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Abstract 1 

Here we describe the first worldwide haplotype map for soybean (GmHapMap) constructed using 2 

whole-genome sequence data for 1,007 Glycine max accessions and yielding 15 million variants. 3 

The number of unique haplotypes plateaued within this collection (4.3 million tag SNPs) 4 

suggesting extensive coverage of diversity within the cultivated germplasm. We imputed 5 

GmHapMap variants onto 21,618 previously genotyped (50K array/210K GBS) accessions with 6 

up to 96% success for common alleles. A GWAS performed with imputed data enabled us to 7 

identify a causal SNP residing in the NPC1 gene and to demonstrate its role in controlling seed 8 

oil content. We identified 405,101 haplotypes for the 55,589 genes and show that such haplotypes 9 

can help define alleles. Finally, we predicted 18,031 putative loss-of-function (LOF) mutations in 10 

10,662 genes and illustrate how such a resource can be used to explore gene function. The 11 

GmHapMap provides a unique worldwide resource for soybean genomics and breeding.  12 

 13 
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Introduction 1 

Soybean (Glycine max [L.] Merr.) is a unique crop with substantial economic value. It is the 2 

largest plant source of both animal feed protein and edible oil. It also plays a key role in 3 

sustainable agriculture as it fixes atmospheric nitrogen with the help of microorganisms 4 

(Hymowitz 1970). Diverse evolutionary processes and forces (including cycles of polyploidization 5 

and subsequent diploidization), along with domestication and modern breeding have shaped the 6 

soybean genome (Schmutz et al. 2010). The detection of the molecular footprints of these processes 7 

is essential for understanding how genetic diversity is generated and maintained and for identifying 8 

allelic variants responsible for phenotypic variation (Torkamaneh et al. 2018). 9 

The global production of soybean has increased substantially in recent years (Supplementary 10 

Figure 1), but the rate of annual yield gains has lagged behind that of maize (FAOSTAT 11 

Database). In addition, with increased fluctuations in climatic conditions, next-generation soybean 12 

cultivars must not only be higher yielding but also more resilient to multiple abiotic and biotic 13 

stresses (Djanaguiraman et al. 2018). In the main soybean-growing areas of the world, soybean is 14 

an introduced crop and the foundational germplasm was very limited in its genetic diversity (Hyten 15 

et al. 2006; Maldonado dos Santos 2016). Continued genetic improvement in soybeans will require 16 

a better understanding of the genetic and especially allelic diversity within worldwide resources 17 

(Qiu et al. 2013).  18 

Here we present the first haplotype map for soybean (GmHapMap) assembled from DNA 19 

resequencing data for a collection of 1,007 worldwide G. max accessions. We explore the use 20 

of this GmHapMap for (i) imputation of untyped variants to create high density genotype data 21 

required for gene-level resolution of genomewide association studies (GWAS); (ii) construction 22 

of gene-centric haplotypes (GCHs) for the entire set of soybean genes; and (iii) identification 23 
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of 11K knock-out genes due to loss-of-function (LOF) mutations. The GmHapMap provides a 1 

unique resource for translational and functional genomics for the worldwide soybean community. 2 

 3 

Results 4 

Development of GmHapMap 5 

Genomic variation  6 

To establish a first worldwide haplotype map for soybean (GmHapMap), a total of 1,007 7 

resequenced soybean accessions, representative of the worldwide cultivated germplasm, were used 8 

(Figure 1A). These accessions span thirteen maturity groups (MGs) (000-X) based on their 9 

latitudinal adaptation. This collection includes 727 previously resequenced accessions, as well as 10 

280 accessions sequenced as part of this study which were selected to achieve a more complete 11 

coverage of soybean worldwide diversity. Genome sequencing, analyses, and accession 12 

information for GmHapMap accessions are summarized in a Supplementary Note and 13 

Supplementary data 1.  14 

In total, 165 billion paired-end reads (100-150 bp; total of 19.2 trillion bp) provided an average 15 

depth of coverage of more than 15× and these were analyzed using a single pipeline (Fast-WGS) 16 

to ensure uniform variant calling. After mapping against the soybean reference genome (cv. 17 

Williams 82 va2.v1) (Schmutz et al. 2010), we identified 14,872,592 nucleotide variants (Table 18 

1), including 13M single- and multiple-nucleotide variants (SNVs and MNVs) and 2M small 19 

insertions/deletions (InDels) (-50 bp to +32 bp). Approximately 45% of these were rare (minor 20 

allele frequency (MAF) < 5%) (Supplementary Figure 2). Coding regions represent ~6% of the 21 

soybean genome, but only ~2.3% of the total nucleotide variants were present in these regions 22 
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(Table 1) with an average non-synonymous/synonymous ratio of 1.49. Nucleotide variants were 1 

2-fold more abundant in coding regions compared to InDels, however InDels were overrepresented 2 

in the regulatory regions. Missing data comprised less than 8% of the data, and these were 3 

subsequently imputed with high accuracy (r2 = 99.7%). Using independent genotyping data (SNP 4 

array and dbSNP database), we estimated the false-positive rates of nucleotide variants to be 5 

~0.03%. This constitutes an extensive and highly accurate set of foundational data for a soybean 6 

haplotype map.  7 

 8 

Table 1. Type, number and location of nucleotide variants in GmHapMap. 9 

Statistics Location (%) 

Types Count CDS* Intron UTR† 
Splice 

sites 

Up/Down 

stream‡ 
Intergenic 

SNV 12,197,920 2.5   8.5 1.6 0.2 44.8 42.4 

MNV      801,373 2.3   6.9 1.0 0.1 44.6 45.1 

INS      887,485 0.9 10.2 2.7 0.2 54.3 31.6 

DEL      985,814 1.0 10.1 2.3 0.3 53.0 33.2 

Total 14,872,592 2.8   8.6 1.7 0.2 45.9 41.7 

*Coding DNA sequence; †Untranslated region; ‡ 5 kb before or after a gene 10 

 11 

Extensiveness of GmHapMap 12 

The extensiveness of the GmHapMap was measured based on nucleotide diversity and haplotype 13 

diversity. Previously, the SoySNP50K array has been used to genotype the entire USDA soybean 14 

germplasm collection (20,087 accessions of G. max and G. soja) (Song et al. 2013). We found that 15 

GmHapMap includes nearly all polymorphisms (99.4%) with a MAF > 1%, as well as ~89% of 16 

rare SNPs (MAF < 1%) documented within these G. max accessions. Haplotype diversity 17 
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(pairwise LD using both r2 and D´) was calculated for sequence variants and the average distance 1 

over which LD decayed to 0.2 was ~138 kb (Supplementary Figure 3). We identified 4.3 million 2 

haplotype-based tag SNPs and, to determine if a good level of saturation of both variants and 3 

haplotypes had been achieved, we randomly selected subsets of samples of increasing size (N=100, 4 

200, …, and 1,007). As illustrated in Figure 1B, the number of variants discovered did not increase 5 

significantly beyond ~750 accessions, while the number of haplotypes reached a plateau much 6 

faster (within the first ~500-600 accessions). Together, these results suggest that the GmHapMap 7 

dataset offers an exhaustive characterization of the variants and haplotypes present in soybean 8 

germplasm. 9 

 10 

Genetic diversity and artificial selection 11 

Bayesian clustering (STRUCTURE) of GmHapMap accessions using whole-genome SNP data 12 

revealed 12 subpopulations (Supplementary Note & Supplementary Figure 4). We explored the 13 

phylogenetic relationships among GmHapMap accessions by constructing an un-rooted neighbor-14 

joining tree. As can be seen in Figure 1C, the grouping of accessions reflected geographic origin 15 

with some admixture (Figure 1C and Supplementary Figure 5). Genomewide genetic diversity 16 

(θπ) analysis showed a consistent level of genetic diversity (mean of θπ = 1.36 × 10-3, ranging 17 

between 1.19 × 10-3 to 1.72 × 10-3) in different soybean populations (Figure 1A). Nucleotide 18 

diversity was plotted for the 20 chromosomes and found to be highest in the terminal regions of 19 

chromosomes (Supplementary Figure 6). Extensive peri-centromeric regions were very low in 20 

genetic diversity but chromosomes Chr13 and Chr17 maintained higher diversity across these 21 

regions. Genic regions showed even lower levels of diversity (mean θπ = 7.1 × 10-4) and 22 

exceptionally low diversity was seen within 527 genomic regions (including 540 genes; mean θπ 23 
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= 4.6 × 10-6) that are presumably selection hotspots (Supplementary Note, Supplementary data 1 

2 and Supplementary Figure 7).  2 

 3 

Figure 1. Description of GmHapMap. (a) Geographical distribution and related genetic diversity 4 

value (θπ) of GmHapMap accessions. (b) Number of variants (pink) and haplotypes (blue) based 5 

on different number of accessions. (c) Un-rooted phylogenetic tree of all accessions inferred from 6 

whole-genome SNPs representing existing genetic diversity and admixture among GmHapMap 7 

accessions.  8 
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Phasing, identity-by-descent, and large-scale imputation of untyped variants  1 

The GmHapMap dataset captures substantial amounts of identity-by-descent (IBD) allele sharing 2 

which allows a rule-based approach to long-range phasing that yields very accurate haplotypes. 3 

Using long-range phasing, we found 95 blocks of IBD larger than 1 Mb in size (Supplementary 4 

data 3). The determination of haplotype phase is important because of its applications such as the 5 

imputation of untyped variants. Imputation of untyped variants greatly boosts variant density, 6 

allowing fine-mapping studies of GWAS loci and large-scale meta-analysis. We created two 7 

reference panels: REF-I comprising all SNPs and REF-II containing 1.9M haplotype-based tag 8 

SNPs that reside in genic regions. Three lower density genotype datasets, SoySNP50K (20,087 9 

accessions genotyped with 43K SNPs), genotyping-by-sequencing (GBS; 1,531 accessions 10 

genotyped with 210K SNPs), and combined GBS/SoySNP50K (1,531 accessions genotyped with 11 

250K SNPs) were used for untyped variant imputation with each of the two reference panels. In 12 

all but one case, the accuracy (squared correlation (R2) between imputed and known genotypes, 13 

see M&M for details) ranged between 92% and 96% for common variants (allele frequency (AF) 14 

> 0.2) in each dataset, while decreasing gradually with allele frequency (Figure 2A). In the case 15 

of the SoySNP50K dataset using REF-I, the accuracy of imputed untyped variants was 16 

significantly lower (80-85% for common alleles). Given the observed variation in the accuracy of 17 

imputation using different reference panels and datasets, we investigated the causes of erroneous 18 

inferred calls. Several characteristics were tied to inaccurately imputed SNPs: these were 19 

commonly rare variants (low AF), located in recombination hot spots, in short LD blocks or in 20 

genomic regions with structural variants. Furthermore, the initial marker density in the 21 

experimentally-derived dataset had a large impact on imputation accuracy. GBS and SNP array 22 

datasets are two highly complementary marker datasets because most (~90%) of the SoySNP50K 23 
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markers are present in genic regions, while most of the GBS markers (~60%) are present in 1 

intergenic regions (Supplementary Figure 8 & 9). Therefore, combining GBS and SoySNP50K 2 

datasets (Supplementary Note) increases the density and uniformity of distribution of SNPs 3 

across the genome. The joint use of such commonly available SNP data increased the level of 4 

accuracy of imputation of untyped variants (Figure 2A).  5 

To demonstrate the benefits of untyped-variant imputation on GWAS analysis, the imputation was 6 

performed on a 1Mb-region harbouring a QTL previously identified for seed oil content on 7 

chromosome 14. We used the REF-II panel to perform imputation on an initial dataset of 64K 8 

GBS-derived SNPs (genomewide) among 139 soybean lines that had been characterized for their 9 

seed oil content (Sonah et al. 2015). Using this enhanced SNP catalog and a multi-locus mixed-10 

model implementation, a very strong association (p-value = 4.2×10-14 and q-value < 0.001) with a 11 

SNP residing in the NPC1 (Niemann-Pick C1) gene (Glyma.14g001500) (Figure 2B) was 12 

detected. An Arabidopsis mutant of this gene (npc1) exhibits a 58% higher fatty acid content 13 

(Feldman et al. 2015) making this gene a likely candidate contributing to total oil content in 14 

soybean. This demonstrates that the increased number of informative SNP loci, obtained through 15 

the imputation of untyped variants, can prove highly beneficial in studying the genetic architecture 16 

of complex agronomic traits in soybean. 17 

 18 

 19 
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Figure 2. (a) Imputation accuracy as a function of allele frequency for 6 different scenarios; three 1 

different experimentally derived genotype datasets (SoySNP50K, GBS, and GBS/SoySNP50K) 2 

and two reference panels (REF-I and REF-II). (b) Top, association analysis for seed oil content on 3 

chromosome 14. Blue dots represent imputed variants whereas red dots identify the original GBS-4 

derived variants. NPC1 (Niemann-Pick C1) is an orthologue of an Arabidopsis gene known to play 5 

a key role in fatty acid synthesis. Bottom, schematic representation of strongly associated variants 6 

in the vicinity of the NPC1. The nearest significantly associated GBS-derived variant (red line) is 7 

located 100 kb upstream and exhibits a relatively low degree of LD (r2 = 0.5).   8 

 9 

 10 

Gene-centric haplotypes: a resource for translational genomics  11 

HaplotypeMiner (Tardivel et al. unpublished) and the GmHapMap SNP dataset were used to 12 

identify 405,101 gene-centric haplotypes (GCHs) for 52,823 genes (94.5% of all soybean genes 13 

(55,589)). As can be seen in Figure 3A, the number of GCHs per gene ranged between 2 and 43, 14 

while averaging ~7 (Supplementary Figure 10, and Supplementary data 4). GCHs could not 15 

be determined (ND) for 2,766 genes with the set of parameters used here. In total, 11,407 genes 16 

had more than 10 GCHs with 71% (8,082 genes) of these harboring 11-15 GCHs. Such genes were 17 

typically located in very short LD blocks with a high degree of nucleotide diversity (mean θπ = 4.5 18 

× 10-3) (Supplementary Figure 11). A slight negative correlation was observed between gene 19 

length and the number of GCHs. However, we found a positive correlation between GCH counts 20 

and haplotype size (distance between two most distant SNPs defining a GCH) (Supplementary 21 

Figure 12). An example of GCHs for the GmGIa (Glyma.10g221500) gene (E2 locus controlling 22 
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maturity) (Watanabe et al. 2012; Tsubokura et al. 2014), an orthologue of the arabidopsis 1 

GIGANTEA (GI) gene, is presented in Figure 3B. We found three GCHs for GmGIa, which is 2 

consistent with the number of alleles that have been previously reported for this gene. Knowledge 3 

of the GCHs (and possibly alleles) in all soybean genes can greatly facilitate the establishment of 4 

a functional link between the various alleles of a gene and the associated phenotype. 5 

 6 

Figure 3. Description of GCHs characterized in GmHapMap dataset. (a) Distribution of number 7 

of genes based on their predicted GCHs. (b) Schematic representation of predicted GCHs for 8 

GmGIa.  9 
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LOF Mutations: a resource for functional genomics  1 

Using SnpEff, a subset of variants located inside the coding regions were predicted to have a large 2 

functional impact. Of these variants, 18,031 putative loss-of-function (LOF) mutations are 3 

predicted to severely impair protein synthesis or function through disruption of splicing, 4 

introduction of a premature stop codon, shifts in the coding frame and alterations to the start/stop 5 

codons (MacArthur et al. 2012) and these were identified in a total of 10,662 genes (19.3% of all 6 

soybean genes) (Table 2). These mutations are the result of 5,987 SNVs (33.2%), 279 MNVs 7 

(1.5%) and 11,765 InDels (65.3%). Frameshift-inducing variants (10,754) were the predominant 8 

category, representing 59.6% of LOF mutations and affecting 6,718 genes. InDels (ranging from 9 

-50 bp to +32 bp) were, understandably, over-represented (4-fold) in the LOF category due to their 10 

high probability of resulting in a LOF allele. Overall, most of the LOF mutations were present at 11 

low frequency, with 78% having an allele frequency below 10% (Supplementary Figure 13). 12 

Genes harboring LOF one or more mutations were categorized into two groups: unique and multi-13 

copy. We reasoned that a LOF mutation in a unique gene would necessarily result in phenotypic 14 

consequences. We found that only 706 (6.6%) of genes were single-copy genes, while the 15 

remaining 9,957 (93.4%) had at least one other copy. This constitutes a significant enrichment (P 16 

< 0.001) compared to the genomewide occurrence of gene duplication. LOF mutations in 17 

duplicated genes could also have functional consequences if the mutated copy was uniquely 18 

expressed as a consequence of neo- or sub-functionalization (Roulin et al. 2013). We assessed this 19 

by examining transcriptomic data from 26 tissues and found that 9,570 of the 9,957 duplicated 20 

genes (96%) exhibited a unique expression pattern (Supplementary Note, Supplementary data 21 

5 & Supplementary Figure 14). Thus, despite the fact that the vast majority of LOF mutations 22 

occur in genes for which there is more than one copy, a large proportion of these genes exhibit 23 
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unique expression patterns, thus making it possible that a LOF will result in a detectable 1 

phenotype. 2 

 3 

Table 2. Number of loss-of-function variants by sequence ontology (SO). 4 

SO term SNV MNV INS DEL 
Total 

variants 
Genes 

Splice site-disrupting (donor) 1,270 38 247 205 1,760 1,640 

Splice site-disrupting (acceptor) 1,546 52 207 146 1,951 1,803 

Stop codon-introducing 2,826 149 100 7 3,082 2,418 

Frameshift-inducing  0 0 4,158 6,596 10,754 6,718 

Start/Stop codon-disrupting 345 40 54 45 484 452 

Total  5,987 279 4,766 6,999 18,031 13,031 

Total number of genes affected by LOF variants*  10,662 

* Some of the genes were affected with more than one LOF mutation, therefore the total number 5 

of genes is lower than the sum of the all genes. 6 

 7 

To assess the quality of this catalogue of mutations, we first inspected it for genes already known 8 

(i.e. functionally validated) to harbor an LOF mutation. This is indeed the case, all known genes 9 

in the literature were found within the catalogue (Supplementary data 6). Then we investigated 10 

and confirmed the phenotypic impact of some of these LOF mutations in GmHapMap accessions 11 

(Figure 4). A frameshift mutation (frequency=0.003) in the microsomal omega-3 fatty acid 12 

desaturase (FAD3A), a key gene for linolenic acid synthesis in soybean seeds (Reinprecht & Pauls 13 

2016), was found in three accessions. Near-infrared spectroscopy (NIRS) analysis of four soybean 14 

lines (two with and without this LOF mutation) showed a significant (P < 0.01) decrease in 15 

linolenic acid content in the mutant lines (4%) compared to the wild type (10%) (Figure 4A). A 16 

mutation (f=0.005) in Glyma.04G050200, the gene underlying the J locus controlling the Long 17 

Juvenile trait (Lu et al. 2017), resulted in a significant difference (P < 0.01) in grain weight per 18 
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plant (8g in the mutant compared to 25g in the wild type) (Figure 4B). The introduction of a 1 

premature stop codon (f=0.02) due to a SNV in GmGIa/E2 (Watanabe et al. 2012) significantly (P 2 

< 0.01) reduced the number of days from emergence to the appearance of the first open flower 3 

(DAE) (from 125 in wild-type lines to 95 in the mutant) (Figure 4C). Finally, a SNV (f=0.009) 4 

resulted in the disruption of splicing in the gene coding for the 3-ketoacyl-ACP synthase II (KASII) 5 

enzyme, a key gene in the oil biosynthesis pathway (Goettel et al. 2016). NIRS analysis of palmitic 6 

acid levels showed a significant (P < 0.05) decrease in the mutant lines (9%) compared to the wild 7 

type (12%) (Figure 4D). The development of a catalogue of LOF mutations represents a valuable 8 

resource for functional genomics. 9 

 10 
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Figure 4. Phenotypic variation observed between accessions with (blue) and without (red) a 1 

predicted LOF mutation in four different genes. (a) FAD3A, a key gene for linolenic acid synthesis; 2 

(b) GmJ, a key gene of Long Juvenile trait; (c) GmGIa, a key gene controlling maturity; (d), 3 

KASIIa, a key gene in the oil biosynthesis pathway.  4 

 5 

 6 

Discussion  7 

Using whole-genome sequencing data from a large collection of 1,007 soybean accessions, we 8 

developed the first haplotype map of soybean (GmHapMap), a valuable resource for soybean 9 

genetic studies and breeding. A first challenge was to create a uniform and accurate catalogue of 10 

nucleotide variation using a common version of the reference genome and a single bioinformatics 11 

pipeline (Lek et al. 2016). The GmHapMap produced here is not only uniform but also it achieved 12 

higher levels of genotype accuracy (>98%) compared to previous studies (92-97%) (Hwang et al. 13 

2015). To create a representative haplotype map, a good level of saturation of both variants and 14 

haplotypes is required. Close to 15M sequence variants (SNVs, MNVs, and Indels) were called 15 

that captured nearly all polymorphisms with MAF > 1% in the USDA G. max germplasm 16 

collection (Song et al. 2013). The number of sequence variants did not increase significantly 17 

beyond the first 600 accessions, suggesting that a collection of this size has succeeded in capturing 18 

a sizeable fraction of worldwide nucleotide variation within cultivated soybean. Similarly, the 19 

number of unique haplotypes (4.3M tag SNPs) also plateaued relatively early within this collection 20 

of soybean germplasm. Together, these data suggest that the 15M variants captured in GmHapMap 21 

are both highly accurate and comprehensive of the genetic diversity within cultivated soybean at 22 

a worldwide level. 23 
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GmHapMap brings more resolution to the within-species diversity of G. max. A lower level of 1 

genomewide genetic diversity was observed here in soybean (mean θπ = 1.36 × 10-3) compared to 2 

other major crops such as rice (θπ = 2.29 × 10-3) (Caicedo et al. 2007) and corn (θπ = 6.6 × 10-3) ( 3 

Gore et al. 2009). It is presumed that several genetic bottlenecks, as well as strong selection 4 

pressure have reduced genetic diversity in soybean (Hyten et al. 2006). In addition, modern 5 

soybean breeding is founded on a very limited number of the founder accessions (Hymowitz et al. 6 

1983). We also noticed an average Nonsyn/Syn ratio of 1.49, which is higher than that reported in 7 

other plants (sorghum (1.0), rice (1.2) and Arabidopsis (0.83) (Clark et al. 2007; McNally et al. 8 

2009; Wang et al. 2015)). The greater accumulation of deleterious mutations in the soybean 9 

genome could be attributed to (1) a reduced effective population size (Makino et al. 2018); (2) a 10 

higher level of LD and the resulting ‘hitchhiking’ effect (Stephan et al. 2008); and (3) the 11 

domestication-associated Hill-Robertson effect (Lu et al. 2006). 12 

The GmHapMap was used as a reference panel and more than 21K accessions that had been 13 

previously genotyped using common approaches (SNP array and/or GBS) and obtained an 14 

imputation accuracy of 92-96% for common variants and ~80% for rare variants. The accuracy 15 

levels, obtained here, are comparable to the 98% reported by Bukowski et al. (2018) in maize 16 

(Bukowski et al. 2018). The success of untyped-genotype imputation depends critically on how 17 

well a reference panel has captured the relevant haplotype diversity, as well as the marker density 18 

of the experimental dataset (Browning & Browning 2016). Here we document that GmHapMap 19 

provides an extensive capture of SNP and haplotype diversity within cultivated soybeans 20 

worldwide. It is likely that the lower imputation accuracy observed for the SNP array dataset can 21 

be attributed to the relatively low marker density of this dataset.  22 
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Enhanced datasets resulting from large-scale imputation can improve the efficacy of GWAS 1 

analysis (Hao et al. 2009; Marchini & Howie 2010). To illustrate the benefits of the GmHapMap 2 

resource for GWAS, we performed an association analysis on soybean seed oil content using 3 

imputed SNPs. A strong association with an imputed SNP residing in the NPC1 gene was detected 4 

and its orthologue in Arabidopsis is known to contribute to seed oil content (Feldman et al. 2015). 5 

Several studies in human (Li et al. 2009), cattle (Santana et al. 2014), pig (Yan et al. 2017), maize 6 

(Yang et al. 2014) and rice (Wang et al. 2018) have demonstrated the capacity of imputation to 7 

improve the power of GWAS analysis. In the coming years, we expect that soybean researchers 8 

will deploy GmHapMap for imputation and more precise dissection of the genetic basis of complex 9 

traits in soybean. 10 

This is the first time that a comprehensive description of GCHs, for the complete set of genes 11 

(55,589), has been achieved for a species. This catalogue of GCHs was obtained using 12 

HaplotypeMiner (Tardivel et al. unpublished). Tardivel et al. reported that HaplotypeMiner 13 

allowed the identification of SNP haplotypes for which 97.3% of lines sharing a same haplotype 14 

were correctly identified as having the same allele (Tardivel et al. unpublished). It has been well 15 

documented that haplotypes are more informative than single biallelic SNPs (Stephens et al. 2001). 16 

Knowledge of the GCHs (and possibly alleles) can greatly facilitate the establishment of a 17 

functional link between the various alleles of a gene and the associated phenotype. Haplotype-18 

phenotype association revealed the functional alleles of several genes in wheat (Jiang et al. 2015), 19 

maize (Yang et al. 2013), rice (Si et al. 2016) and soybean (Langewisch et al. 2014). Knowledge 20 

of the alleles present at one or many genes can be tremendously important to breeders. Epistatic 21 

interactions between specific alleles as well as the effects of alleles at neighboring loci (carried 22 
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along via linkage drag) can be very important when considering which combinations of alleles will 1 

be most desirable to achieve a given phenotype.  2 

A final aspect of this work is that the identification of LOF mutations in soybean protein-coding 3 

genes. GmHapMap includes a set of nearly 11K knocked-out genes. We recognized that this 4 

catalogue of knocked-out genes is highly advantageous for soybean functional genomics for 5 

investigation of gene function, and application as genetic makers in soybean breeding programs.  6 

The next challenge will be to link genetic variation, GCHs, and LOFs derived from GmHapMap 7 

with agronomic traits. This will need an extensive effort to measure phenotypes under multiple 8 

field and laboratory conditions. We believe that GmHapMap will lead and accelerate the soybean 9 

breeding efforts and future sustainable agriculture. 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
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Methods 1 

GmHapMap sequencing data 2 

Two collections of soybeans were used: a first set of 727 accessions for which whole-genome 3 

sequencing had been previously released (Zhou et al. 2015; Maldonado dos Santos et al. 2016; 4 

Valliyodan et al.2016; Fang et al. 2017; Song et al. 2017; Torkamaneh et al. 2017) and a second 5 

set of 280 accession which were sequenced in this study. These were chosen to provide a more 6 

balanced representation of various soybean growing areas in the world. Seeds were planted in 7 

individual two-inch pots containing a single Jiffy peat pellet (Gérard Bourbeau & fils inc. Quebec, 8 

Canada). First trifoliate leaves from 12-day-old plants were harvested and immediately frozen in 9 

liquid nitrogen. Frozen leaf tissue was ground using a Qiagen TissueLyser. DNA was extracted 10 

from approximately 100 mg of ground tissue using the Qiagen Plant DNeasy Mini Kit according 11 

to the manufacturer’s protocol. DNA was quantified on a NanoDrop spectrophotometer. Illumina 12 

Paired-End libraries were constructed for 280 accessions using the KAPA Hyper Prep Kit (Kapa 13 

Biosystems, Wilmington, Massachusetts, USA) following the manufacturer’s instructions 14 

(KR0961 – v5.16). Samples were sequenced on an Illumina HiSeq X10 platform at the McGill 15 

University-Génome Québec Innovation Center in Montreal, QC, Canada. 16 

 17 

Nucleotide variants identification 18 

Sequencing reads from all 1,007 accessions were processed using the same analytical 19 

bioinformatics pipeline (Fast-WGS) (Torkamaneh et al. 2017) to create a uniform catalogue of 20 

genetic variants. In brief, the 100-150-bp paired-end reads were mapped against the G. max 21 

reference genome [Gmax_275 (Wm82.a2)] (Schmutz et al. 2010). Then we removed variants if: 22 
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1) they had more than two alleles, 2) an allele was not supported by reads on both strands, 3) the 1 

overall quality (QUAL) score was <32, 4) the mapping quality (MQ) score was <30, 5) read depth 2 

(minNR) was <2 and 6) the minor allele frequency (MinMAF) was <0.0009. 3 

 4 

Determining the accuracy of nucleotide variants  5 

The SoySNP50K iSelect BeadChip has been used to genotype the entire USDA soybean 6 

germplasm collection (Song et al. 2013). The complete dataset for 20,087 G. max and G. soja 7 

accessions genotyped with 42,508 SNPs was downloaded from Soybase (Grant et al. 2010). Of 8 

these accessions, we randomly selected 50 accessions which were in common with the 9 

GmHapMap collection. For these 50 accessions, we extracted their genotype calls at all SNP loci 10 

for which data were available. This large set of SoySNP50K genotype calls (2,125,400 genotypes 11 

or data points) was directly compared with the WGS-derived SNP calls (obtained using the Fast-12 

WGS pipeline) to assess genotype accuracy.  13 

 14 

Determining the effects of nucleotide variants 15 

The functional impact of nucleotide variants was performed using the soybean genome using 16 

SnpEff and SnpSift (Cingolani et al. 2012). Based on the genome annotation, nucleotide variants 17 

were categorized on the basis of their location (exonic, intronic, splice sites, UTR (3 & 5 prime), 18 

upstream and downstream regions (within 5kb of a gene), and intergenic) and their predicted 19 

functional impact (missense, nonsense, and silent). To determine LOF mutation, a database was 20 

built using 55K soybean protein-coding genes (Gmax_275_Wm82.a2.v1.gene.gff3, from 21 

Phytozome on Jan. 2016) for SnpEff. The LOF variants were extracted from the SnpEff-annotated 22 
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VCF file using grep command lines. Variants were mapped on to transcripts annotated as 1 

“protein_coding” and containing an annotated “START” codon, and then classified as 2 

synonymous, missense, nonsense (stop codon-introducing, start/stop codon-disrupting or splice 3 

site-disrupting (canonical splice sites)). In this work, we excluded transcripts labelled as NMD 4 

(predicted to be subject to nonsense-mediated mRNA decay). We also applied another filtering 5 

step, based on annotation, to identify high-confidence knocked-out genes. The genes with LOF 6 

mutations were removed if (i) the ‘REF’ field in the input VCF file did not match the reference 7 

genome, (ii) they had an incomplete transcript, or (iii) they did not have a proper START codon.  8 

 9 

Population structure and genetic diversity 10 

Structure 11 

Population structure was estimated using a variational Bayesian inference implemented in 12 

fastSTRUCTURE (Raj et al. 2014). Five runs were performed for each number of populations (K) 13 

set from 1 to 15 using genomewide SNP data. The most likely K value was determined by the log 14 

probability of the data (LnP(D)) and delta K, based on the rate of change in LnP(D) between 15 

successive K values. Similar analyses were performed separately for all 20 chromosomes of 16 

soybean. 17 

Genetic relationship 18 

The evolutionary history was inferred using the Neighbor-Joining method (Saitou & Nei 1987) 19 

(rooted and unrooted) with the 12M genomewide SNPs identified in this study. The taxa were 20 

clustered together using bootstrap test (1,000 replicates) (Felsenstein 1985). The tree was drawn 21 

to scale, with branch lengths (next to the branches) in the same units as those of the evolutionary 22 
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distances used to infer the phylogenetic tree. The evolutionary distances were computed using the 1 

Maximum Composite Likelihood method (Tamura et al. 2004) and the units correspond to the 2 

number of base substitutions per site. Evolutionary analyses were conducted in MEGA7 (Kumar 3 

et al. 2016). 4 

Genetic diversity 5 

We measured the nucleotide diversity (π) in sliding windows of 1000 bp across the genome using 6 

VCFtools (Danecek et al. 2011). The average pairwise divergence within a subpopulation (θπ) was 7 

estimated for the whole genome among different subpopulations. Sliding windows of different 8 

sizes (1 kb, 7kb, 10 kb and 100 kb) that had a 90% overlap between adjacent windows were used 9 

to estimate θπ for both whole genome and each chromosome. To display the pattern in each 10 

chromosome, a window of 100 kb was used. 11 

 12 

Linkage disequilibrium and tag SNP identification 13 

Genomewide pairwise linkage disequilibrium (LD) analysis (r2 and D´) was performed using all 14 

nucleotide variants from the GmHapMap dataset. The average r2 value was calculated for each 15 

length of distance (<1000 bp), and LD decay calculated using PopLDdecay (Zhang et al. 2018). 16 

For tag SNP selection, we used PLINK (Purcell et al. 2007) to calculate LD between each pair of 17 

SNPs within a sliding window of 50 SNPs and we removed all but one SNP that were in perfect 18 

LD (LD = 1); the remaining SNPs were deemed tag SNPs. 19 

 20 
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Phasing, identification of identity by descent (IBD) and imputation  1 

The IBD analysis was conducted using BEAGLE v4.1 (Browning & Browning 2016). In brief, to 2 

identify IBD segments, the genotypic dataset was phased using BEAGLE with 50 iterations for 3 

each chromosome. The output of these calculations was a series of “putative” IBD segments shared 4 

between pairs of individuals. Each segment comes with the following information attached: IDs 5 

for the pair of individuals, start and end position of the IBD segment, and probability score (LOD 6 

score). We filtered these segments using LOD score and the length of IBD. 7 

 8 

Imputation of untyped variants 9 

We used two reference panels for untyped-variant imputation. The ‘REF-I’ panel includes 1,006 10 

accessions from GmHapMap with the entire SNP dataset, while the ‘REF-II’ panel includes 1,006 11 

accessions and only 1.9M tag SNPs from genic regions (tag SNPs in genic regions or within 2kb 12 

of a gene). These two reference panels were created for all 20 chromosomes of soybean and were 13 

phased using BEAGLE v4.1 (Browning & Browning 2016) with 100 iterations.  14 

As initial lower density datasets, we used three collections of soybean accessions genotyped with 15 

commonly used genotyping tools. A first set of 20,087 accessions (the entire USDA Soybean 16 

Germplasm Collection) had been characterized using the SoySNP50K iSelect Bead Chip (Song et 17 

al. 2013) to yield a set of 43K polymorphic markers. A second set comprised 1,531 accessions 18 

which had been subjected to genotyping-by-sequencing (GBS; ApeKI protocol) (Sonah et al. 2013) 19 

and in which SNPs had been called using the Fast-GBS pipeline (Torkamaneh et al. 2017). Finally, 20 

a third set of 1,531 accessions (GBS set) with a combined SNP catalogue derived from GBS and 21 

SoySNP50K (Supplementary Note).   22 
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Phasing and imputation were performed using BEAGLE v4.1 (Browning & Browning 2016) for 1 

each chromosome with the following parameters: (i) nthreads = 10 (number of threads); (ii) 2 

window = 100,000 (number of markers in a sliding window); (iii) overlap = 50,000 (number of 3 

overlapping markers between adjacent windows); (iv) niterations = 100 (number of phasing 4 

iterations) and (v) err = 0.00001 (the allele miscall rate).  5 

 6 

Determining the imputation accuracy  7 

The WGS SNP data from 1,006 of the 1,007 resequenced accessions were used as a reference 8 

panel to impute untyped variants. The remaining line was kept out of the reference panel to 9 

determine how accurately data at untyped loci (present in the GmHapMap data but absent from 10 

the low-density genotype catalogue) could be imputed in this accession. We performed three such 11 

permutations where a single accession was kept aside to estimate imputation accuracy. For these 12 

lines purposely excluded from the reference panel, we compared the imputed genotypes against 13 

the genotypes called at these same loci following WGS. 14 

 15 

Genomewide association analysis 16 

Sonah et al. (2013) described a set of QTLs using GWA analysis on a subset of 139 soybean 17 

accessions. These accessions were genotyped via GBS. We imputed untyped variants on this low-18 

density genotype dataset from GmHapMap in 1Mb of chromosome 14, encompassing a QTL for 19 

seed oil content. GWA analysis was conducted using GAPIT R package (Lipka et al. 2012) using 20 

a MLMM model (Segura et al. 2012). A candidate gene was identified using SoyBase database 21 
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(Grant et al. 2010) and The Arabidopsis Information Resource (TAIR) 1 

[https://www.arabidopsis.org/servlets/TairObject?type=gene&name=AT4G38350.1] 2 

 3 

Identification of gene-centric haplotypes 4 

The identification of GCHs was performed using the HaplotypeMiner R package 5 

(https://github.com/malemay/HaplotypeMiner) with the entire SNP dataset on 55,381 protein-6 

coding genes in the soybean genome. In brief, the following parameters were used: (i) R2_measure 7 

= "r2s" (the estimation of linkage disequilibrium between markers was measured based on 8 

corrected r2
vs which takes into account information related to genetic relatedness and population 9 

structure); (ii) cluster_R2 = "r2s" (LD measure to use in the clustering step); (iii) 10 

max_missing_threshold = 0.05 (the maximum proportion of missing genotypes allowed for a 11 

marker); (iv) max_het_threshold = 0.01 (the maximum proportion of heterozygous genotypes 12 

allowed for a marker); (v) min_allele_count = 4 (the minimum number of times the minor allele 13 

has to be seen for a marker to be retained); (vi) cluster_threshold = 0.9 (the minimum LD beyond 14 

which markers were clustered); (vii) max_flanking_pair_distance = 10000 (the maximum distance 15 

(in bp) that can separate two markers in LD at the final selection step: (viii) 16 

max_marker_to_gene_distance = 6000 (the maximum distance (in bp) from a marker to the center 17 

of the gene of interest); (ix) marker_independence_threshold = 0.8 (the minimum LD for two 18 

markers to be considered in LD at the final selection step). 19 

 20 
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Identification of duplicated genes 1 

We detected putative duplicated genes, presumably derived from WGD or gene duplication, using 2 

protein homology analysis integrated in the Phytozome (Goodstein et al. 2012) and SoyBase 3 

(Grant et al. 2010) databases. Protein homologs were identified using dual-affine Smith-Waterman 4 

alignments between the predicted translation product of the selected transcript (aka query gene) 5 

and all other predicted proteins in the soybean genome. We identified duplicated genes with 90% 6 

identity (ID≥90), 90% coverage (CV≥90), and 5% size difference (SD≤5) threshold. 7 

 8 

Code availability 9 

The bioinformatics codes and scripts applied in this study for variant calling, population structure 10 

analysis, genetic diversity, tag SNP selection, imputation, GWAS, annotation and GCHs detection 11 

are publicly available at https://figshare.com/account/home#/projects/56921. 12 

 13 

Data availability 14 

The datasets produced in this study (GmHapMap nucleotide variants (complete dataset), reference 15 

panels (REF-I and REF-II), annotated GmHapMap nucleotide variants, GCHs for all 55K genes 16 

and LOF variants and genotypes)  are publicly available at 17 

https://figshare.com/account/home#/projects/56921  18 

 19 
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