










Figure 2. Distribution of Ka/Ks values for different populations of genes within the maize genome. The background set is
composed of all maize genes with syntenic orthologs in sorghum and setaria after genes with tandem duplicates and genes with
extremely few synonymous substitutions identified in the original alignment were excluded (see methods). The kernel density
plots for genes uniquely identified by either GLM GWAS or GPWAS, as well as Classical Mutants are the subsets of each of
these categories which also met the criteria for inclusion in the background gene set. For each population of genes the median
value is indicated with a solid black line, and dashed black lines indicate 25th and 75th percentiles of the distribution.

the possibility that this result was due to differences in the quality of the annotations assigned to different populations of
genes the quality and quantity of the annotations assigned to genes in different populations was examined. Noe single factor,
including number of GO terms per gene and proportion of genes with no assigned GO term differed dramatically between
these populations, although there were modest biases towards genes uniquely identified by GPWAS (Supplemental Table S6).
Analysis using the 706 genes uniquely detected genes by FarmCPU GWAS found only a single significantly enriched GO
term GO:0009987 ”cellular process”, while, even when the number of uniquely GPWAS-identified genes was constrained to
be identical to the number of uniquely identified FarmCPU GWAS genes, 67 GO terms still showed significant enrichment
(58 terms) or purification (9 terms) (Figure 3b, Supplemental Table S6). No single obvious factor explained the difference in
functional enrichment results between the genes uniquely identified by GWAS and GPWAS, but a number of factors including
number of GO terms per gene and proportion of genes with no assigned GO term differed modestly (Supplemental Table S7).
The median GO term assigned to a gene identified only by GPWAS was assigned to only 430 gene models in B73 RefGenv4,
while the median GO term assigned to a gene identified only by GLM GWAS was assigned to 514 different gene models. Thus,
even though genes uniquely identified by either GPWAS or GWAS were annotated with approximately equal numbers of GO
terms per gene, the GO terms assigned to genes identified by GPWAS were somewhat more exclusive categories. However,
the large differences in functional enrichment/purification observed are consistent with GPWAS identifying a far less random
subset of annotated genes than sequential GWAS for each of the same traits.

Discussion
The GPWAS model selects an optimal combination of phenotypes to maximize explanatory power for the set of genetic variants
present within a given gene. As described for Anther ear1, in some cases the phenotypes selected for the model are consistent
with known gene function from in depth single gene studies. However, it is important to note two limitations in the interpretation
of the specific traits incorporated into the models of individual genes. The first is that the incorporation of individual traits are
not subject to false discovery control. Therefore, a gene correctly identified as showing statistically significant association with
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Figure 3. Gomparison of GO enrichment/purification among genes uniquely identified as associated with phenotypic
variation using different statistical approaches. Each circle is a single GO term in a single analysis. The position of each circle
on the x axis indicates the total number of maize gene models which were assigned this GO term in the maize GAMER
dataset45. The position of each circle on the y axis indicates the statistical significance of the enrichment or purification of this
GO term in the given gene population relative to the background set of all annotated maize gene models. (a) Comparison of the
patterns of GO term enrichment/purification among genes either either uniquely identified as associated with phenotypic
variation by GLM GWAS analysis or uniquely identified as associated with phenotypic variation by GPWAS analysis. (b) As in
panel A, but comparing genes uniquely identified as associated with phenotypic variation by FarmCPU analysis or uniquely
identified as associated with phenotypic variation by GPWAS analysis. Only to 706 genes uniquely identified by GPWAS with
the strongest statistical signal were employed in panel B, to prevent any bias towards more significant p-values which would
result from conducting the analysis with a larger population of genes for GPWAS than for FarmCPU.

the trait dataset as a whole may still include one or more traits within its model with which it has no direct functional link.
The second is that the stepwise regression procedure means that traits where variance truly is controlled in part by the target
gene may be excluded if a second trait exists in the dataset which captures the same functional link46. Our present GPWAS
model has several critical limitations. The first is that the statistical tests employed require a complete absence of missing data,
hence the dependence on both genotypic as well as phenotypic imputation. Large scale trait datasets will almost always have at
least a few missing data points, so it is only because advances in kinship based phenotypic imputation that the present study
became viable33. The second is that our approach required binning individual genetic markers into groups associated with
individual genes. This binning is likely to be imperfect, as regulatory regions of genes can be separated from coding sequence
by tens of Kb in maize47, 48. Noncoding regulatory sequences, many distant from annotated genes, have been shown to explain
approximately 40% of the total phenotypic variation in maize49. Finally, our present GPWAS algorithm and implementation is
quite computationally expensive. Including the permutations required to establish effective false discovery rate estimates, we
estimate the GPWAS analyses presented here required a total of approximately 6.9 years of CPU (Intel Xeon E5-2670 2.60GHz
processor) time and was only possible with access to a high performance computing core facility and because the approach
taken falls into the embarrassingly parallel class of computational problems.

To our knowledge the Panzea trait dataset for the Buckler-Goodman association panel presently represents one of only
a handful of extremely trait dense datasets for a single population in the plant world. However, the rapid emergence of high
throughput plant phenotyping technologies makes it likely that high dimensional trait datasets – where the number of measured
phenotypes exceeds even the number of individuals in the population – will become much more common in the future27, 28.
Many high-throughput phenotyping technologies collect images, hyperspectral data cubes, or LIDAR point clouds from which
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many distinct plant traits can be scored for the same individual plants or plots. Thus, models which can integrate data from
many traits scored in a single population will be an area of greater need going forward. While increasing the total number of
phenotypes scored and included as potential predictors should increase the power and accuracy of GPWAS, if many highly
correlated traits are included, the result can be issues with multicollinearity that make the statistical estimation and inference
procedures we employed unstable. With the current statistical procedure, issues are likely to arise in cases where the number of
input traits exceeds the number of individuals in the population. One common approach to reducing the total number of traits in
a multiyear and/or multi-field site trial is to calculate best unbiased linear predictors (BLUPs) which provide a single value for
a given trait in a given line across multiple environments50. However, this approach strips out information on trait plasticity
across environments, which is often controls by distinct sets of genes from genes controlling variation in multi-environment trait
means51 and is thus likely to bias downstream analysis away from a large class of genes involved in determining organismal
phenotypes. In cases where the number of measured traits exceeds the number of environments, it would be advisable to employ
alternative approaches to reduce the dimensionality of the trait dataset, whether an ad hoc approach such as selecting a subset
of representative traits from highly correlated blocks, or dimensional reduction analyses such as principal component analysis
or multidimensional scaling. Automatic application of variable selection and/or dimensional reduction in such scenarios could
be incorporated into future GPWAS implementations. As always, the simple to propose but resource intensive to implement
solution would be to augment the size of frequently employed association populations going forward.

Over the past three decades, without substantial discussion or debate, many in the scientific community have moved from
a definition of genes that was based on organismal function, to one which is based on molecular features52–54. However,
many analysis still contains the implicit assumption that genes annotated in the genome based on homology and/or expression
evidence must play a role in determining organismal phenotypes. Absence of evidence for a role in determining phenotype is
interpreted as a failure to find either the correct trait to measure or the correct environment in which to measure it. Here we
have developed a new approach to identify genes with statistical links to a variation in a large set of diverse plant traits scored
for a maize diversity panel across a diverse set of environments, and showed that it exhibits greater consistency with genes
identified as controlling organismal phenotypes in an independent population than do genes identified using two conventional
GWAS approaches. GPWAS was also found to provide a more favorable trade off between FDR and power than conventional
trait-by-trait GWAS in simulations based on the same individuals and genotype calls described above and 100 phenotypes of
varying heritability (Supplemental Figure S4). Using real world trait data, we found that genes with statistically significant
links to phenotypic variation exhibit substantial differences in a number of characteristics from the overall population of
annotated genes in the maize genome. They are more likely to be transcribed to significant levels, likely to be conserved at
syntenic orthologous positions in the genomes of related species, dramatically less likely to exhibit presence absence variation
across diverse maize inbreds, appear to be subjected to notably stronger purifying selection than the overall population of
annotated genes, and are enriched in a wide range of functional annotations relative to the overall population of annotated genes.
The distinct features of both genes identified as controlling organismal phenotypes by classical forward genetics and now by
GPWAS indicate that it is unlikely all annotated genes in the maize genome do indeed contribute to organismal phenotypes.
Improved approaches to distinguish genes which contribute to organismal phenotypes from those which do not will be critical
to developing genotype-to-phenotype models going forward.

Methods

Genotype and Phenotype Sources, Filtering, and Imputation
Raw genotype calls in AGPv4 coordinates from resequencing of the maize 282 association panel30 were retrieved from PanZea.
Missing genotypes were imputed using Beagle (version: 2018-06-10)55. Only biallelic SNPs with less than 80% missing points
were input for imputation. After imputation, SNPs with MAF (Minor Allele Frequency) less than 0.05 or which were scored at
heterozygous in more than 10% of samples were discarded. A phenotype file (traitMatrix maize282NAM v15-130212.txt)
containing total of 285 traits, corresponding to 57 unique types of phenotypes scored in 1-16 environments was downloaded
from PanZea. A set of 277 accessions with identical names in the HapMap3 data release and the PanZea trait data were
employed for all downstream analyses.

Maize gene regions were extracted from AGPv4.39 downloaded from Ensembl. SNPs were clustered based on R2 > 0.8
and only one randomly selected SNP per cluster was retained. If the number of SNPs after collapsing highly correlated clusters
exceeded 138 (50% of the number of inbreds scored), a random subsample of 138 SNPs was employed for downstream analyses.
Identical final SNP sets were employed for GWAS and GPWAS analyses.

Of the 285 initial trait datasets, 25 were removed because the data file contained a recorded trait value for only a single
individual among the 277 maize inbreds genotyped, leaving a total of 260 trait datasets. Missing phenotypes were imputed
based on a kinship matrix calculated from 1.24 million SNPs calculated in GEMMA18 and using a Bayesian multiple-phenotype
mixed model33. Accuracy of phenotypic imputation was assessed independently for each trait with sufficient number of real
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observations to evaluation using ten iterations of masking 1% of available records for each trait and comparing imputed and
masked values for each trait.

GPWAS Analysis
We propose a model selection approach to adaptively choose the most significant phenotypes associated with each gene. Given a
gene, we consider all the SNPs as the multi-responses, and include the first three PC scores for this gene. Let αin and αout be the
criterion thresholds for the p-values of the phenotypes. If a phenotype with p-value smaller than αin, we consider it as potentially
significant and should be added into the regression model. Whereas, if the p-value of an existing phenotype in the model is
larger than αout , we consider it as insignificant and exclude it from the model. As a default, we choose αin = αout = 0.01 for
each gene.

The stepwise selection procedure is as follows:

1. Start with the multi-response model with all the SNPs as responses and the first three PC scores as covariate. Search for
the the most significant phenotype across all the phenotype measurements. Include this phenotype into the model if its
p-value is below αin. Otherwise, declare no phenotype is significant for this gene.

2. For the `th step, add each one of the remaining phenotypes into the existing model with the covariates that have already
been selected, and calculate its p-value. This p-value measures the effect of this phenotype on the responses given all the
selected phenotypes from the previous steps.

3. Find the remaining phenotype with the minimum p-value. Include this phenotype into the model if its p-value is below
αin. Otherwise, declare no new add in.

4. The newly added covariate may be correlated with the existing covariates in the model. This may change their
corresponding p-values. Fit all the selected phenotypes jointly in the model and drop the phenotype with the largest
p-value that is greater than the cutoff value αout .

5. Repeat steps (2), (3) and (4) until no phenotypes can be added or removed from the model. This is considered as the final
model for the targeted gene.

The final model can be represented as:

gk,i = PCk,1βi1 +PCk,2βi2 +PCk,3βi3 +
vi

∑
j=1

Phek,( j)τi j + εk,i j. (1)

Here, there are vi selected phenotypes for the ith gene, where vi ≤ 260. The selected phenotypes {Phek,( j)} are a subset of
the collection of the all the phenotypes {Phek,1,Phek,2, . . . ,Phek,260}, where τi j is the corresponding coefficients for selected
phenotypes for the ith gene and the phenotype effects τi j from the stepwise selection model incorporates the dependence among
phenotypes. First three PC scores PC1, PC2 and PC3 were always included in the model with effect size of βi1, βi2 and βi3.
Total phenotypes was iteratively selected for 35 times for each scanned gene. All the unselected phenotypes were considered as
insignificant for a particular gene. The p-value of each gene was determined by partial F test through comparing the final model
containing both the first three PCs and the selected phenotypes with the initial model containing only the PCs.

FDR cut offs were based on the results from 20 permutation analysis where the values for each trait where independently
shuffled among the 277 genotyped individuals and the entire GPWAS pipeline rerun for all genes. The code implementing the
above analyses in R and associated documentation has been published as the ”GPWAS” and is avaliable from the following
link: https://github.com/shanwai1234/GPWAS. Selected significant GPWAS genes with incorporated phenotypes were listed in
Supplemental Table S8.

GWAS Analysis
GLM GWAS analyses were conducted using the algorithm first defined by Price and coworkers56 and FarmCPU GWAS with
the algrothm defined by Liu and colleagues57. Both algorithms were run using the R-based software MVP (A Memory-efficient,
Visualization-enhanced, and Parallel-accelerated Tool For Genome-Wide Association Study) (https://github.com/XiaoleiLiuBio/MVP).
Both analysis methods were run using maxLoop = 10 and the variance component method method.bin = ”Fast-LMM”58. A
subset of 1.24 million SNPs distributed across both intragenic and intergenic regions on all 10 chromosomes was used to
perform principle component analysis (PCA). For analysis of genes on each chromosome, a separate PCA was conducted using
markers solely from the other 9 chromosomes to reduce the endogenous correlations between genes and principle components59,
and the first three PCs were included in each GWAS analysis. For comparison to GPWAS results, each gene was assigned the
p-value of the single most significant SNP among all the SNPs assigned to that gene in the GPWAS model.
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Nested Association Mapping Comparison
Published associations identified for 41 phenotypes scored across 5,000 maize recombinant inbred lines were retrieved from
Panzea (htt p : //cbsusrv04.tc.cornell.edu/users/panzea/download.aspx? f ilegroupid = 14)31. Following the thresholding
proposed in that paper a SNP and CNV (copy number variant) hits with a resample model inclusion probability ≥ 0.05 which
were either within the longest annotated transcript for each gene AGPv2.16 or within 15kb upstream or downstream from the an-
notated transcription start and stop sites were assigned to that gene. Gene models were converted from B73 RefGenV2 to B73 Re-
fGenV4 using a conversion list published on MaizeGDB (https://www.maizegdb.org/search/gene/download gene xrefs.php?relative=v4).

Gene Expression Analysis
Raw reads from the a published maize expression atlas generated for the inbred B73 were downloaded from the NCBI Sequence
Read Archive PRJNA17168441. Reads were trimmed using Trimmomatic-0.38 with default setting parameters60. Trimmed
reads were aligned to the maize B73 RefGenv4 reference genome using GSNAP version 2018-03-2561. Alignment results were
converted to sorted BAM file format using Samtools 1.662 and Fragments Per Kilobase of transcript per Million mapped reads
(FPKM) where calculated for each gene in the AGPv4.39 maize gene models in each sample using Cufflinks v2.263. Only
annotated genes located on 10 maize pseudomolecules were used for downstream analyses and the visualization of FPKM
distribution.

Ka/Ks Calculations
For each gene listed in a public syntenic gene list,64, the coding sequence for the single longest transcript per locus was
downloaded from Ensembl Plants and aligned to the single longest transcript of genes annotated as syntenic orthologs in
Sorghum bicolor in v3.165 and Setaria italica v2.266 were retrieved from Phytozome v12.0 using a codon based alignment as
described previously67. The calculation of the ratio of the number of nonsynonymous substitutions per non-synonymous site
(Ka) to the number of synonymous substitutions per synonymous site (Ks) was automated using in-house constructed software
pipeline posted to github (https://github.com/shanwai1234/Grass-KaKs). Genes with synonymous substitution rate less than
0.05 were excluded from the analyses as the extremely small number of synonymous substitutions tended to produce quite
extreme Ka/Ks ratios and genes with multiple tandem duplicates were also excluded from Ka/Ks calculations. Calculated
Ka/Ks ratios of maize genes were provided in Supplemental Table S9.

Presence/Absence Variation (PAV) Analysis
PAV data was downloaded from a published data file42. Following the thresholding proposed in that paper, a gene was
considered to exhibit presence absence variance if at least one inbred line with coverage less than 0.2.

Gene Ontology Enrichment Analysis
GO analysis was conducted using goatools68 and using a set of GO annotations generated for B73 in RefGen V4 using
maize-GAMER45. Fisher test was conducted using SciPy stats package fisher exact.

Power and FDR evaluation of GPWAS and GWAS using simulated data
SNP calls for the entire set of 1,210 individuals included in Maize HapMap3 were retrieved from Panzea30, filtered, imputed,
and assigned to genes as described above resulting in 1,648,398 SNPs assigned to annotated gene body regions in B73
RefGenV4. 2,000 randomly selected genes associated with 30,547 SNP markers were employed for downstream simulations.
In each simulation, 100 genes (5%) were selected as causal genes. For each causal gene in each simulation, a causal SNP was
selected for simulating phenotypic effects. A total of 100 phenotypes were simulated in each permutation of the analysis, with
10 traits simulated with heritability of 0.7, 30 traits simulated with heritability of 0.5 and 60 traits simulated with heritability of
0.3. Effect sizes for each SNP for each phenotype in each permutation were drawn from a normal distribution centered on zero
using the additive model in GCTA (version 1.91.6)69.

The resulting simulated trait data and genuine genotype calls were analyzed using GLM GWAS, FarmCPU GWAS, and
GPWAS as described above with the exception of calculating population structure principle components using a sample (1% or
157,748 SNPs) of the total SNPs remaining after filtering, rather than only the subset of SNPs assigned to the 2,000 randomly
selected genes included in this analysis. For each analysis, the set of 2,000 genes was ranked from most to least statistically
significant based on the significance of the single most significantly associated SNP (for GLM and FarmCPU GWAS) or the
significance of the overall model fit relative to a population structure only model (for GPWAS). Power evaluation for GPWAS
was defined as the number of true positive genes to the total number of causal genes and FDR was defined as the number of
false positive genes to the total number of positive genes. Power and FDR were calculated in a step size of five genes from 5
total positive genes to 500 (ie {5,10,...,450,500}).
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Additional information

Figure S1. Description of our GPWAS algorithm implementation based on a stepwise regression procedure.

14/17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/534503doi: bioRxiv preprint 

https://doi.org/10.1101/534503


Figure S2. The power of three association models including GLM GWAS model, FarmCPU GWAS model and GPWAS
model on detecting maize Anther ear1 (An1) gene (Zm00001d032961). Dashed line is a bonferroni correction p value with
557,968 (SNPs) hypothesized testings. Solid lines in GLM GWAS and FarmCPU are stricter Bonferroni corrected p value with
their original number of hypothesis multiplied by the number of phenotypes (260) tested. Scales on ytick labels are -log10 p
values. Sel. and Uns. are represented as phenotypes selected and unselected by the GPWAS model. Phenotypes incorporated in
the GPWAS model are Germination count (Summer 2006, Johnston, NC), Days to Tassel (Summer 2007, Cayuga, NY;
Summer 2007, Johnston, NC), GDDDays to silk (Winter 2006, Miami-Dade, FL), Tassel Length (Summer 2007, Cayuga, NY),
Spikelets Primary Branch (Summer 2006, Champaign, IL), Secondary Branch Number (Summer 2006, Boone, MO), Plant
Height (Summer 2006, Cayuga, NY), NIR measured protein (Summer 2006, Johnston, NC), NIR measured oil (Summer 2006,
Johnston, NC; Winter 2006, Miami-Dade, FL), Cob weight (Summer 2007, Johnston, NC), Ear diameter (Summer 2007,
Johnston, NC) and Total kernel volume (Summer 2006, Cayuga, NY). Every five phenotypes were added a xtick label.
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Figure S3. Numbers of SNPs per gene in uniquely identified genes by GLM GWAS, uniquely identified genes by GPWAS,
and total genes with identified SNPs. (p<2.2e-16 between uniquely identified genes by GLM GWAS and between uniquely
identified genes by GPWAS, Mann–Whitney U test).
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Figure S4. Power and FDR evaluation of GPWAS model with GLM and FarmCPU GWAS models on simulated phenotypes
from variable heritabilities. Ten random set of 100QTNs were used to simulate 100 replicated phenotypes with 10% h2 as 0.7,
30% h2 as 0.5 and 60% h2 as 0.3. For one simulated phenotype set, positive genes were defined as top m ranked significant
genes of 2,000 genes. Ratios of power to FDR in GWAS model were calculated as the mean value of total simulated
phenotypes under different heritabilities (h2) in each rank, while these ratios were calculated using all 100 simulated
phenotypes in GPWAS model in each rank.

Supplemental Table 1: 260 phenotypes employed in this study with corresponding missing data rate, imputation accuracy
and classified phenotype group.

Supplemental Table 2: Expressed genes and expression breath of different gene populations.
Supplemental Table 3: Average and median number of SNP density in each gene population.
Supplemental Table 4: Correlation between significant level and SNP number per gene of genes generated from permuted

and real data in GPWAS and GLM GWAS.
Supplemental Table 5: Conservation features for unique gene sets between FarmCPU GWAS and GPWAS.
Supplemental Table 6: GO terms enriched and purified in each gene population.
Supplemental Table 7: Statistics of GO terms assigned to each gene population.
Supplemental Table 8: Selected significant genes with incorporated phenotypes in GPWAS model.
Supplemental Table 9: Ka/Ks value per gene in maize version 4.
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