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Abstract

Motivation: Sequence alignment is a central operation in bioinformatics pipeline and, despite many improve-
ments, remains a computationally challenging problem. Locality Sensitive Hashing (LSH) is one method used to
estimate the likelihood of two sequences to have a proper alignment. Using an LSH, it is possible to separate,
with high probability and relatively low computation, the pairs of sequences that do not have an alignment from
those that may have an alignment. Therefore, an LSH reduces in the overall computational requirement while
not introducing many false negatives (i.e., omitting to report a valid alignment). However, current LSH methods
treat sequences as a bag of k-mers and do not take into account the relative ordering of k-mers in sequences. And
due to the lack of a practical LSH method for edit distance, in practice, LSH methods for Jaccard similarity or
Hamming distance are used as a proxy.
Results: We present an LSH method, called Order Min Hash (OMH), for the edit distance. This method is a
refinement of the minHash LSH used to approximate the Jaccard similarity, in that OMH is not only sensitive
to the k-mer contents of the sequences but also to the relative order of the k-mers in the sequences. We present
theoretical guarantees of the OMH as a gapped LSH.
Contact: gmarcais@cs.cmu.edu, carlk@cs.cmu.edu

1 Introduction

Measuring sequence similarity is the core of many al-
gorithms in computational biology. For example, in
the Overlap-Layout-Consensus paradigm to assemble
genomes (e.g., Myers et al., 2000; Jaffe et al., 2003), the
first overlap step consist of aligning the reads against
one another to determine which pairs have a significant
alignment (an overlap). In meta-genomics, sequencing
reads, or longer sequences created from these reads, are
aligned against known genomes, or against one another
to cluster the sequences, to determine the constituent
species of the sample. Sequence similartiy is also at
the heart of the many general sequence aligners, ei-
ther genome to genome (e.g., MUMmer Marçais et al.,
2018) or reads to genome [e.g., Bowtie2 (Langmead
and Salzberg, 2012), BWA (Li and Durbin, 2010)], that
are used in countless pipelines in bioinformatics.

Despite many algorithmic and engineering improve-
ments [e.g., implementation on SIMD (Zhao et al.,
2013) and GPU (Liu et al., 2012)], computing the
sequence alignment or edit distance between two se-
quences takes approximately quadratic time in the
length of the input sequences, which remains computa-
tionally expensive in practice. Given that the edit dis-

tance is likely not computable in strong subquadratic
time (Backurs and Indyk, 2015), most aligners rely on
heuristics to more quickly detect sequences with a high
probability of having an alignment.

Recent aligners, such as Mash (Ondov et al., 2016),
Mashmap (Jain et al., 2017), or overlappers such as
MHap (Berlin et al., 2015), use a method called “Lo-
cality Sensitive Hashing” (LSH) to reduce the amount
of work necessary (Indyk and Motwani, 1998). The
procedure is a dimensionality reduction method and
works in two steps. First, the sequences (or part of
the sequences) are summarized into sketches that are
much smaller than the original sequences while pre-
serving important information to estimate how simi-
lar two sequences are. Second, by directly comparing
those sketches (with no need to refer to the original
sequences) or by using these sketches as keys into hash
tables, the software finds pairs of sequences that are
likely to be similar. A more thorough, and computa-
tionally expensive, alignment procedure may then be
used on the candidate pairs to refine the actual align-
ments.

In an LSH method, the distance between sketches
is used as a first approximation for the distance be-
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tween the sequences. That is, with high probabil-
ity, two sequences which are very similar must have
sketches which are similar, and conversely dissimilar
sequences have dissimilar sketches. More precise defi-
nition of these concepts are given in Section 2.

Instead of using an LSH for the edit distance or an
alignment score, in practice sequence alignment pro-
grams use the minHash LSH (Broder, 1997) for the
Jaccard similarity or an LSH for the Hamming distance
as a proxy for the edit distance. While these two tech-
niques have proven themselves useful in practice, they
suffer from one major flaw: neither the Jaccard simi-
larity nor the Hamming similarity directly correspond
to the edit distance (see Section 2.2 for examples). In
fact, it is possible to find sequences that are indistin-
guishable according to the Jaccard similarity, but have
large edit distance. Similarly, with the Hamming dis-
tance, there exists sequences with very low edit dis-
tance that are completely dissimilar according to the
Hamming similarity.

Depending on the problem and the software imple-
mentation, the cases above can lead to false negatives
(an alignment is missed) and a decrease in precision,
or false positives (a nonexistent potential alignment
reported) and extra computational work. An LSH
method for edit distance instead of the proxy Jaccard
or Hamming similarities would reduce both of these
issues.

Although multiple definitions are possible for se-
quence similarity (or distance), in this study, we fo-
cus on the edit distance (aka Levenshtein distance,
Levenshtein, 1966), which is the number of operations
(misma tches, insertion, deletion) needed to transform
a string into another one.

Two methods that are LSH for the edit distance have
been described previously. Bar-Yossef et al. (2004)
propose a sketch that can distinguish, with some prob-
ability, between sequences with edit distance ≤ t from
sequences with edit distance ≥ (tn)2/3, where n is the
length of the sequencesm, for any t ≤

√
n. They use

an indirect method to obtain an LSH for the edit dis-
tance: first they embed the edit distance space into a
Hamming space with low distortion, and second, ap-
ply an LSH on the Hamming space. That is, the input
sequence is first transformed into a bit vector of high
dimension, then sketching for the Hamming distance
is applied to obtain an LSH for the edit distance.

Similarly, Ostrovsky and Rabani (2007) propose a
two step method, where the edit distance space is first
embedded into an `1 space with low distortion, then a
sketching algorithm for the `1 (Kushilevitz et al., 2000)
is used to obtain an LSH for the edit distance. This
method can distinguish between sequences with edit
distance ≤ t and edit distance ≥ t · 2c

√
logn log logn, for

some constant c.

We propose a simpler and direct method that is an

LSH for the edit distance. Our method is an extension
to the minHash method. We call our method OMH for
Order Min Hash, and it can be seen as a correction of
the minHash method. The probability of hash collision
in the OMH method is the product of two probabili-
ties. The first is the probability to select a k-mer from
the set of common k-mers between the two sequences.
This probability is similar to minHash that estimates
the Jaccard similarity between the k-mer contents of
two sequences. However, there is one key difference:
the minHash method estimates the Jaccard similarity
which treats sequences as sets of k-mers, and the num-
ber of occurrences of each k-mer in the sequences is ig-
nored. Whereas OMH estimates the weighted Jaccard,
where the number of occurrences of a k-mer in a se-
quence is significant, i.e., the weighted Jaccard works
with multi-sets. The second probability is the likeli-
hood that the common k-mers appear in the same rel-
ative order in the two sequences. Therefore, OMH is
not only sensitive to the k-mer content of the sequences
but also to the order of the k-mers in the sequences.

The sketch proposed for OMH is only slightly bigger
than the sketch for minHash while maintaining signif-
icantly more information about the similarity of two
sequences. In addition to providing an estimate for
the edit distance between two sequences, it also pro-
vides an estimate of the k-mer content similarity (the
weighted Jaccard) and how similar the relative order
is between the common k-mers of the two sequences.

Section 2 summarizes the notation used though out
and main results. Detailed proofs of the results are
given in Section 3. Section 4 discusses some practical
consideration on the implementation of the sketches.

2 Main results

2.1 Concepts and definitions

Distance and similarity. A distance is a function
d : U × U → [0, 1] that indicates the distance between
two elements in the universe U . d satisfies the triangle
inequality and d(x, y) = 0 means that x = y. A simi-
larity is a function s(·, ·) such that 1−s is the distance.
Hence, a distance defines a similarity and vice-versa.
We will therefore use equivalently the terms “edit dis-
tance” and “edit similarity”.

Given two strings S1, S2 ∈ Σn of length n (where
Σ is the alphabet of size σ = |Σ|), the Hamming dis-
tance Hd(S1, S2) is the number of indices at which S1

and S2 differ divided by n: Hd(S1, S2) = |{i ∈ [n] |
S1[i] 6= S2[i]}|/n ([n] denotes the set {0, . . . , n − 1}).
The (normalized) edit distance Ed(S1, S2) is the mini-
mum number of indels (sort for insertion or deletion),
and mismatches necessary to transform S1 into S2, di-
vided by n. Given two sets A and B, the Jaccard
similarity is J(A,B) = |A ∩B|/|A ∪B|.
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Gapped LSH. Let H be a set of hash functions de-
fined on a set U (the universe). A probability distribu-
tion on the set H is called (s1, s2, p1, p2)-sensitive for
the similarity s when

• s(x, y) ≥ s1 =⇒ Pr
h∈H

[h(x) = h(y)] ≥ p1, (1)

• s(x, y) ≤ s2 =⇒ Pr
h∈H

[h(x) = h(y)] ≤ p2, (2)

where s1 ≥ s2 and p1 ≥ p2. A similarity admits a
gapped LSH scheme if there exists a distribution on a
set of hash functions that is (s1, s2, p1, p2)-sensitive. In
the definition above, the probability is taken over the
choice of the hash function in H and the implications
hold for any choice of x and y ∈ U . In a gapped LSH,
the probability of a hash collision is increased (≥ p1)
between similar elements, and less likely (≤ p2) for
dissimilar elements.

In the following, the probabilities are always taken
over the choice of the hashing function, even though
we may omit the “h ∈ H” subscript.

LSH. An LSH for a similarity is a family of hash
functions that is (r, r, r, r)-sensitive for any r ∈ (0, 1).
Equivalently, the family of hash functions satisfies
Pr[h(x) = h(y)] = s(x, y). In practice a gapped LSH is
typically used to put elements into a hash table where
there is high likelyhood of a collision, while a full LSH
can be used as a direct estimator of the underlying
measurement.

MinHash sketch. Let the universe U be a family
of sets on the ground set X (i.e., U ⊂ P(X)). The
minHash LSH for the Jaccard similarity is defined as
the uniform distribution on the set Hmin = {hπ(A) =
minx∈A π(x) | π is a permutation of X}. That is, the
hash function selects the smallest element of the set
A according to some ordering π of the elements of
the ground set X. This family of hash functions is
(s, s, s, s)-sensitive for any value of s ∈ [0, 1], or equiv-
alently Pr[h(A) = h(B)] = J(A,B).

LSH for Hamming similarity. The Hamming sim-
ilarity between two sequences is the proportion of posi-
tions which are equal: Hs(S1, S2) = |{i ∈ [n] | S1[i] =
S2[i]}|/n. For the Hamming similarity, the uniform
distribution on H = {hi(S) = S[i] | i ∈ [n]} satisfies
Pr[h(S1) = h(S2)] = Hs(S1, S2).

String k-mer set. For a sequence S, the set of its
constituent k-mers is Mk(S) = {S[i : k] | i ∈ [|S| −
k + 1]}, where S[i : k] is the substring of length k
starting at index i. By extension, the Jaccard between
two sequences is the Jaccard between their k-mer sets:
J(S1, S2) = J(Mk(S1),Mk(S2)).

Weighted Jaccard. The weighted Jaccard similar-
ity on multisets (or weighted sets) is defined similarly
to the Jaccard similarity on sets, where the intersec-
tion and union take the multiplicity of the elements
into account. More precisely, a multiset A is defined
by an index function χA : U → N, where χA(x) gives
the multiplicity of x in A (zero if not present in A).
The index function of the intersection of two multisets
is the minimum of the index functions, and for the
union it is the maximum. Then, the weighted Jaccard
is defined by

Jw(A,B) =

∑
x∈U min(χA(x), χB(x))∑
x∈U max(χA(x), χB(x))

.

This is a direct extension to the set definitions, where
the index function takes values in {0, 1}.

2.2 Jaccard and Hamming differ from
edit distance

Similarly to the definition of the LSH, we say that a
similarity f1 is a (s1, s2, t1, t2)-proxy for the similarity
f2 if

• f1(x, y) ≥ s1 =⇒ f2(x, y) ≥ t1 (3)

• f1(x, y) ≤ s2 =⇒ f2(x, y) ≤ t2 (4)

That is, high similarity for f1 implies high similarity
for f2, and the converse. Because of the symmetry in
the definitions between sensitivity and proxy, if f1 is
not a proxy for f2, then an LSH for f1 is not an LSH
for f2.

We show here that neither the Hamming similarity
nor the Jaccard similarity are good proxies for the edit
distance. More precisely, only one of the implications
above is satisfied.

Jaccard similarity differs from edit similarity.
A low Jaccard similarity does imply a low edit similar-
ity (eq (4)). On the other hand, consider the sequence
S1 = 0 . . . 01 . . . 1 that has n − k 0s followed by k 1s,
and S2 with k 0s followed by n − k 1s (k fixed, n ar-
bitrarily large). The k-mer sets of S1 and S2 are iden-
tical, hence J(S1, S2) = 1, while the edit similarity is
≤ 2k/n. These sequence are indistinguishable accord-
ing to the Jaccard similarity while having arbitrarily
small edit similarity (eq (3) not satisfied).

Weighted Jaccard similarity differs from edit
similarity. Consider two de Bruijn sequences: se-
quences of length σk containing every k-mer exactly
once (van Aardenne-Ehrenfest and de Bruijn, 1951).
There is a very, very large number of such sequences

((σ!)σ
k−1

/σn), and although any two such sequences
have exactly the same k-mer content, they might oth-
erwise have a very low edit similarity. Both the Jaccard

Page 3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/534446doi: bioRxiv preprint 

https://doi.org/10.1101/534446
http://creativecommons.org/licenses/by/4.0/


and weighted Jaccard similarity fail to distinguish be-
tween de Bruijn sequences, regardless of their mutual
edit distance.

More generally, both Jaccard and weighted Jaccard
similarity treats sequences as bags of k-mers. The in-
formation on relative order of these k-mers within the
sequence is ignored, although it is of great importance
for the edit similarity. By contrast, an OMH sketch
does retain some information on the order of the k-
mers in the original sequence.

Hamming similarity differs from edit similarity.
A high Hamming similarity does imply a high edit sim-
ilarity (eq (3)). The opposite is not true however. Con-
sider the sequences of length n, S1 = 0101 . . . 01 and
S2 = 1010 . . . 10. These sequences have a Hamming
similarity of 0 and an edit similarity of ≥ 1− 2/n (two
indels). That is, these sequences are as dissimilar as
possible according to the Hamming distance, but an
arbitrarily high edit similarity (eq (4) not satisfied).

The Hamming similarity is very sensitive to the ab-
solute position in the string. A single shift between
two sequence has a large impact on the Hamming sim-
ilarity but only a unit cost for the edit similarity. An
OMH sketch on the other hand only contains relative
order between k-mers and is indifferent to changes in
absolute position.

2.3 LSH for the edit similarity

An LSH for the edit similarity must be sensitive to
the k-mer content of the strings and the relative order
these k-mers, but relatively insensitive to the absolute
position of the k-mers in the string. This motivates the
definition below. Similarly to the minHash, k-mers are
selected at random by using a permutation on the k-
mers. Additionally, to preserve information about rel-
ative order, ` k-mers are selected at once and recorded
in the order they appear in the sequence (rather than
the order defined by the permutation).

Additionally, the method must handle repeated k-
mers. Two copies of the same k-mer occur at differ-
ent positions in the sequence, and it is important for
the relative ordering between k-mers to distinguish be-
tween these two copies. We make k-mers unique by
appending to them their “occurrence number”.

More precisely, for a string S of length |S| = n, con-
sider the set Mw

k (S) of the pairs of the k-mers and
their occurrence number. If there are x copies of m
in sequence S, then the x pairs (m, 0), . . . , (m,x − 1)
are in the set Mw

k (S), and the occurrence number de-
notes the number of other copies of m that are in the
sequence S to the left of this particular copy. That is,
if m is the k-mer at position i in S (i.e., m = S[i : k]),
then its occurrence number is |{j ∈ [i] | S[j : k] = m}|.
This set is the “multi-set” of the k-mer content of

string S, or the “weighted set” of k-mers where the
number of occurrences is the weight of the k-mer
(hence the w superscript). We call a pair (m, i) of a
k-mer and an occurrence number a “uniquified” k-mer.

A permutation π of Σk × [n] defines two functions
hw`,π and h`,π. hw`,π(S) = ((m1, o1), . . . , (m`, o`)) is a
vector of length ` of elements of Mw

k (S) such that:

• the pairs (mi, oi) are the ` smallest elements of
Mw

k (S) according to π,

• the pairs are listed in the vector in the order in
which the k-mer appear in the sequence S. That
is, if i < j, mi = S[x : k] and mj = S[y : k], then
x < y.

The vector h`,π(S) = (m1, . . . ,m`) contains only the
k-mers from hw`,π(S), in the same order. The Order
Min Hash method (OMH) is defined as the uniform
distribution on the set of hash function Hk,` = {h`,π |
π a permutation of Σk × [n]}.

For extreme cases, where ` = n − k + 1, the vec-
tor contains overlapping k-mers that cover the entire
sequence S. In that case, equality of the hash values
implies strict equality of the sequences.

At the other extreme, where ` = 1, the vectors
contain only one k-mer and no relative order infor-
mation is preserved. In that case, only the k-mer
content similarity between S1 and S2 matters. De-
fine the weighted Jaccard similarity as Jw(S1, S2) =
J(Mw

k (S1),Mw
k (S2)).

Theorem 1. When ` = 1, OMH is an LSH for the
weighted Jaccard similarity:

Pr[h1,π(S1) = h1,π(S2)] = Jw(S1, S2). (5)

Proof. This proof is similar to that of minHash and
the Jaccard similarity (Broder, 1997). Because every
uniquified k-mer in Mw

k (S1) ∪Mw
k (S2) has the same

probability of being selected, the probability of having
a hash collision is the same as selected a k-mer from the
intersection where the probability of picking a k-mer is
weighted by its maximum occurrence number.

As we shall see in Section 4.4, the weighted Jaccard
similarity contains approximately the same informa-
tion as the Jaccard similarity with respect to the edit
similarity.

For the general case 1 < ` < n − k + 1, we shall
prove the following theorem in Section 3 that OMH is
a gapped LSH for the edit distance.

Theorem 2. There exists functions
p1
n,k,`(·) and p2

n,k,`(·) such that OMH is(
s1, s2, p

1
n,k,`(s1), p2

n,k,`(s2)
)
-sensitive for any

` ∈ [2, n− k].

The actual functions p1 and p2 are explicitly define
in Section 3, but they may not be easily expressed with
elementary functions in general.
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Figure 1: The gray area represents an optimal align-
ment between sequence S1 and S2. A particular k-
mer m is shown with its occurrence numbers. The
occurrence number of the matched k-mer pairs in the
alignment may not agree (as in this example). For
every such m with a mismatch occurrence number in
the alignment, there must exists an instance of m not
contained in the alignment ((m, 0) in S1 here).

3 Proofs of main results

We shall now prove Theorem 2 that OMH is sensitive
for the edit similarity by exhibiting the relations be-
tween parameters (s1, s2, p1, p2) that satisfy eq (1) and
(2). We will break the proof in two Lemmas that pro-
vide the relations between s1, p1 and between s2, p2. In
the following, S1 and S2 are two sequences of length
n. The number of k-mers in each of these sequences is
nk = n− k + 1.

Lemma 1. Es(S1, S2) ≥ s1 =⇒ Pr[h`,π(S1) =
h`,π(S2)] ≥ p1 when

p1 =

(
n−n(k+2)(1−s1)

`

)(
nk+kn(1−s1)

`

) . (6)

Proof. The situation is similar to the minHash
method. Suppose that Es(S1, S2) ≥ s1, then the edit
distance Ed(S1, S2) = 1− Es(S1, S2) ≤ 1− s1 and the
number of mismatch and indels is ≤ n(1 − s1). At
least nk − kn(1− s1) k-mers must be part of an opti-
mal alignment as an error (mismatch or indel) affects
at most k consecutive k-mers.

Similarly, the size of the set Mw
k (S1) ∪Mw

k (S2) is
maximized when all the k-mers that are not part of
the alignment are different. Then |Mw

k (S1)∪Mw
k (S2)|

is at most nk + kn(1− s1).
We estimate the probability to have a hash collision

from the number of uniquified k-mers in the alignment.
As seen in Figure 1, it is possible for a k-mer m with
different occurrence numbers to be part of the opti-
mal alignment. Any permutation that has (m, 0) in
the lowest ` uniquified k-mers does not lead to a hash
collision. Because for any such uniquified k-mer (m, 0)
in the alignment, there is also an instance in the un-
aligned part of S1 and S2, the number x of such k-mers
satisfy x + k − 1 ≤ 2n(1 − s1). That is, the total se-
quence covered by these k-mers cannot exceed the total
unaligned sequence between S1 and S2. Consequently,

the number of k-mers in the alignment to choose from
is at least n− n(k + 2)(1− s1).

Every element of Mw
k (S1) ∪Mw

k (S2) has an equal
probability to be in the lowest ` elements according to
a permutation π, therefore the probability of having a
hash collision is:

Pr[h`,π(S1) = h`,π(S2)] ≥ Pr[hw`,π(S1) = hw`,π(S2)]

≥
(
n−n(k+2)(1−s1)

`

)(
nk+kn(1−s1)

`

) . (7)

This defines the relationship between p1 and s1 as in
eq (6).

For the proof of eq (2), we will consider the contra-
positive

Pr[h`,π(S1) = h`,π(S2)] ≥ p2 =⇒ Es(S1, S2) > s2.
(8)

That is for any two sequences with high probability
of having a hash collision, the edit similarity of the
sequences must be high.

To have a high probability of collision between two
sketches, the sequences must have a large number of
common k-mers and these common k-mers should be
mostly in the same relative order. The first condition
corresponds to the sequences having a large weighted
Jaccard similarity.

The second condition is related to common subse-
quences. A “common subsequence” between (ai) and
(bi) is a sequence of elements that are in both (ai)
and (bi) and appear in the same order (formally an
increasing function ϕ such that aϕ(i) = bϕ(i)). If the
sequences S1 and S2 have a long common subsequence
of k-mers, then the probability to pick ` k-mers in the
same order between the common k-mers of S1 and S2

will be high. In turn the presence of a long common
subsequence of k-mers must have a high similarity.

Hence, the proof will rely on finding pairs of se-
quences with as short as possible longest common sub-
sequences while having high probability to pick k-mers
in the same order. This problem is equivalent to find-
ing, for a given L, a single sequence with as many
as possible increasing subsequences of length L (see
Lemma 3).

Lemma 2. Es(S1, S2) ≤ s2 =⇒ Pr[h`,π(S1) =
h`,π(S2)] ≥ p2 when

p2 =

(
nk

ns2−k+1

)` (
ns2−k+1

`

)(
nk

`

) . (9)

Proof. We use the notation {hw`,π(S)} for the set of ele-
ments in the vector hw`,π(S) (in other words, because all
the elements are unique by construction, the elements
without order).
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As mentioned above, we consider the contrapositive
state in eq (8). We have that

p2 < Pr[h`,π(S1) = h`,π(S2)] =

Pr[h`,π(S1) = h`,π(S2) | {hw`,π(S1)} = {hw`,π(S2)}]
· Pr[{hw`,π(S1)} = {hw`,π(S2)}]. (10)

Under the conditional event (C) that {hw`,π(S1)} =
{hw`,π(S2)}, we have h`,π(S1) = h`,π(S2) ⇐⇒
hw`,π(S1) = hw`,π(S2). The reverse implication (⇐) is
always true as h is obtained from hw by using only
the k-mer in each element. The forward implication
(⇒) holds thanks to (C). Given that the k-mers are
listed in order in which they appear in the respective
sequences, they are also listed in order of their occur-
rence number, and because the content in the weighted
vectors hw is the same, the equality of the unweighted
vectors h implies equality of the weighted vectors.

Let m = |Mw
k (S1) ∩Mw

k (S2)| be the size of the in-
tersection of the weighted k-mer sets. The event (C)
occurs when the ` smallest according to the permuta-
tion π belong to the intersection Mw

k (S1) ∩Mw
k (S2).

Therefore

Pr[{hw`,π(S1)} = {hw`,π(S2)}] =

(|Mw
k (S1)∩Mw

k (S2)|
`

)(|Mw
k (S1)∪Mw

k (S1)|
`

)
≤
(
m
`

)(
nk

`

) . (11)

Consider now the sequences Mw
k (S1) and Mw

k (S2) of
the elements of Mw

k (S1) ∩Mw
k (S2) listed in the order

in which their occur in S1 and S2 respectively. Both of
these sequences have length m. Then, the event that
h`,π(S1) = h`,π(S2) under the condition (C) is equiv-
alent to having the hash function hw`,π picking a com-
mon subsequence (CS) of length ` between Mw

k (S1)
and Mw

k (S2). Because the elements of these sequences
are never repeated (it is a list of uniquified k-mers),
the problem of finding common subsequences between
Mw
k (S1) and Mw

k (S2) is identical to finding increasing
subsequences (IS) in a sequence of integers of length
m (Hunt and Szymanski, 1977; Fredman, 1975).

Pr[h`,π(S1) = h`,π(S2) | (C)] ≤
max
π∈[m]!

Pr[pick IS of length ` in π([m])], (12)

where [m]! is the set of all permutations of [m]. To-
gether, equations (10), (11), (12), and lemma 3 below
imply that the following holds for any choice of se-
quences S1, S2:

p2 < max
`≤m,
m≤nk

(
m
L

)` (L
`

)(
m
`

) (
m
`

)(
nk

`

)
<

(
nk

L

)` (L
`

)(
nk

`

) , (13)

Figure 2: An example of stacks created when sorting
a deck of cards. The LIS is 6, with the arrows showing
a possible increasing subsequence of maximal length.
To maximize the number of possible subsequences of
maximum length, the height of the stacks have to be
equal.

where L is the length of the longest common subse-
quence between Mw

k (S1) and Mw
k (S2). The function

on the right hand side of eq (13) is an increasing func-
tion of L, equal to 0 when L < `, and equal to 1 when
L = n− k+ 1. Given that s2 ≥ Es(S1, S2) ≥ (L+ k−
1)/n, replacing L by ns2 − k + 1 in eq (13) gives the
desired relation between s2 and p2 of eq (9).

Finally, we prove the relationship between the length
of the longest increasing subsequence and the largest
number of sequences of maximal length.

Lemma 3. For i, n, ` ∈ N, n ≥ i ≥ `, for any sequence
of length n with a longest increasing subsequence (LIS)
of at most i, the largest number of increasing subse-
quences of length ` is(n

i

)`(i
`

)
,

and this bound is tight.

Proof. The proof relies on the properties of patience
sorting (Aldous and Diaconis, 1999). Patience sorting
for a shuffled deck of cards works as follows:

• The algorithm creates stacks of cards where in
each stack the cards are in decreasing order from
the bottom to the top of the stack. The stacks are
organized in a line, left to right.

• At each round, the next card of the deck is exam-
ined and added to the top of the left most stack it
can go on, i.e., the left most stack with a top card
whose value is higher that the new card.

• If no existing stack is suitable, a new stack is cre-
ated to the right with the new card.

After all the cards are drawn and organized in stacks
(see Figure 2), the following properties hold: (1) no two
cards from an increasing subsequence in the original
deck are in the same stack, and (2) the number of
stacks is equal to the LIS (see Aldous and Diaconis
(1999, Lemma 1)).
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Fix i′ ∈ [`, i] and a sequence S of length n with
LIS of i′. At the end of patience sorting of S, let
s = (s0, . . . , si′−1) be the vector of the height of each
of the stacks. Then, an upper bound on the number
of increasing subsequence of length ` in S is

g(s) =
∑
A⊂[i′]
|A|=`

∏
j∈A

sj . (14)

This is an upper bound as every choice of ` elements
from different stacks does not necessarily define a valid
increasing subsequence of S. We show that g reaches
its maximum when s0 = . . . = si′−1 = n/i′.

Because the set C = {s = (s0, . . . , si′) |
∑
j sj = n}

is compact, g reaches a maximum on C. Suppose that
in s, not all the sj are equal; WLOG assume that si′−2

and si′−1 are distinct. Set α = (si′−2 + si′−1)/2 and
consider the point s′ = (s0, . . . , si′−3, α, α). Let us also
use the notation

ρ(x) =
∑

A⊂[i′−2]
|A|=x

∏
j∈A

sj .

Then, we split the sum in g(s′) into the terms con-
taining neither si′−2 nor si′−1 (= ρ(`)), the terms that
contain one of si′−2 or si′−1 (= 2αρ(` − 1)) and the
terms that contain both (= α2ρ(`−1)), and we use the
inequality α2 > si′−2si′−1 (arithmetic mean is larger
than geometric mean):

g(s′) = ρ(`) + 2αρ(`− 1) + α2ρ(`− 2)

> ρ(`) + (si′−2 + si′−1)ρ(`− 1) + si′−2si′−1ρ(`− 2)

= g(s).

Hence, g(s), where s contains two distinct values, is not
maximum, and g must reach its maximum when all the
sj are equal. Furthermore, in that case sj = n/i′.

Therefore,

max
s∈C

g(s) =
∑
A⊂[i]
|A|=`

(n
i′

)`
=
(n
i′

)`(i′
`

)
, mn,`(i

′). (15)

The function mn,`(·) defined above is increasing and
the maximum is reached for i′ = i.

Finally, consider the sequence S(i, n), i divides n,
defined by blocks:

(n/i− 1) · · · 0︸ ︷︷ ︸
block 1

(2n/i− 1) · · · (n/i)︸ ︷︷ ︸
block 2

· · · (n− 1) · · · (n− n/i)︸ ︷︷ ︸
block i

.

Each block is of length n/i, the numbers in each blocks
are in decreasing order, and the start of the blocks are
in increasing order: block j is the decreasing sequence
(jn/i− 1) · · · ((j − 1)n/i).

When the patience sorting algorithm is applied to
the list S(i, n), the stacks are filled up one by one,
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Figure 3: The relationships between the similarity
thresholds s1 and s2, and the probabilities p1 and
p2, for n = 100, k = 5. Given a probability, e.g.,
p1 = p2 = 0.25 shown by the horizontal gray line,
the OMH method can distinguish between similarities
below s2 (below left vertical gray line) and from sim-
ilarities above s1 (above the right vertical gray line).
The functions are defined at discrete points, when ns
is integral, represented by the circles and squares.

from bottom to top and from left to right, and have the
same height of n/i. Therefore, any choice of 1 element
in each stack is a valid increasing subsequence of S(i, n)
and the bound of equation (15) is attained.

Finally, we can conclude with the main theorem.

Theorem 2. There exists functions
p1
n,k,`(·) and p2

n,k,`(·) such that OMH is(
s1, s2, p

1
n,k,`(s1), p2

n,k,`(s2)
)
-sensitive for any

` ∈ [2, n− k].

Proof. It is a direct consequence of Lemma 1 and
Lemma 2.

4 Discussion

4.1 Parameters s1, p1, s2, p2

To have a proper LSH method, the conditions p1 ≥ p2

must hold. This condition means that the method is
able to distinguish with some probability between dis-
similar (≤ s2) and similar (≤ s1) sequences. Figure 3
shows the functions p1 (blue lines) and p2 (red lines)
from Theorem 2 for varying values of `.

Page 7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/534446doi: bioRxiv preprint 

https://doi.org/10.1101/534446
http://creativecommons.org/licenses/by/4.0/


At the limit, taking p1 = p2 = p, the method can
distinguish between any s1 and s2 such that p1(s1) ≥ p
and p2(s2) ≤ p (gray lines on Figure 3). For larger
values of `, the gap between distinguishable values is
reduced, although at the cost of having high values for
s1.

4.2 Choice of parameter `

The main difference between OMH and the minHash
method is the choice of ` k-mers, where minHash cor-
respond to the case of ` = 1 (ignoring the slight differ-
ence between Jaccard and weighted Jaccard). It might
seem surprising at first that OMH is an LSH for edit
distance for any values of `, except for the extremes of
` = 1 and ` = n− k + 1.

The proof of Theorem 2 is consistent with this anal-
ysis. For both these extreme values of `, eq (13), which
relates the probability p2 to the similarity s2, becomes
trivially true (p2 < 1). This means that even a certain
hash collision (probability of 1) provides no guarantee
on the relative order of common k-mers between the
two sequences (i.e., the length of the longest subse-
quence L = 1: only 1 k-mer is guaranteed to align).
On the other hand, any other value of ` leads to an
actual bound in eq (13).

For example, when ` = 2, the minimum number of
k-mers that must align in proper order as a function
of the collision probability p2 is

L =
n− k + 1

(n− k)(1− p2) + 1
. (16)

Even in the case where n is very large, then L ≈ 1/(1−
p2), the number of properly aligning k-mers becomes
large when the probability of collision p2 is close to 1.
This is in contrast to the minHash, where a probability
of collision of 1 (i.e., a Jaccard similarity of 1) does not
guarantee that more than 2 k-mers properly align (see
example in Section 2.2).

In practice, the parameter ` should be relatively
small, say 2 ≤ ` ≤ 5. Increasing the value of ` has
two effects on the OMH method. First, it increases
the minimum edit similarity that is detectable by the
method, as there must be at least ` + k − 1 bases in
the alignment of the two sequences for OMH to have a
non-zero probability of hash collision. Second, a larger
value of ` implies that the probability of hash colli-
sion is small, which requires storing a higher number
of vectors in a sketch to obtain a low variance. There
is a trade-off between how sensitive the scheme is to
relative order (high value of `) and the smaller size for
the sketch (low value of `).

4.3 Practical sketches for OMH

In our implementation, the OMH sketch for a sequence
S contains more than just the list of vectors h`,π(S).

In practice, we store

• the length of the sequence |S|,

• a list of m vectors h`,π(S) and associated order
vector r`,π(S) = (r0, . . . , r`−1).

Recall that the k-mers in the vector h`,π(S) are listed
in the order in which they appear in S. The or-
der vector r`,π is a permutation of the indices [`]
that can reorder the k-mers according to π. That
is, h`,π(S) = (m0, . . . ,m`−1) and i < j imply that
π(mri , ori) < π(mrj , orj ) (where, as in the definition,
oi is the occurence number of the k-mer mi). The total
space usage of a sketch isO(log |S|+m`(k log σ+log `)).

The reason for the order vector in the sketch is
to recover both an estimate of the weighted Jac-
card between the two sequences and how well these
common k-mers properly align. rore precisely, given
two sketches for S1 and S2, the number of collisions
h`,π(S1) = h`,π(S2) and the number of collisions in the
reordered k-mers according to the order vector o`,π
give an estimate of the weighted Jaccard Jw(S1, S2).
Using this estimate, the sizes of S1 and S2 from the
sketches, and the formula |Mw

k (S1)| + |Mw
k (S2)| =

|Mw
k (S1) ∪ Mw

k (S2)| + |Mw
k (S1) ∩ Mw

k (S2)|, we can
recover estimates for the size of the intersection and
union of the weighted k-mer sets. Finally, formula (10)
and (11) give the probability for ` k-mers from the in-
tersection to be in the same alignment order between
the two sequences. The case where the Jaccard similar-
ity is not sufficient to assess that the sequences have a
high edit similarity is precisely the case when this last
probability is low.

In other words, the extra O(log `) bits of information
per k-mer in the OMH sketch compared to a weighted
minHash sketch gives corresponds to the supplemen-
tal information given by OMH compared to minHash.
Given that ` is small in practice, the cost for this extra
information is also very small.

For genomics sequences, it is traditional to compute
the minHash using “canonical” k-mers (defined as a
k-mer or its reverse complement, which ever comes
first lexicographically). In the OMH sketches, it is not
possible to use canonical k-mers as this in incompat-
ible with the order information encoded in the vec-
tor h`,π(S). Rather, two sketches, one for the forward
strand and one for the reverse are stored. Comparing
two sequences requires doing 4 sketches comparisons.

4.4 Weighted Jaccard and OMH

Even though the Jaccard and minHash sketches are
regularly used as a measure of the k-mer content simi-
larity in computational biology software, the weighted
Jaccard similarity has been heavily studied and used
in other contexts, such as large database document
classification and retrieval (e.g., Manasse et al., 2010;

Page 8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/534446doi: bioRxiv preprint 

https://doi.org/10.1101/534446
http://creativecommons.org/licenses/by/4.0/


Shrivastava, 2016; Wu et al., 2017), near duplicate im-
age detection (Chum et al., 2008), duplicate news story
detection (Alonso et al., 2013), source code deduplica-
tion (Markovtsev and Kant, 2017), time series indexing
(Luo and Shrivastava, 2017), hierarchical topic extrac-
tion (Gollapudi and Panigrahy, 2006), or malware clas-
sifcation (Drew et al., 2017) and detection (Raff and
Nicholas, 2017).

The weighted Jaccard, compared to the unweighted
Jaccard, gives a more complete measure of the similar-
ity between two sets or sequences. Obviously, when no
elements are repeated, the two similarity are equal. On
the other hand, in the case of many repeated elements,
the difference can be significant.

For example, returning to the example from Sec-
tion 2.2 where S1 = 0 . . . 01 . . . 1 with n−k 0s followed
by k 1s and S2 with k 0s followed by n− k 1s, the edit
similarity is very low: Es(S1, S2) ≤ 2k/n. The Jaccard
similarity is J(S1, S2) = 1, in other words, these two
sequences are indistinguishable according the Jaccard
similarity. On the other hand, the weighted Jaccard
is also very low: Jw(S1, S2) = 1/(n − k), much more
similar to the edit similarity.

In the case of two de Bruijn sequences that might
have very low edit similarity, the Jaccard and weighted
Jaccard are both equal to 1, as every k-mer occurs ex-
actly once. Therefore, in this case the weighted Jac-
card provides no extra information. The OMH sketch-
ing method, being also sensitive to the relative orders
of the k-mers (see eq (10)), would have a probability
of hash collision much lower than 1.

In Figure 4, we generated one million random bi-
nary sequences (σ = 2) of length n = 100. Each string
is then randomly mutated a random number of times
(up to 100 times) to obtain a pair of sequences with
a random edit distance. Then, for each pair, we com-
pute the actual edit distance, the exact — i.e., not
estimated by minHash — Jaccard and weighted Jac-
card similarities. Additionally, the OMH sketch (with
` = 2 and m = 500) is also computed for each pair.
The graph shows the median and first quartiles com-
puted over the million pairs of sequences. Even for
sequences with high edit distance (> 0.4), the Jaccard
similarity remains very high. However, the weighted
Jaccard and OMH are more sensitive to the edit dis-
tance.

5 Conclusion

We presented the OMH method that is an LSH for the
edit distance. Unlike the Jaccard similarity, which is
only sensitive to the k-mer content of a sequence, OMH
additionally takes into account the relative order of the
k-mers in a sequence.

The OMH method is a refinement of the weighted
Jaccard similarity that is used extensively in many re-
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Figure 4: Evolution of the Jaccard, weighted Jaccard
and OMH against the edit distance on randomly gen-
erated binary sequences. In average, the Jaccard sim-
ilarity stays high, even for sequences with high edit
distance, unlike the weighted Jaccard or OMH which
are much more sensitive to the edit distance.

lated fields, such as document classification and du-
plicate detection. However, despite the advantages of
the weighted Jaccard similarity, it has not yet been
widely adopted by the bioinformatics community. Us-
ing weighted Jaccard and OMH for estimating edit
similarity in bioinformatics applications can help re-
duce the number of false-positive matches which can
in-turn avoid unnecessary computations.
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