure 2, the phenotype “acenocoumarol sensitivity" is an
example of nested entity since it encompasses the “acenocoumarol” drug. Discontiguous entities are
entities which offset is discontiguous, such as “VKORC1 genotypes” in Figure 2.

Note also that because of their rareness, annotations made with types ‘metabolizes’ or ‘transports’
were subsequently generalized as ‘influences’. All the corpus abstracts were published between 1952 and
2017.

PGxCorpus entity Nested Discont. Both Total
Chemical 192 2 12 1,718
Genomic_factor 68 7 3 99�

Gene_or_protein 20 3 0 1,708�

Genomic_variation 37 3 0 54�

Limited_variation 537 98 47 919�

Haplotype 112 4 6 137
Phenotype 330 60 27 699�

Disease 143 14 18 635�

Pharmacodynamic_phenotype 390 60 25 632�

Pharmacokinetic_phenotype 109 14 6 160
Total 1,938 265 144 6,761

Table 5. Numbers of entities annotated in PGxCorpus, by type. Because discontiguous entities
(Discont.) and nested entities are considered particularly in our baseline experiments, their numbers are
reported. “Both” refers to entities both discontiguous and nested.

isAssociatedWith 733�

influences 937�

causes 168�

decreases 263�

increases 243�

treats 238
isEquivalentTo 293
Total 2,875

Table 6. Numbers of relations annotated in PGxCorpus, by type. Because of their relatively rareness,
annotations made with ‘metabolizes’ or ‘transports’ types have been subsequently turned in as ‘influences’
annotations in the corpus. All counts are disjoint.

Technical Validation
In this section we present an inter-annotator agreement analysis and the results of a baseline experiment
of relation extraction using PGxCorpus as training data of a neural network model.

8/20

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/534388doi: bioRxiv preprint 

https://doi.org/10.1101/534388
http://creativecommons.org/licenses/by-nc/4.0/


Inter-annotator agreement
Metrics

The annotation task considered for this corpus is particularly complex: it involves 10 entity types, 9
relation types and 3 relation attributes; in addition, entities may be discontiguous or nested. Given this
complexity, metrics to control the variability of the annotations have been evaluated, in particular at the
end of the first phase of the manual annotation, when each sentence has been annotated independently by
two annotators. We evaluate an agreement score that evaluates how much annotators agreed with each
others using the F1-score, following [15, 19]. In this case, the agreement or F1-score, is measured using
one annotator as a reference and the other as a prediction. Note that inverting the reference and the
prediction only inverts the precision and the recall but has no effect on the F1-score itself. We preferred
the F1-score instead of other conventional measures, such as the kappa coefficient [7] because of the
complexity of our annotation task. Kappa coefficient is designed to evaluate inter-annotator agreements
while taking into account the probability that the agreement might be due to random guesses. It is
adapted when annotators select a category, out of a set, to annotate already marked-up entities. Then,
larger the set is, the less probable an agreement occurs by chance. In our case, the annotators need not
only to select a category, but also to identify the boundaries of these potential entities. In this setting, the
probability of a by-chance agreement within the kappa coefficient is low and unadapted. The F1-score
is defined as the harmonic mean of the precision and recall, i.e. F1-score = 2× precision×recall

precision+recall .

Entity agreement

Agreement on the entity annotations is determined in four ways, in regards with two parameters: (a)
using exact or partial match; (b) considering the entity hierarchy or not.

(a) An exact match occurs when two annotators agree on both the entity type and their boundaries.
A partial match is more flexible since it occurs when two annotators agree on the entity type, but
annotation boundaries only overlap. Note that an annotation from the first annotator may overlap with
multiple annotations from the second annotator, and vice versa. Considering every overlapping entities
as a match would artificially increase the recall and the precision because only one can indeed reflect an
agreement between the two annotators. We ensure in this case that an entity from the first annotator is
matched with at most one entity from the second annotator using the Hopcroft-Karp algorithm [18]. In
this case, the problem is seen as a maximum matching problem in a bipartite graph, where each set of
annotations, one for each annotator, represents a sub-graph. The edges between the two sets represent
possible overlaps between one annotation from the first annotator and one from the second.

(b) We also consider a more flexible setting where the agreement takes into account the upper
hierarchies of entities and relationships, as defined in Figures 3 and 4. For instance, if a first annotator
annotates an entity as Pharmacokinetic phenotype (PK) and a second as Pharmacodynamic phenotype
(PD), we consider they agreed to some extent, since both are subtype of Phenotype. In this setting,
it can be considered that an entity (or relationship) is indeed annotated with several types: the one
specified by an annotator and its parents in the hierarchy. In practice, if we consider the first annotator
as the reference and the second as the prediction, we can distinguish three cases: (1) the prediction is
more specific than the reference. In this case, common annotations shared by reference and prediction
are counted as true positives, while annotations of the prediction that are too specific are false positives.
For instance if the reference is Phenotype and the prediction is PD ; we count one false positive in the
evaluation of PD predictions, but the additional Phenotype annotation, inferred from the hierarchy,
enables to count one true positive for Phenotype predictions. (2) The prediction is less specific than
the reference. In this case, common annotations shared by reference and prediction are counted as
true positives, while classes from the reference that are missed by the prediction are false negative. For
instance if the reference is PD and the prediction is Phenotype, we count one true positive for Phenotype
prediction, but one false negative in the prediction of PD. (3) The reference and the prediction do not
have a direct hierarchy relationships, but a common ancestor (like PD and PK ). In this case classes
that are shared by the prediction and reference (i.e. the common ancestors) are counted as true positive,
but too specific predictions as false positives and missed predictions as false negatives. For instance if
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the reference is PD and the prediction is PK, we count one true positive for the prediction of Phenotype
(i.e. the only common ancestor), one false positive for the prediction of PK and one false negative for
the prediction of PD.

Table 7 presents the inter-annotator entity agreement scores, obtained for the first phase of the
manual annotation, depending on settings (a) and (b). We observe that for relatively simple entities
such as chemicals, genes, haplotypes or diseases the F1-score, even on the strictest constraints (exact
match, no hierarchy), overpasses 70. We observe also that for more complex entities such as phenotypes,
annotators tend to agree on the presence of an entity, but not on its offset. This motivates us to update
the annotation guidelines between the two annotation phases, to particularly clarify on how to decide on
entity offsets. When considering the hierarchy, the performances for the leaves of the hierarchy should not
be affected. However, a slight drop is observed due to the use of the Hopcroft-Karp algorithm. Indeed,
when using the hierarchy more potential matches can be observed between prediction and reference
annotations generating more edges in the associated bipartite graph. The Hopcrof-Karp algorithm then
removes some of the correct matches between leaves, causing a slight drop in the recall.

Entity matching: (exact or partial) exact exact partial partial
Considering hierarchy: (yes or no) no yes no yes
Chemical 76.8 76.8 82.1 82.1
Genomic_factor 38.6 72.6 38.8 85.7�

Gene_or_protein 85.3 85.3 90.0 89.4�

Genomic_variation 32.9 49.3 53.0 76.8�

Limited_variation 50.8 50.8 69.0 66.2�

Haplotype 76.2 76.2 77.2 76.1
Phenotype 30.5 51.0 53.9 72.6�

Disease 71.3 71.0 80.9 79.1�

Pharmacokinetic_phenotype 48.2 48.2 57.0 57.0�

Pharmacodynamic_phenotype 31.7 31.7 47.0 47.0
Macro average 57.4 63.8 68.7 76.1

Table 7. Inter-annotator agreement (F1-score) for entity annotations. Four different settings, enabling
more or less flexibility are presented. The agreement score is computed after the first phase of manual
annotation.

Relation agreement

Regarding the inter-annotator agreement on relation annotations, we consider the same two settings,
plus an additional one: (a) using exact or partial match, which applies in this case to the two entities
involved in the relation; (b) the consideration of the hierarchy, which applies in this case to both the
hierarchy of entities and relations (see Figure 3 and 4); (c) the direction of the relation is considered or
not. Resulting agreements are presented in Table 8.

Although the agreement on the relations is low, note that a relation can be considered correct only
if an initial agreement on the two entities in relation has been reached.

Baseline experiments
In this section, we report on baseline experiments with PGxCorpus, which evaluates quantitatively its
usefulness for extracting PGx entities and relations from text. The task evaluated here is composed
of a first step of named entity recognition (NER) and a second one of relation extraction (RE). The
NER is achieved with a variant of a Convolutional Neural Network (CNN) model, whereas the RE is
processed with a multichannel CNN (MCCNN). Source code of the experiments is available at https:
//github.com/practikpharma/PGxCorpus/.
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Entity matching: exact exact partial partial partial
Considering hierarchies: none both none both both
Considering direction: yes yes yes yes no
isAssociatedWith 12.6 14.3 13.2 33.3 33.3�

influences 12.8 12.8 17.7 29.3 29.8�

causes 35.8 35.2 37.6 37.2 39.6�

decreases 25.8 26.8 33.6 36.7 36.7�

increases 14.5 15.6 27.4 30.2 30.2�

metabolizes 59.0 59.0 61.5 61.5 61.5�

transports 83.1 83.1 83.1 83.1 83.1�

treats 33.2 34.7 36.3 37.3 37.3
isEquivalentTo 39.6 40.2 40.7 41.3 62.5
Macro average 47.3 47.1 50.3 53.8 57.0

Table 8. Inter-annotator agreement (F1-score) for the annotation of relations. Five different settings
are presented.

In a related work [35], we used a preliminary, partial and naive set of annotations, for testing the
feasibility of extracting relations and incorporating them in a knowledge network. This included only 307
sentences (out of 945), annotated with a simplified schema of only 4 entity types and 2 relation types.
The associated model for RE was simplistic, since it aimed at proofing feasibility only. The baseline
experiment reported here considers all sentences of PGxCorpus and has been done with more advanced
annotation schema and models.

Sentence representation with word embeddings

Both our models for NER and RE are fed with word embeddings (i.e., continuous vectors) of dimension
dw, along with extra entity embeddings of size de. RE is fed with an additional nested entity embeddings
of size dn.

Regarding word embeddings, given a sentence of N words, w1, w2, . . . , wN , each word wi ∈ W is
embedded in a dw-dimensional vector space by applying a lookup-table operation: LTW (wi) = Wwi

,
where the matrix W ∈ Rdw×|W| represents the parameters to be trained in this lookup-table layer. The
dictionary W is composed of all the words of the corpus. Each column Wwi ∈ Rdw corresponds to the
embedding vector of the wi word in our dictionary W.

Beside word embeddings, two additional embeddings, named entity embeddings, are used to feed
our models. (1) One entity embeddings enables to represent what type of entity a word composes. (2)
One represents if the word starts, continues or ends the description of an entity. Both use a standard
encoding of tags with Begin Intermediate Other End and Single (BIOES)-prefixes [41]. These two first
entity embeddings are constructed slightly differently for NER and RE, since in the first, it encompasses
tags for entities pre-annotated with PubTator and tags for entities annotated with PGxCorpus types,
whereas in the latter, it considers tags for entity types of the corpus, plus special tags that marks pairs
of entities between which a relationship may stand.

For the RE model only, a nested entity embedding of size dn is added to word and entity embeddings
to represent entity types that may be included in nested entities involved in relations. For each word a
nested entity embedding is added for each entity type. Given an entity type, this embedding can take
one of two values: (a) absent if the word is not part of one of the two entities potentially related, or if
it is part of one, but no entity of the given type is included in the entity of interest; (b) present if the
word is part of one of the 2 entities and this one includes another entity of the given type.

Finally, word, entity and nested entity embeddings are concatenated to form the input corresponding
to a given word. Let’s denote xi the concatenated input corresponding to the ith word.
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Named entity recognition

The core of the CNN model used for NER is described in [8]. We adapted it, along with experiment
settings, to fit with the particularity of PGxCorpus that is to encompass about one third of discontiguous
or nested entities (2, 059 discontiguous or nested / 6,761 entities, see Table 5).

Recognizing discontiguous entities is a complex and open problem in NLP and this baseline ex-
periment does not aim at tackling it. For this reason, we discarded in the sentences, annotations of
discontiguous entities from both our train and test sets (265/ 6,761 entities). Nested entities are con-
sidered in our experiment by applying the NER model recursively, as many times as there are nesting
levels. Entities discovered during one iteration of the model are considered as input of the next iteration.
Given the example of Figure 2, a first iteration will recognize the three entities “VKORC1”, “CYP2C9”
and “acenocoumarol”. Then, the second iteration will consider them as an input to recognize “CYP2C9
genotypes” and “acenocoumarol sensitivity”. “VKORC1 genotypes” is discontiguous and consequently
discarded from the experiment.

Formally, given an input sequence x1, . . . , xN , a classical sliding window approach is followed by
applying a two-layer neural network (NN) on each possible window of size k. We denote P the set of
BIOES-prefixed tags. Given the ith window, the NN computes a vector of scores si = [s1, . . . , s|P|],
where st is the score of the BIOES-prefixed tag t ∈ P, associated with the input xi. Scores of the
window i are given by the following formula:

si = W1 h( W2 [xi−( k−1
2 ), . . . , xi, . . . , xi−( k+1

2 )] ),

where the matrices W1 ∈ Rdh×k|W| and W2 ∈ R|P|×dh are the trained parameters of the NN, and h
is a pointwise non-linear function such as the hyperbolic tangent, dh is the number of hidden units and
k the size of the window. Inputs with indices exceeding the input boundaries, i.e. when i − (k−12 ) < 1

or i− (k+1
2 ) > N , are mapped to a special padding vector, which is also learned.

Scores of each window are finally given to a lattice module that allows to aggregate the BIOES-
prefixed tags from our tagger module in a coherent manner, to recover the predicted labels. For more
details about this layer, please see [8].

Relation extraction

The model used for RE is a multichannel CNN (MCCNN) described in [40], where it has been successfully
applied to the task of extraction of drug-drug and protein-protein interactions. It takes an input sentence
and two recognized entities, computes a fixed size representation by composing input word embeddings.
This representation is given to a scorer, which computes a score for each possible type of relationships.
Sentences with more than two entities are considered by the model iteratively for each possible pair of
entities for which a relation may stand, in both directions since relations may be oriented.

The MCCNN applies a CNN of variable kernel size to each input channels of word embeddings. In
other words, it considers different embedding channels i.e. different versions of the word embeddings
associated with each word, allowing to capture different aspects of input words. Formally, given an
input sequence of word representations (i.e. concatenation of word and entity embedding) x1, . . . , xN ,
applying a kernel to the ith window of size k is done using the following formula:

Ci = h(
N−k+1∑

j=1

W [xi, . . . , xi+k−1]
j + b)

where [.]j denotes the concatenation of inputs from channel j, W ∈ R(dw+de)×dh and b ∈ Rdh are the
parameters, dh is the size of the hidden layer, h is a pointwise non-linear function such as the hyperbolic
tangent and N − k + 1 is the number of input channels. For each kernel, a fixed size representation
r∗ ∈ Rdh is then obtained by applying a max-pooling over time (here, the “time” means the position in
the sentence):

r∗ = max [C1, . . . , CN−k+1] .
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We denote K the number of kernels with different sizes. A sentence representation r ∈ Rds (with ds =
K ∗dh) is finally obtained by concatenating the output corresponding to the K kernels r = [r∗1 , . . . , r

∗
K ] .

The sentence representation is finally passed to a single layer NN, which outputs a score for each
possible relation type:

s(r) = W (s)r + b(s) ,

where W (s) ∈ Rds×|S| and b(s) ∈ R|S| are the trained parameters of the scorer, |S| is the number of
possible relation types. The scores are interpreted as probabilities using a softmax layer [1].

Experimental settings

Word embeddings were pre-trained using the method described in [27] on about 3.4 million PubMed
abstracts, corresponding to articles published between Jan. 1, 2014 and Dec. 31, 2016. Our models were
trained by minimizing the negative log-likelihood over the training data. All parameters –embeddings,
weights W and biases b– were iteratively updated via backpropagation. We used a hard tanh function
as activation function f . Hyper-parameters were tuned using a 10-fold cross-validation by selecting the
values leading to the best averaged performance, and fixed for the rest of the experiment.

For NER, the CNN was fed with word embeddings and two types of entity embeddings (one with
PubTator tags, used only for the first iteration of the model and one with PGxCorpus tags used in next
iterations) of size dw = 100 and de = 20 × 2 (20 for each type of tags), respectively. The size of the
hidden layer was fixed to dh = 200, the kernel size to k = 5 and the learning rate to 0.01.

For RE, the MCCNN was fed with word embeddings and two types of entity embeddings (one with
PGxCorpus entity tags; one to identify pairs of entities between which a relation may stand) of size
dw = 200 and de = 20×2, respectively. The size of the nested entity embeddings was set to dn = 5×|E|,
where E is the entity type dictionary.

We used two kernels of size 3 and 5. Following [23], both channels were initialized with pre-trained
word embeddings, but gradients were backpropagated only through one of the channels. The size of the
hidden layer was fixed to dh = 200 and the learning rate to 0.01.

For both NER and RE, we applied a dropout regularization after the embedding layers [45] with
a dropout probability fixed to 0.5. Both models were evaluated using a 10-fold cross validation. Each
result of this evaluation is an average of 100 experiments: 10 experiments for each of the 10 folds starting
with different random initializations. Random initialization concerns entity embeddings, weights and
biases, but not word embeddings not randomly initialized, but pre-trained.

Baseline performances

The objective of these experiments was not to reach the best performances but rather to propose a
baseline for future comparisons, as well as to empirically demonstrate the usefulness of PGxCorpus for
extracting PGx entities and relations from text.

Named entity recognition
Performances for the named entity recognition experiments, evaluated with a 10-fold cross validation,

are reported in Table 9. A main limitation of the NER model is that discontiguous entities were not
considered. This may hurt the performance even for contiguous entities since discontiguous entities
were considered as negative, even though they might be very similar (from the model point of view) to
contiguous entities.

From results reported in Table 9, other observations can be made. First, the best performances were
obtained for Chemical, Gene_or_protein and Disease types, for which (1) the number of training sam-
ples is high, (2) PubTator annotations are available and (3) the ratio between normal entities and nested
and/or discontiguous entities is low (see Table 5). Note that the definition for the Limited_variation
entity used in our corpus is broader than the Mutations recognized by PubTator. PubTator recognizes
precises descriptions of variations such as “VKORC1:C>A”, but not general ones such as “a VKORC1
polymorphism”, which we consider. This explains why the performances obtained for Limited_variation
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were lower than those obtained with PubTator (see Table 1). Even though the number of training sam-
ples for Pharmacokinetic_phenotype and Haplotype is low, we obtained reasonable performances. This
may be due to a rather homogeneous phrasing and syntax in the mention of these entities. When not
considering the hierarchy, Genomic_variation and Genomic_factor types for which few training sam-
ples are available and a high heterogeneity is observed led to poor performances. Lastly we note that,
as expected, the standard deviation for classes with only few examples annotated was high or very high
(above 19 for Haplotype and Pharmacokinetic_phenotype). The random distribution of these “rare” ex-
amples between train and test sets, in the 10-fold cross validation, had a strong impact on performances,
and explains these large standard deviations. Concerning concepts that are leaves of the hierarchy, we
observed a slight drop in performances when considering the hierarchy. This is due to the use of the
Hopcroft-Karp algorithm as mentioned in the Subsection Entity agreement.

Entity matching: (exact or partial) exact exact partial partial
Considering hierarchy: (yes or no) no yes no yes
Chemical 76.07 76.07 82.67 82.67 (7.24)
Genomic_factor 22.86 71.41 27.68 83.19 (5.90)�

Gene_or_protein 85.72 85.72 90.58 90.05 (3.89)�

Genomic_variation 2.67 49.13 3.83 71.18 (9.55)�

Limited_variation 47.08 47.02 72.71 71.57 (9.50)�

Haplotype 66.97 66.97 72.47 72.47 (19.34)
Phenotype 31.76 50.80 48.48 69.57 (5.40)�

Disease 66.90 66.88 75.68 72.59 (7.30)�

Pharmacokinetic_phenotype 29.30 29.30 36.47 36.27 (19.40)�

Pharmacodynamic_phenotype 38.54 38.50 58.84 58.18 (10.11)
Macro average 49.15 59.11 59.76 71.93 (5.64)

Table 9. Performances of the task of named entity recognition in terms of F1-score (and its standard
deviation in brackets, for the last setting). Balance between precision and recall, as well as details on
standard deviations are provided in Supplementary Table S1.

Relation extraction
Performances for the relation extraction (RE) experiments, evaluated with a 10-fold cross validation,

are reported in Table 10. The RE model faced several limitations: (1) for a given sentence along with
identified entities, the relation predictions were independent. This is obviously too simplistic and the
prediction should be made globally. (2) We considered relationships annotated as negated or hypothetical
by annotators just as regular relationships.

Several observations can be made about the RE results in Table 10. First, the fact that the model
had to deal with multiple, complex and associated classes made the classification problem difficult and
the performances relatively modest. The experiment in which we considered the hierarchy showed that,
even if it was difficult to identify a specific type of relation, is was easier for the model to determine
whether there was a relation between two entities or not. In other words, many mis-classifications were
in fact predictions for types that belong to the same branch of the hierarchy. Like for the NER, types
of relation with less examples tended to be associated with poorer performances and higher standard
deviations (except for the isEquivalentTo relationship, which is very homogeneous). To build upon these
observations, and particularly to avoid the impact of isEquivalentTo type that is not specific to PGx,
we evaluated how PGxCorpus can be used to train a model for relations specific to PGx (denoted with
4 in Table 10), but without consideration of their sub-types. Results of this experiment is provided on
the last line of Table 10

Several enhancements could be introduced to improve this baseline model. First, in our implementa-
tion, the hierarchy was not considered during the training phase. Accordingly, learning to predict a leaf
penalized all the other categories, even those that were considered correct at test time. This explains why
the “PGx Relations only” experiment led to better performances than individual classifications with or
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without hierarchy. On the other hand, considering the hierarchy at training would increase the number
of examples for the higher categories of the hierarchy, potentially harming performances for the leaves.
A model enabling multiclass labeling and a weighting dependent on the size of the classes should balance
this bias.

Considering hierarchies: (yes or no) no yes
isAssociatedWith4 30.89 51.71 (4.02)

�

influences4 36.55 46.45 (5.17)

�

causes4 41.91 41.91 (13.35)

�

decreases4 29.47 29.47 (9.85)

�

increases4 17.94 17.94 (15.20)�

treats 39.97 39.97 (12.60)
isEquivalentTo 79.76 79.76 (7.69)
Macro average 45.67 49.56 (4.51)
PGx relations only(4), no hierarchy 54.04 (3.31)

Table 10. Performances of the task of relation extraction in terms of F1-score (and standard deviation).
The last line provides results of an experiment for which only one category is considered, merging all the
type specific to PGx (marked with 4). For leaves, performances are unchanged when considering the
hierarchy. Balance between precision and recall, as well as details on standard deviations are provided
in Supplementary Table S2.

Building upon PGxCorpus
We proposed an annotated corpus, named PGxCorpus, and an experimental validation of its usefulness
for the tasks of NER and RE in pharmacogenomics.

Unlike existing corpora, PGxCorpus encompasses the three main entities involved in PGx relation-
ships (drugs, genomic factors and phenotypes) and provides a fine-grained hierarchical classification for
both PGx entities and relationships. By making this corpus freely available, our objective is to enable
the training of supervised PGx relation extraction systems and to facilitate the comparison of their
performances. Furthermore, the baseline experiment illustrates that PGxCorpus enables studying many
challenges inherent with biomedical entities and relationships: discontiguous entities, nested entites, mul-
tilabeled relationships, heterogenous distributions, etc.). In particular, PGxCorpus offers both a training
resource for supervised approaches and a reference to evaluate and compare to in future efforts. Out of
pharmacogenomics, such a corpus may more generally serve transfer learning approaches, as illustrated
by [31]. For these reasons, we think that tasks of PGx NER and RE, supported by PGxCorpus, are well
suited for Bio-NLP Challenges and shared tasks. Consequently, our expectation is that the release of
PGxCorpus will stimulate Bio-NLP research.

Usage Notes
PGxCorpus is made available under the Creative Commons Attribution-Non-Commercial 4.0 Interna-
tional Public License. The programmatic code of our baseline experiments is available at https://github-
.com/practikpharma/PGxCorpus/tree/master/baseline_experiment.
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