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Abstract

The classification of clinical samples based
on gene expression data is an important part
of precision medicine. However, it is not
a trivial task and it is difficult to accurately
predict survival outcomes and treatment re-
sponses despite advancements in the field.
In this manuscript, we show how transform-
ing gene expression data into a set of per-
sonalized (sample-specific) networks can al-
low us to harness existing graph-based meth-
ods to improve classifier performance. Ex-
isting approaches to personalized gene net-
works, based on protein-protein interactions
(PPI) or population-level models, all have the
limitation that they depend on other sam-
ples in the data and must get re-computed
whenever a new sample is introduced. Here,

we propose a novel method, called Personal-
ized Annotation-based Networks (PAN), that
avoids this limitation by using curated an-
notation databases to transform gene expres-
sion data into a graph. These databases orga-
nize genes into overlapping gene sets, called
annotations, that we use to build a network
where nodes represent functional terms and
edges represent the similarity between them.
Unlike competing methods, PANs are calcu-
lated for each sample independent of the pop-
ulation, making it a more general solution
to the single-sample network problem. Us-
ing two breast cancer datasets as a case study
(METABRIC and a super-set of GEO studies),
we show that PAN classifiers not only predict
cancer relapse better than gene features alone,
but also outperform PPI and population-level
graph-based classifiers. This work demon-
strates the practical advantages of graph-based
classification for high-dimensional genomic
data, while offering a new approach to mak-
ing sample-specific networks.

1 Introduction
Breast cancer is one of the leading causes of
death for women worldwide, with the inci-
dence and mortality increasing globally [6].
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Yet, it is not a single disease, but rather a
collection of multiple biological entities, each
with their own molecular signature and clin-
ical implications [12]. Since prognosis and
treatment response differs between and within
cancer sub-types [16], there exists a strong
motivation to develop methods that can accu-
rately predict key patient outcomes, such as re-
lapse after treatment, and so use them to tailor
treatments to their patients [7]. However, de-
spite advancements in the field, there remains
much unexplained inter-tumour heterogeneity
that drives substantial differences in survival
outcomes and treatment responses [11]. Gene
expression signatures, easily measured from
a tissue sample using high-throughput assays,
have been used as a means of stratifying breast
cancer samples. This has resulted in com-
putational methods that identify personalized
“driver mutation” genes [18], differentially ex-
pressed genes and pathways [33], and individ-
ualized gene networks [34]. Although genes
have been used successfully as biomarkers for
cancer prediction tasks [17], it is not clear that
gene biomarkers are the most appropriate sub-
strate for classification. Rather, it may be more
meaningful to describe diseases in terms of the
dysfunction of specific systems, rather than
the dysfunction of individual molecules [22].
This perspective is achieved by gene regula-
tory networks.

Gene regulatory networks represent genes
as nodes and the interactions between them
as edges. The interactions between genes can
be inferred in three ways: from knowledge-
driven methods, data-driven methods, or hy-
brid methods. Knowledge-driven methods use
public databases which catalog experimentally
confirmed (or predicted) information relating
protein-protein interactions (PPI) or function-
ally associated gene sets (called annotations).

Examples of these databases include the Ky-
oto Encyclopedia of Genes and Genomes
(KEGG) [19], Human Phenotype Ontology
(HPO) [29], Disease Ontology (DO) [2], HIP-
PIE v2.0 [1], among others [9, 31]. Data-
driven methods are usually based on gene-
gene correlation coefficients [13] or causal
relationships [27], as inferred directly from
gene expression data. Hybrid methods con-
struct gene regulatory networks by combin-
ing gene expression data with the prior knowl-
edge found in annotation databases [23]. Re-
gardless of the method used, most studies
compute gene networks at the population- or
group-level instead of building personalized
(sample-specific) gene regulatory networks.
In principle, this results in a single model for
all samples in a population, taking a “one-
size-fits-all” approach that ignores the inter-
tumour heterogeneity of breast cancer. Al-
though population-level networks can help re-
searchers understand a disease in the general
sense, personalized gene regulatory networks
could pave the way toward accurate and indi-
vidualized disease prediction.

It is challenging to create sample-specific
gene regulatory networks because individuals
rarely have the multiple gene expression pro-
files necessary to compute intra-sample corre-
lations. Borgwardt et al. [3] proposed an ap-
proach that uses a common PPI reference net-
work to serve as a template from which edges
are trimmed based on the gene co-expression
status for that individual (relative to the pop-
ulation as a whole). Since this method trims
edges by comparing a single sample with the
population distribution, these PPI-based net-
works must be re-computed whenever a new
sample is introduced. More recently, Kuijjer
et al. [20] proposed a more formal method
called LIONESS that builds a sample-specific

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 29, 2019. ; https://doi.org/10.1101/534628doi: bioRxiv preprint 

https://doi.org/10.1101/534628
http://creativecommons.org/licenses/by-nc-nd/4.0/


network by estimating the contribution that
each sample makes toward the population-
level gene regulatory network. As such, LI-
ONESS produces a unique graph for each
sample without having to integrate external in-
formation. However, LIONESS has an impor-
tant limitation: whenever a new sample is in-
troduced into the dataset, all sample-specific
networks must get re-computed. Liu et al. [22]
have proposed another method, similar to LI-
ONESS, but this has the same re-computation
issue. All of these methods use population-
level information to build template networks,
making them impractical for machine learning
applications where populations change, no-
tably when data are streaming.

In response to these problems, we in-
troduce a novel method for constructing
sample-specific networks, called Personal-
ized Annotation-based Networks (PAN), that
uses curated annotation databases to trans-
form gene expression data into a graph. Us-
ing gene set annotations, available through
these databases, we build sample-specific net-
works where nodes represent functional terms
and edges represent the similarity between
them. Once a network is built for each sam-
ple, we can then use the graph properties (e.g.,
Closeness Centrality, Betweenness Centrality,
or PageRank) as features for classification.
Unlike the PPI-based and LIONESS sample-
specific graphs, PAN is calculated for each
sample agnostic to the population, making it
a more general solution to the single-sample
network problem. Using two large breast can-
cer datasets, we show that the graph proper-
ties of PAN not only predict breast cancer re-
lapse data better than gene features alone, but
also outperform the PPI-based and LIONESS
graphs. In evaluating our method, we trial
PAN with three separate annotation databases,

and find that Disease Ontology networks con-
sistently perform best. This work demon-
strates the practical advantages of graph-based
classification for high-dimensional genomic
data, while offering a new approach to mak-
ing sample-specific networks.

2 Methods

2.1 Overall objective
The ultimate goal of this work is to pre-
dict breast cancer relapse by using person-
alized (sample-specific) gene regulatory net-
works for classification. For this, we propose a
new method for building sample-specific net-
works, called Personalized Annotation-based
Networks (PAN), that we benchmark against
established methods. Since PAN depends on
the annotation database chosen, we test three
databases: Kyoto Encyclopedia of Genes and
Genomes (KEGG) [19], Human Phenotype
Ontology (HPO) [29], and Disease Ontol-
ogy (DO). To evaluate the performance of
PAN, we use publicly available data from
the Gene Expression Omnibus (GEO) and
METABRIC. Our proposed PAN method is
summarized in Figure 1.

2.2 Data acquisition
The data used for the prediction of events
were obtained from two main sources,
the Gene Expression Omnibus (GEO) and
METABRIC. The first dataset, named GEO-
5, is a super-set of five GEO collec-
tions (including GSE12276 [4], GSE20711
[14], GSE19615 [21], GSE21653 [30], and
GSE9195 [24]). These datasets were selected
because they all use the same micro-array plat-
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Figure 1: This figure illustrates how we create a Personalized Annotation-based Network
(PAN) graph. Panel A: We obtain publicly available Gene Expression datasets (GEO-5 or
METABRIC) and Gene Annotations (KEGG, HPO, or DO). Panel B: For each sample, we
build an intermediate matrix by matching the Gene Expression data to the Gene Annotations:
if there is an annotation for that gene, the value of the intermediate matrix becomes the expres-
sion of that gene. Otherwise, the value becomes zero. Panel C: From the intermediate matrix,
we build a network where the nodes are the annotations and the edges are the Euclidean dis-
tance between them. To turn the annotation-annotation association weights into a discretized
network, we create an adjacency matrix from the top 10% of edges as ranked by association
strength. Panel D: After building the network, we use its properties (Betweenness Centrality,
Closeness Centrality, or PageRank) as feature input for a classification algorithm (linear re-
gression or support vector machine) to predict breast cancer relapse. Acronyms: S (Sample);
Ann (Annotation).
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form (Affymetrix Human Genome U133 Plus
2.0 Array) and include clinical information
about relapse. The GEO-5 dataset contains
736 samples (349 relapse; 387 no relapse).

The second dataset was retrieved from
METABRIC, a popular breast cancer dataset
from the European Genome-Phenome Archive
[10]. We obtained the gene expression data al-
ready pre-processed by limma [28] and fRMA
[25] libraries. Next, we adjusted the data
for batch effects using the ComBat algorithm
from the sva library (with default parameters
and covariates as tumor versus normal). The
repository contains 2000 breast tumor sam-
ples. To be included in our study, we required
that the sample had clinical information about
relapse. Filtering samples with missing clin-
ical data reduced the dataset to 1283 samples
(422 relapse; 861 no relapse).

2.3 Defining sample-specific net-
works

2.3.1 Feature selection

To make the calculation of single-sample
graphs tractable for high-dimensional gene ex-
pression data, we performed feature selection
on the gene expression data. For each dataset,
we included the top 100 genes ranked by total
variance. Using the same list of 100 genes, we
built sample-specific networks as described
below. Note that the same 100 genes were also
used to train the non-graph classifiers.

2.3.2 PPI-based networks

Although a personalized network is not imme-
diately available from the data, we can build
one from a protein-protein interaction (PPI)
network [3]. In this method, the PPI serves as

reference network that is subsequently pruned
to establish sample-specific networks. For
each sample, we keep any PPI edge where its
constituent genes both have high (or low) rel-
ative expression. Specifically, we include all
edges where both genes are in either the top or
bottom quintiles, as compared with the other
samples. For this application, we use the HIP-
PIE database of experimentally observed PPIs
[1].

2.3.3 LIONESS networks

We applied LIONESS to the gene expression
data using PyPanda [32], run with default pa-
rameters. To turn the gene-gene association
weights into a discretized network, we cre-
ate an adjacency matrix from the top 10% of
edges as ranked by association strength.

2.3.4 Personalized Annotation-based Net-
works (PAN)

In this work, we propose a novel method,
called Personalized Annotation-based Net-
works (PAN), to build personalized networks
for individual samples based on gene expres-
sion data. It begins by converting gene ex-
pression data (using one of the KEGG, HPO,
or DO databases) into annotation-based mea-
sures. Formally, each sample j is repre-
sented by the matrix of M j

p,q, where p is a
gene and q is an annotation associated with
some genes. The value for each element M j

p,q

equals the expression of gene p if it relates to
the annotation q. Otherwise, it equals zero.
Then, Mj is turned into a symmetric associ-
ation matrix, where the value for each element
Aj

q,q∗ describes the Euclidean distance be-
tween an annotation q and another annotation
q∗. For PAN, the nodes are annotations and
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the edges are the Euclidean distance between
them. To turn the annotation-annotation asso-
ciation weights into a discretized network, we
create an adjacency matrix from the top 10%
of edges as ranked by association strength.
Since a network is created for each sample in-
dependently, PAN does not have the limitation
that the PPI-based and LIONESS approaches
have. Our proposed PAN method is summa-
rized in Figure 1.

2.4 Graph-based Representation
Once the discretized networks are constructed
for each sample, their graph properties can be
extracted and used as features for classifica-
tion. Given a sample S, a graph GS

(
V S, ES

)
is constructed from its gene expression us-
ing the PPI-based method [3], the LIONESS
method [20], or the proposed PAN method.
The graph-based representation of S is de-
noted as hS and defined based on GS . In
the following sub-sections, we present dif-
ferent ways to define hS . By using graph
properties, hS is represented as a vector of
V Sdimensions, i.e., hS =

[
hS1 , ..., h

S
|V S |

]
where hSj is computed from properties of the
vertex vSj .

2.4.1 Closeness Centrality

The Closeness Centrality of a node vSj ∈ V S

is defined as the reciprocal of the sum of the
shortest path distances from vSj to all other
nodes [15],

hSj = CC
(
vSj
)
=

|V S| − 1∑
vS
k
∈V S−{vSj } l

(
vSj , v

S
k

)
where l

(
vSj , v

S
k

)
is the length of the shortest-

path from vSj to vSk .

2.4.2 Betweenness Centrality

The Betweenness Centrality of a node vSj ∈
V S is defined as the sum of the fraction of all-
pairs shortest paths that pass through vSj [5],

hSj = BC
(
vSj
)
=

∑
vS
k
,vS

l
∈V S

β
(
vSk , v

S
l

∣∣∣∣vSj )
β (vSk , v

S
l )

where β
(
vSk , v

S
l

)
is the number of shortest(

vSk , v
S
l

)
-paths and β

(
vSk , v

S
l

∣∣∣∣vSj ) is the num-

ber of those paths passing through vSj other
than vSk and vSl . Note, if vSk = vSl , then
β
(
vSk , v

S
l

)
= β

(
vSk , v

S
k

)
= 1, and if vSj ∈{

vSk , v
S
l

}
, then β

(
vSk , v

S
l

∣∣∣∣vSj ) = 0.

2.4.3 PageRank

PageRank [26] was developed for measuring
the importance of websites on the Internet.
This method makes use of an underlying as-
sumption that more important websites are
likely to receive more links from others. In
our case, we define the PageRank property of
a node vSj ∈ V S as:

hSj = PR
(
vSj
)
=

∑
vS
k
∈N(vSj )

PR
(
vSk
)

L (vSk )

where N (vSj ) is the set of all nodes linking to
node vSj and L(vSk ) is the number of links from
vSk .

2.5 Classifier choice and perfor-
mance

We trained linear regression (LR) and lin-
ear kernel support vector machine (SVM)
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[8] classifiers using (a) the gene expression
data (non-graph) and (b) the properties of
the PPI-based, LIONESS, and PAN graphs.
Since PAN depends on the database used,
we used three databases to build three sepa-
rate PAN models: PAN_KEGG, PAN_HPO,
and PAN_DO. For each classifier, we report
the accuracy, area under the receiver oper-
ating curve (AUC), and F1-score, as aver-
aged across a 10-fold cross-validation of the
dataset. Although we tested several graph
properties, we only report the best perform-
ing classifier for each model (based on which
graph property yielded the highest AUC). In
most cases, Betweenness Centrality yielded
the highest AUC.

3 Results and Discussion

3.1 Graph properties outperform
gene expression

Once a single-sample network is created, its
graph properties can be calculated and used as
feature input for classification. Figures 2 & 3
show the average 10-fold cross-validation ac-
curacies for graph and non-graph classifiers in
the prediction of breast cancer relapse. These
figures compare PAN classifier performance
(built using three separate databases: KEGG,
HPO, and DO) with the PPI, LIONESS, and
non-graph classifiers. For the GEO-5 dataset,
we see that all graph classifiers perform bet-
ter than the commonly used non-graph (gene
expression) classifier. Considering that the
GEO-5 dataset is aggregated from multiple
sources, this might suggest that single-sample
networks capture a signal that is more robust
to inter-batch differences. The PPI-based and
LIONESS graphs did not perform as well for
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Figure 2: This figure shows the performance
for six classifiers in the prediction of breast
cancer relapse using the GEO-5 data. The left
panel shows logistic regression performance,
while the right panel shows support vector
machine performance. The PPI, LIONESS,
and PAN methods refer to graph-based meth-
ods, where graph properties are used as fea-
ture input. The non-graph method refers to
using gene expression data as feature input.
Note that we evaluated three separate PAN
models, each built using a separate annotation
database (KEGG, HPO, and DO). All perfor-
mance metrics are averaged across 10-folds of
cross-validation.
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Figure 3: This figure shows the performance
for six classifiers in the prediction of breast
cancer relapse using the METABRIC data.
The left panel shows logistic regression per-
formance, while the right panel shows sup-
port vector machine performance. The PPI,
LIONESS, and PAN methods refer to graph-
based methods, where graph properties are
used as feature input. The non-graph method
refers to using gene expression data as feature
input. Note that we evaluated three separate
PAN models, each built using a separate an-
notation database (KEGG, HPO, and DO). All
performance metrics are averaged across 10-
folds of cross-validation.

the METABRIC data as they did for the GEO-
5 data. However, all PAN classifiers still out-
perform the non-graph (gene expression) clas-
sifier.

3.2 PAN has consistently superior
performance

The goodness of any classifier might depend
largely on the dataset under study. Therefore,
it is important to evaluate a classifier’s perfor-
mance across multiple datasets. When com-
paring the rank-order of the six classifiers be-
tween the GEO-5 and METABRIC data, we
see that the PPI classifier has an inconsistent
performance. Although the PPI classifier is
among the best for GEO-5, it is among the
worst for METABRIC. On the other hand,
the LIONESS and non-graph (gene expres-
sion) classifiers have consistently poor perfor-
mance, while the PAN_DO and PAN_HPO
classifiers outperform all competing methods
for both datasets. Likewise, PAN_KEGG al-
ways outperforms the non-graph method. Al-
though the margin is small, PAN_DO usually
performs better than PAN_HPO. As such, we
see a stable rank-order among the PAN meth-
ods: PAN_DO > PAN_HPO > PAN_KEGG.
It is interesting to note that the better perform-
ing annotation databases have fewer total an-
notations. This could suggest that PAN’s suc-
cess may have something to do with its abil-
ity to condense the high-dimensional gene ex-
pression data into a lower-dimensional space.
Whatever the reason, PAN classifiers appear to
perform reliably well for breast cancer relapse
prediction.
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4 Summary

In this paper, we have proposed a novel
method for constructing sample-specific net-
works, called Personalized Annotation-based
Networks (PAN), which use curated annota-
tion databases to transform gene expression
data into a graph. Using the properties of
these graphs as feature input for classification,
we show that PAN can not only predict breast
cancer relapse better than non-graph (gene ex-
pression) classifiers, but also outperform com-
peting sample-specific graph methods. Al-
though PAN graphs depend on the annotation
database used, we show that PAN classifiers
perform consistently well across three sepa-
rate databases (KEGG, HPO, and DO), with
PAN_DO and PAN_HPO having superior per-
formance in all tests. Our results support two
principal conclusions. First, they suggest that
applying graph-based models to the classifi-
cation of gene expression data improves per-
formance considerably. Second, they suggest
that integrating annotation databases into clas-
sification pipelines is appropriate for clinically
relevant classification problems, such as the
prediction of breast cancer relapse. Although
we showcase the PAN method on gene ex-
pression data, our method can be generalized
to any classification problem where a relevant
annotation database exists (e.g., for protein ex-
pression or methylation data).
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