
Network Inference with Granger Causality Ensembles

on Single-Cell Transcriptomic Data

Atul Deshpande1,2, Li-Fang Chu2, Ron Stewart2, and Anthony Gitter2,3

1Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI
53706, USA

2Morgridge Institute for Research, Madison, WI 53715, USA
3Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI

53792, USA.

Abstract

Advances in single-cell transcriptomics enable measuring the gene expression
of individual cells, allowing cells to be ordered by their state in a dynamic
biological process. Many algorithms assign ‘pseudotimes’ to each cell, rep-
resenting the progress along the biological process. Ordering the expression
data according to such pseudotimes can be valuable for understanding the
underlying regulator-gene interactions in a biological process, such as dif-
ferentiation. However, the distribution of cells sampled along a transitional
process, and hence that of the pseudotimes assigned to them, is not uniform.
This prevents using many standard mathematical methods for analyzing the
ordered gene expression states. We present Single-Cell Inference of Networks
using Granger Ensembles (SCINGE), an algorithm for gene regulatory net-
work inference from single-cell gene expression data. Given ordered single-
cell data, SCINGE uses kernel-based Granger Causality regression, which
smooths the irregular pseudotimes and missing expression values. It then
aggregates the predictions from an ensemble of regression analyses with a
modified Borda method to compile a ranked list of candidate interactions
between transcriptional regulators and their target genes. In two mouse em-
bryonic stem cell differentiation case studies, SCINGE outperforms other
contemporary algorithms for gene network reconstruction. However, a more
detailed examination reveals caveats about transcriptional network recon-
struction with single-cell RNA-seq data. Network inference methods, includ-
ing SCINGE, may have near random performance for predicting the targets
of many individual regulators even if the aggregate performance is good. In
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addition, in some cases including cells’ pseudotime values can hurt the per-
formance of network reconstruction methods. A MATLAB implementation
of SCINGE is available at https://github.com/gitter-lab/SCINGE.

1. Introduction

Identifying the underlying gene regulatory networks (GRNs) that dictate
cell-fate decisions is important for understanding biological systems. Al-
though RNA-seq experiments on populations of cells undergoing a process
of interest have been used to study cellular decision making, averaging tran-
scriptional information from a heterogeneous population of cells can obscure
biological signals. Advances in single-cell transcriptomics, such as single-cell
RNA-seq, have enabled observing the gene expression states of individual
cells [1–3]. While these solve the averaging problem faced by bulk transcrip-
tomics, they are beset with new technical challenges, including measurement
dropouts and a lower signal-to-noise ratio. Despite the technical problems,
snapshots of the gene expression states of individual cells provide larger sam-
ple sizes and a finer understanding of the gene expression and regulatory
dynamics during a biological process.

Many algorithms use single-cell RNA-seq data to infer GRNs [4], taking
advantage of the large sample sizes. GRN inference requires identifying re-
lationships between transcriptional regulators and their target genes or gene
modules [5–7]. One strategy is to search gene expression datasets for depen-
dencies among mRNA expression levels, making the simplifying assumption
that a regulator’s mRNA level approximates its regulatory activity. Single-
cell datasets offer more data from which to learn these gene-gene relationships
using multivariate information theory [8], linear regression [9], or other ap-
proaches. When single-cell expression data are collected at multiple times
points, it provides more information that can be used for GRN inference.
GRN reconstruction methods originally designed for bulk time-series tran-
scriptomic data [10] can be repurposed to analyze time-stamped single-cell
data. For example, Jump3 [11], a hybrid machine learning and model-based
approach, has been adapted in this manner [12]. Time-stamped single-cell
data also enables analyzing the evolution of gene expression distributions
over time [13], which is not possible with bulk time series data or single-cell
data collected at one time point.

When single-cell RNA-seq samples are not collected at multiple time
points, computationally ordering cells along a biological process based on
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their expression states can approximate each cell’s position along the process.
These inferred times, called ‘pseudotimes’, can potentially lead to greater
understanding of the causal regulatory relationships between genes. The
dozens of algorithms for ordering cells and assigning pseudotimes [14], also
referred to as trajectory inference, can be distinguished by their use of prior
knowledge, treatment of pseudotime uncertainty, and the supported trajec-
tory types [15]. Pseudotime algorithms can target trajectory types such as
cyclic [16, 17], linear [18, 19], bifurcating [20], multifurcating [21], or tree-
structured [22, 23]. In most of these methods, a pseudotime is assigned to
each cell, which represents the cell’s progress along the trajectory.

Similar to time series data, the pseudotemporal ordering provides an un-
derstanding of the gene expression trends along the biological process, which
can support more accurate GRN reconstruction. Strategies for GRN infer-
ence with pseudotemporal data are related to those for time-stamped data
with additional specializations to account for the technical differences. For
example, SINCERITIES [24], originally designed to infer GRNs using ridge
regression on time-stamped expression data, also admits pseudotime-labelled
cells. SCODE [12], GRISLI [25], and Ocone et al. [26] infer GRNs by mod-
elling the cell dynamics as ordinary differential equations with pseudotime as
the temporal reference. Other strategies involve Gaussian processes regres-
sion for smoothing pseudotemporal data [27], time-lagged correlation [28],
variational Bayesian inference on a first-order autoregressive moving aver-
age model [29], modified Restricted Directed Information [30], unsupervised
classification using Gaussian Mixture Models [31], empirical Bayes-based
thresholding [32], and modeling information propagation through genes as
a cascade [33]. These strategies require estimating the cell trajectories be-
fore GRN inference. An alternative approach is to perform joint trajectory
and co-expression network inference, for example, using Ornstein-Uhlenbeck
models [21] or Gaussian mixtures with continuous parameters [34]. Despite
these algorithmic advances, in case studies on real data the GRN reconstruc-
tion performance has often been disappointing and sometimes not substan-
tially better than random networks.

In this study, we adapt Granger Causality for pseudotemporally-ordered
single-cell expression data to assess whether this causal framework can over-
come the difficulties faced by prior pseudotime-based GRN inference meth-
ods. We introduce our Single-Cell Inference of Networks using Granger En-
sembles (SCINGE) algorithm, an ensemble-based GRN reconstruction tech-
nique that uses modified Granger Causality on single-cell data annotated

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2019. ; https://doi.org/10.1101/534834doi: bioRxiv preprint 

https://doi.org/10.1101/534834
http://creativecommons.org/licenses/by/4.0/


with pseudotimes. Granger Causality [35] is a powerful approach for de-
tecting causal relationships in long time series data. It has been used with
bulk times series gene expression data [36–39], but these time series are typi-
cally short due to experimental limitations, making it more difficult to detect
reliable gene-gene dependencies. The longer (pseudo) time series obtained
from ordered single-cell datasets make them appealing for Granger Causality-
based GRN reconstruction. However, single-cell challenges such as dropouts
and irregular sampling along the biological trajectory counteract the benefits
of the longer pseudotime series. SCINGE addresses these concerns by using
a kernel-based Granger Causality method that smooths the expression data
and ensembling to improve GRN prediction robustness.

We apply SCINGE to reconstruct GRNs of two mouse embryonic stem cell
differentiation processes characterized with single-cell RNA-seq. SCINGE
compares favorably with existing GRN inference methods designed for tem-
poral or pseudotemporal gene expression data when evaluated using ChIP-
seq, ChIP-chip, loss-of-function, and gain-of-function data. However, our
evaluation reveals important caveats about GRN evaluation and the value of
pseudotime for GRN inference that are broadly applicable for pseudotime-
based GRN reconstruction.

2. Results

2.1. SCINGE and Granger Causality Overview

SCINGE takes ordered single-cell gene expression data as input and pro-
vides a ranked list of regulator-gene relationships as its primary output. It
requires the single-cell dataset to be annotated with pseudotimes. This as-
signs a numeric pseudotime to each cell in the dataset that represents how
much that cell has progressed through a dynamic biological process such as
differentiation. For each target gene, SCINGE assesses which past expression
values are most predictive of its expression, that is, the candidate regulators
of each gene. This is achieved using a specialized form of Granger Causality,
which is framed as a regularized regression problem. The past expression
values are determined using the pseudotimes.

The Granger Causality [35] test at SCINGE’s core is a hypothesis test
to ascertain predictive causality between a ‘source’ and ‘target’ time series.
A series x is said to Granger-cause y if past values of x contain information
that helps predict future values of y. The primary complication of applying
Granger Causality to single-cell expression data with inferred pseudotimes
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is that the distribution of cells along the trajectory, and the pseudotimes
assigned to them, is not uniform. Standard Granger Causality is not an
effective analytical tool with irregularly-spaced pseudotimes [30]. One po-
tential workaround is to resample the irregularly-spaced pseudotime series
to obtain a regular time series. However, resampling introduces interpola-
tion errors in the form of a low-pass filtering, which could be detrimental to
analysis of highly non-linear biological processes. SCINGE instead uses an
alternative solution proposed by Bahadori and Liu, the Generalized Lasso
Granger (GLG) test [40]. GLG modifies the Lasso Granger test [41] to sup-
port irregular time series. Within SCINGE, GLG uses a kernel function to
smooth the past expression values of candidate regulators, mitigating the
irregularly-spaced pseudotimes and zero values that are prevalent in single-
cell expression data.

SCINGE depends on hyperparameters that control the kernel smoothing,
sparsity, and which window of previous expression is considered. We do
not search for a single optimal set of hyperparameters but rather consider
many regulator-gene predictions obtained under different hyperparameters.
In addition, we subsample the expression data many times to further improve
robustness. The final SCINGE network is obtained from an ensemble of all
of the individual predicted networks using different hyperparameters and cell
subsamples (Figure 1).

2.2. ESC to Endoderm Differentiation

Our first case study tracks the differentiation of mouse embryonic stem
cells (ESC) to primitive endoderm cells over 72 hours [42]. Matsumoto et
al. [12] previously pre-processed this dataset to benchmark their SCODE
GRN algorithm. We reuse their processed version of the data, which included
expression data for only 100 transcription factors (TFs) and assigned pseudo-
times to the 356 single-cell RNA-seq measurements using Monocle. We use
this ESC to endoderm differentiation dataset to design, optimize, and tune
the SCINGE algorithm, assessing how well it recovers known regulator-gene
interactions that are relevant in mouse embryonic stem cell differentiation
from the ESCAPE database [43]. The ESCAPE gold standard is incomplete
due to lack of experimental data for many of the relevant TFs (see Sec-
tion 3.4.2). Therefore, the gold standard only contains an 11× 100 sub-set
of the 100 × 99 regulator-gene interactions that SCINGE scores. SCINGE
does not score self-edges.
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Figure 1: SCINGE takes single-cell gene expression data that has been annotated with
pseudotimes as input and predicts a ranked list of regulator-target gene edges. Dashed
boxes in the pipeline are optional steps. Zero handling removes a portion of the 0 values
for each gene so that they do not have too strong an influence on the smoothed expres-
sion values. Many combinations of hyperparameters that control sparsity, the expression
smoothing, and the pseudotemporal history are considered. Subsampling repeatedly re-
moves a fraction of the cells at random. For each hyperparameter combination and sub-
sampled dataset, GLG regression predicts the regulators of each target gene. These results
are aggregated into a final ensemble network prediction with a modified version of Borda
aggregation.
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We obtain the SCINGE-inferred regulatory network as a ranked list of
predicted regulator-gene interactions (Supplementary File 1). SCINGE ranks
Foxd3, Gli2, and Nanog as the three most influential regulators in the 100-
gene subnetwork. To illustrate the notion of a GLG-inferred regulatory edge,
we consider Pou5f1 as an example target gene. Figure 2 shows that using
additional past information from GLG-identified regulators improves the pre-
dicted expression trend of Pou5f1 along pseudotime. Indeed, as more genes
are added in decreasing order of the ‘edge weight,’ the predicted expression
trends becomes more accurate.

Figure 2: Generalized Lasso Granger example. The Pou5f1 expression profile is
predicted more accurately using all regulator genes detected by the GLG test
compared to its own history or its history and the top two regulators.

To assess whether SCINGE can match or exceed the state-of-the-art per-
formance after dataset-specific tuning, we compare its predicted GRN with
three existing network inference methods — SINCERITIES [24], which uses
ridge regression; SCODE [12], which is based on ordinary differential equa-
tions; and Jump3 [11], which is based on decision trees. We emphasize this
particular evaluation is not indicative of which method would perform best
on new data because of SCINGE’s tuning. Nevertheless, SCINGE performs

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2019. ; https://doi.org/10.1101/534834doi: bioRxiv preprint 

https://doi.org/10.1101/534834
http://creativecommons.org/licenses/by/4.0/


much better than the other methods with respect to the average precision (A)
and average early precision (E), which both summarize a precision-recall
curve (Figure 3). Average early precision emphasizes the most-confident,
top-ranked interactions. Even though SCODE was previously evaluated us-
ing this gene expression data [12], it performs worse than random when as-
sessed using the condition-specific ESCAPE gold standard (see Section 4.2).

Figure 3: Precision-recall performance of SCINGE compared to SINCERITIES, Jump3,
and SCODE when predicting the GRNs involved in primitive endoderm differentiation.
The Baseline Prediction is the expected precision obtained by randomly ordering all
regulator-gene interactions. Key: A - Average Precision, E - Average Early Precision
(≤ 0.1 recall).

2.3. Retinoic Acid-driven Differentiation

We further test SCINGE on a second dataset that tracks retinoic acid-
driven differentiation from mouse embryonic stem cells to extraembryonic
endoderm and neuroectoderm cells over 96 hours [44]. We infer a trajectory
for the biological process using Monocle 2 and select 1886 cells from cell states
1 and 2 (Figure S1 and Section 3.3.2). Monocle 2 also identifies 626 genes
whose expression changes substantially as a function of pseudotime, which
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we use for GRN reconstruction. These genes are not filtered to include only
TFs or other known expression regulators. SCINGE returns a ranked list of
all 626× 625 possible regulatory relationships, excluding self-edges.

SCINGE identifies key regulators reflecting the differentiation trajectory
required for mouse embryonic stem cells exiting the pluripotent state, tran-
sitioning through the epiblast where lineage segregations take place [44] (Ta-
ble 1 and Figure 4). We use g:Profiler [45] to identify Gene Ontology (GO)
biological process terms that are significantly enriched among the ranked
SCINGE regulators (Supplemental File 3). This searches for GO terms that
are enriched at the top of the ranked list, assessing all possible rank thresh-
olds. The g:Profiler analysis identifies relevant significantly enriched biologi-
cal processes in the sorted regulator list including cellular response to growth
factor stimulus (GO:0071363), cell morphogenesis involved in differentiation
(GO:0000904), neuron differentiation (GO:0030182), and additional terms
depicted in Table 1.

There are two ways to explore the SCINGE predictions in greater detail:
the top regulators ranked by SCINGE influence (Table 1), which aggregates
influence over all target genes, and the top-ranked edges (Figure 4). Ta-
ble 1 shows the top 20 regulators ranked by SCINGE influence. Ten of the
top predicted regulators are associated with regulation of gene expression
(GO:0010468), as are other regulators with high SCINGE influence that are
beyond the top 20 (Supplemental File 3). The top 20 regulators also include
essential genes that cause embryonic lethality in mouse embryos harboring
homozygous null alleles. Others show phenotypes ranging from postnatal
lethality to growth retardation (Table 1). Three of the predicted regulators
(Alg13, Gpx3, and Lactb2) are known for their roles in metabolic processes
but are not known to participate in regulation of early embryonic lineage
specification. In addition, KinderMiner [64] text mining reveals significant
associations between the top 20 regulators and terms related to this develop-
mental process: ‘embryonic stem cells,’ ‘neural development,’ and ‘endoderm
development’.

Figure 4 illustrates the most-confident 100 regulator-gene edges from the
SCINGE network, directed from the regulators (hexagons) to the target genes
(ellipses). This representative subnetwork comprises 18 unique regulators
and 65 unique targets. Fourteen of these regulators are also found among
the top 20 regulators by SCINGE influence (Table 1), including all 10 known
to be associated with regulation of gene expression. The other four regulators
participate in one or more high-confidence edges but do not have high ag-
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Rank
Gene
name

Regulation
of gene

expression

Neuro-
genesis

Regulation
of cellular
response
to growth

factor
stimulus

Regulation
of

canonical
Wnt

signaling
pathway

Loss-of-
function
pheno-
types

KinderMiner
associations

1 Dab2 X X X EL [46]
ESC

EndoDev

2 Fgf4 X X EL [47]
ESC

EndoDev
NeurDev

3 Sfrp5 X X X
Normal

[48]
EndoDev

4 Lefty2 X EL [49]
ESC

EndoDev
5 Zfp703 X X X N/A

6 Hoxb2 X NL [50]
ESC

NeurDev

7 Gata6 X X EL [51]
ESC

EndoDev

8 Cdh2 X X EL [52]
ESC

NeurDev
9 Alg13 EL [53]
10 Mdm4 X EL [54]

11 Gpx3
Others

[55]

12 Igf2 X
Others

[56]

ESC
EndoDev
NeurDev

13 Ccnd2 S [57] ESC
14 Wdr1 X EL [58]
15 Ilk X X X EL [59] ESC

16 Flrt3 X EL [60] EndoDev
17 Lactb2 N/A
18 Wls X EL [61]

19 Fzd3 X NL [62]
ESC

NeurDev

20 Crabp1
Normal

[63]
ESC

NeurDev

Table 1: GO biological process terms, loss-of-function phenotypes, and KinderMiner as-
sociations related to the top 20 SCINGE regulators. Phenotype key — EL: Embryonic
lethality, NL: Neonatal lethality, S: Sterile, Normal: Homozygous mutant mice are pheno-
typically normal and fertile, Others: Homozygous mutant mice display other physiological
phenotypes, N/A: No knockout mice reported in peer-reviewed studies. KinderMiner
key — ESC: Embryonic Stem Cells, NeurDev: Neural development, EndoDev: Endoderm
development
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Echdc2

Zfp703

Klhl22

Ephx2

Slx1b

Rps14

Col4a1

Inpp5d

Usp22
Ttc39b

AU018091

Ccnd2

Ddx3x

Dsg2
Rps2

Renbp

Eef1a1

Hnrnpu

Sec23ip

Als2

Msh2

Spp1

Morf4l2

Luc7l2

Crabp1

Meis2

Rorb

Alg13 Mdm4

Ilk

Hoxb2

Cdh2

Igf2

Lactb2

Edem1

Rn45s

Grsf1

Eif1b

Rps27

Chchd10

Rpl8

Fgf4

Ywhaq

Nars

Ppp1r16b

Cd24a

Gpx3

Lefty2
Flrt3

I tm2c Zfp931

Epha4

Dab2

Hmgb2
Fbxo15

Actg1

Lama1

Mllt6

Lrpap1

Myl12a

Rpl37a

Apoe

Nedd4

Gata6

Myl6

Hsp90aa1

Sparc

Malat1

Ell2

Tubb5

Znf41-ps

Cd38

Gnb2l1

Kcnq1ot1

Yes1

Sfrp5

Wls

Rpl9

Lrp2

Tuba1b

Actb

Figure 4: The network obtained from the top 100 edges ranked according to SCINGE scores
shows 18 unique regulators (hexagonal nodes, the ten with solid boundaries corresponding
to known regulators of gene expression listed in Table 1) and 65 unique targets (elliptical
nodes). The higher ranked edges are represented by thicker arrows.

gregate influence. Dab2 and Fgf4 are the most influential regulators overall
(Table 1) and hub regulators among the top 100 edges (Figure 4). Rn45s is a
frequently-regulated target gene. Fgf4 governs the exit from the pluripotent
state. Fgf4-null mouse embryonic stem cells resist neural and mesodermal
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lineage induction [65]. Indeed, the Fgf/Map kinase signaling pathway plays
multiple roles during mouse blastocyst development, and mutations of the
signaling components (e.g., Fgf4, Fgfr2, and Grb2) all cause implantation
lethality and lack of primitive endoderm development [66]. Moreover, Fgf4
also governs neural induction in embryonic stem cell differentiation at a later
stage of development [67].

The predicted GRN in Figure 4 also provides hypotheses for future ex-
perimental tests. For example, Meis1 and Meis2 are homeobox proteins that
directly regulate Pax6 expression during eye development [68]. SCINGE pre-
dicts that Fgf4 regulates Meis2. Thus, Fgf4 could potentially act upstream
of Meis1 and Meis2 to regulate Pax6 expression, contributing to neuroecto-
derm differentiation [69]. Other key primitive endoderm regulators are also
highlighted in SCINGE predictions such as Gata6, a transcription factor nec-
essary and sufficient for primitive endoderm lineage differentiation and es-
tablishment of extraembryonic endoderm cell lines [70]. Dab2, Sfrp5, Lefty2,
and Igf2 are all expressed in the primitive endodermal lineages, including
visceral endoderm and extraembryonic endoderm cell lines [71–75].

Many expected GO terms and regulators are represented in Table 1 and
Figure 4. However, classic neuroectoderm regulators like Sox1, Nes, and
Pax6 [44] are missing because they are excluded from the limited shortlist
of genes in the SCINGE input. We only run SCINGE on the top 626 sig-
nificantly differentially expressed genes along the differentiation trajectory
detected by Monocle 2.

2.4. Retinoic Acid-driven Differentiation ESCAPE Evaluation

The retinoic acid-driven differentiation study can be used to benchmark
the relative performance of SCINGE with respect to the other network in-
ference methods because none of the methods, including SCINGE were op-
timized or tuned based on the ESCAPE evaluation results. Figure 5 shows
the precision-recall performance of SCINGE compared with SINCERITIES,
Jump3, and SCODE when ranking edges in the 626-gene network. Due
to Jump3’s runtime, we run it on a reduced dataset (Section 3.4.1), which
may impact its performance. As with the ESC to endoderm differentiation
dataset, the ESCAPE database had only partial information (12 regulators),
thus limiting the gold standard to a submatrix of 12 × 626 possible edges.
SCINGE is the best method overall in terms of average precision and aver-
age early precision (Figure 5). Jump3 is effectively tied with SCINGE for
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average early precision but has near-random precision for recall > 0.2. SIN-
CERITIES prioritizes ESCAPE gold standard interactions well at the top
of its ranked list, but the performance degrades quickly. SCODE is worse
than random. The performance depends on the type of regulator-gene in-
teraction in the ESCAPE database. SCINGE can recover loss-of-function or
gain-of-function (lof/gof) relationships but struggles to identify ChIP-based
protein-DNA binding interactions (Figure S2).

Figure 5: Precision-recall performance of SCINGE, SINCERITIES, Jump3 (which
uses a reduced data set), and SCODE when predicting a 626-gene retinoic acid-
driven differentiation regulatory network [44]. Key: A - Average Precision, E -
Average Early Precision (≤ 0.1 recall).

Visualizing the expression trends over pseudotime can illustrate the types
of errors SCINGE makes with respect to the ESCAPE gold standard. For
example, the interaction Esrrb→Actb was detected with ChIP but is not
part of the ESCAPE’s lof/gof dataset. There is no apparent lag between
the expression trends of the regulator and target (Figure S3). This edge was
ranked highly by SCODE but not by SCINGE, which searches for lagged
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expression dependencies by design.
A regulator-specific evaluation partially explains the overall precision-

recall performance of the four GRN methods and demonstrates that it can be
somewhat misleading. Figure 6 shows the average precision and average early
precision for all four methods with respect to each regulator in the ESCAPE
database. The regulator-specific average precision of all four methods is at
or below random for most regulators, with a few exceptions.

Figure 6: Average precision and average early precision evaluated for individual regulators
in the ESCAPE database. The dashed line (−−) indicates random performance.

Because some regulators are more prevalent in the ESCAPE gold stan-
dard than others, the overall precision-recall curve is influenced by regulator-
specific precision and the relative ordering of the regulators in the ranked edge
list. We can sort these 12 regulators in decreasing order by their number of
outgoing edges in the ESCAPE gold standard, which informs the regulator’s
influence on the evaluation, and generate boxplots of the regulator-specific
edge ranks in the GRNs (Figure 7). SCINGE ranks outgoing edges from
ESCAPE’s most prevalent regulators (Klf4 and especially Tcf3) higher on
average than the regulators with fewer target genes (Dppa5a and Tuba1a).
The distributions of rankings from SINCERITIES and Jump3 are widely
dispersed for each regulator. Meanwhile, SCODE ranks edges from the reg-
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ulators with few outgoing edges higher than those with many target genes,
contributing to its poor overall performance.

These regulator-specific results provide insights into Figure 5. SCINGE’s
relatively high early average precision is influenced by how it ranks regulators
in accordance with their prevalence in the ESCAPE database. On the other
hand, Jump3 ranks all regulators uniformly but has better than random
average precision on multiple individual regulators. Unlike the other three
GRN methods, Jump3 does not use the pseudotime values, which may boost
its regulator-specific performance (Section 2.7).

2.5. Benefits of Ensembling

The optimal GLG parameters that best identify causal relationships be-
tween two genes can vary from gene to gene and for different biological pro-
cesses. In the absence of prior information about the regulatory network,
it is difficult to predict optimal hyperparameters for the GLG test. Fur-
thermore, it is also plausible that different transcriptional regulators have
different kinetics and consequently different optimal hyperparameters.

SCINGE attempts to overcome this with an ensemble of hyperparameters,
aggregating the results to obtain the final SCINGE score of each GRN edge.
Figures S4–S7 compare the performance of individual GLG hyperparame-
ters to the complete ensembled SCINGE GRN for both datasets. Although
SCINGE does not result in the best average precision or average early preci-
sion, it performs better than the majority of the individual hyperparameters.
Ensembling reduces the risk of choosing a single set of hyperparameters that
would perform poorly for a particular dataset.

2.6. Effects of Subsampling and Zero Handling

SCINGE’s ensembling can also improve performance by supporting sub-
sampling and zero handling. Because the core GLG test is compatible with ir-
regular time series, we can create randomly subsampled time series from each
gene’s expression data to generate multiple instances of the original dataset.
In these experiments, subsampled replicates are created by removing indi-
vidual expression data samples with probability of removal 0.2. Both types
of precision-recall summaries, average precision and average early precision,
tend to increase as more subsampled replicates are added to the ensemble
(Figure 8).
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Figure 7: The ranking of regulator-specific interactions has a strong effect on the overall
precision-recall curve (Figure 5). The boxplots show the outgoing edge ranks for each
regulator in each predicted GRN, in decreasing order of regulator prevalence in the ES-
CAPE database. Ranking regulator-gene interactions involving the predominant ESCAPE
regulators (e.g., Klf4) above those involving the less frequent ESCAPE regulators (e.g.,
Tuba1a) improves the precision-recall performance, and the inverse is also true.

The support for irregular time series also allows us to remove zero-valued
data points corresponding to technical dropouts. The true dropout proba-
bility is gene dependent and can be estimated by methods like SCONE [76].
As a proof of concept of SCINGE’s support for zero handling, we incorporate
a simpler strategy that uses a constant dropout probability hyperparameter
prob zero removal for all genes. For each GLG instance, we remove zero-
valued expression samples (and their corresponding timestamp) from each
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Figure 8: Effect of subsampling on SCINGE performance on the retinoic acid-driven
differentiation dataset. The probability of removing each expression sample when
creating a subsampled dataset is 0.2. Key: A - Average Precision, E - Average
Early Precision (≤ 0.1 recall).

gene’s expression series with a prob zero removal probability of removal for
each zero.

Figure 9 shows the precision-recall performance of SCINGE as the value
of prob zero removal increases. A moderate approach to zero handling in-
creases the average precision and average early precision, but as it becomes
more aggressive, performance degrades. Filtering too many zeros may re-
move genuine zero expression values along with the dropouts. We currently
recommend using SCINGE with a moderate constant dropout probability
and will explore directly supporting gene-dependent dropout (Section 4.3).

2.7. Assessing whether Pseudotimes and Cell Ordering Improve GRN Re-
construction

We assess the impact of using assigned cell order and pseudotime values
on the performance of the three methods designed to reconstruct GRNs from
pseudotemporal single-cell gene expression — SCINGE, SINCERITIES and
SCODE. We exclude Jump3 because it uses only the cell ordering and does
not use pseudotime values. For this assessment, we create variants of both
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Figure 9: Effect of zero removal on SCINGE performance for multiple values of
prob zero removal, the probability of removing a zero value. SCINGE ensembles
the results from 10 zero-filtered replicates on the retinoic acid-driven differentiation
dataset. Key: A - Average Precision, E - Average Early Precision (≤ 0.1 recall).

the ESC to endoderm differentiation and retinoic acid-driven differentiation
datasets as described below:

• Pseudotime: The default mode using ordered cells with Monocle or
Monocle 2 assigned pseudotimes.

• Order Only: Obtained from the Pseudotime variant by removing the
assigned pseudotime values but maintaining the cell order. The cells
are assumed to be regularly-spaced along the trajectory.

• Rand. Order (3): Three replicates obtained from random permuta-
tion of the regularly-spaced cells from the Order Only variant. The
randomized data have neither pseudotime annotations nor ordering in-
formation.

If estimated pseudotimes contribute high-quality information for GRN re-
construction, the three methods should have highest performance on the
Pseudotime dataset, with less accurate predictions from the Order Only and
Rand. Order datasets.
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Figure 10 shows the average precision and early average precision of
SCINGE, SINCERITIES, and SCODE when run on the three variants of
each dataset above. For variants of the ESC to endoderm differentiation
dataset, only SCINGE’s performance decreases substantially for the Rand.
Order datasets as expected. Its performance on the Order Only dataset is
only slightly worse than the original Pseudotime dataset. SINCERITIES is
less consistent on the Rand. Order datasets, with some randomized cell or-
ders providing better GRNs than the real Order Only or Pseudotime datasets.
SCODE performs poorly even on the original Pseudotime dataset (Figure 3)
so we cannot draw strong conclusions from its performance trend across the
dataset variants.

Figure 10: Effects of pseudotimes and cell ordering on the performance of SCINGE,
SINCERITIES, and SCODE. (a) and (b) show the performance of the three meth-
ods when analyzing variants of the ESC to endoderm differentiation dataset. (c)
and (d) show the performance of the three methods on variants of the retinoic
acid-driven differentiation dataset.

On the other hand, for variants of the retinoic acid-driven differentia-
tion dataset SCINGE still outperforms SINCERITIES and SCODE in all
cases, but the performance trend does not follow the expected pattern. Both
SCINGE and SINCERITIES show higher performance on the Order Only
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dataset in which the pseudotime values are removed. The performance for
the Rand. Order variants is worse than the Order Only dataset but com-
parable to the Pseudotime dataset. SCODE again performs poorly in all
cases. Because the performance improves for both SCINGE and SINCER-
ITIES when only the cell ordering is used, one possible explanation is that
the assigned pseudotime values themselves are low fidelity, counteracting any
potential benefits from the additional information. Indeed, further analysis
of the regulator-specific performance of these three methods using the Order
Only dataset in Figure S8 shows that the regulator-specific average precision
and average early precision metrics of SCINGE and SINCERITIES improve
compared to Figure 6. Like Jump3, these two methods now have substan-
tially better than random early average precision for several regulators. Sim-
ilarly, Figure S9 shows that the SCINGE and SCODE average rankings of
the outgoing interactions from the regulators using the Order Only dataset
are more commensurate with their ESCAPE prevalence. These two phenom-
ena combine to improve SCINGE’s overall precision-recall curve with respect
to its Pseudotime dataset performance and those of other GRN methods for
either form of the dataset (Figure S10).

2.8. Computational Runtime

We designed SCINGE to take advantage of the high-throughput comput-
ing resources that are readily available to computational researchers, such as
the free Open Science Grid [77]. We compare the computational runtime of
this strategy to the other three GRN inference methods on the retinoic acid-
driven differentiation dataset. SCODE and SINCERITIES require the least
computational resources. It was possible to run them on a single workstation
with a 64-bit Intel i5-4590 CPU and 8 GB RAM. Specifically, on this work-
station, the SCODE algorithm with 100 repetitions requires approximately
6 hours to complete, whereas the SINCERITIES algorithm takes approxi-
mately 111 hours.

In contrast, both SCINGE and Jump3 require more varied and extensive
computing resources. In the case of Jump3, inferring the GRN from 626 regu-
lators to one target gene takes between 11 minutes to 74 hours to run, with an
average runtime of 21.7 hours. This is repeated for each target gene. Within
SCINGE, obtaining the ranked edge list of the entire 626× 626 subnetwork
for a single GLG test on one subsampled replicate takes approximately 3.8
hours. In a typical application, SCINGE uses 100 different hyperparameter

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2019. ; https://doi.org/10.1101/534834doi: bioRxiv preprint 

https://doi.org/10.1101/534834
http://creativecommons.org/licenses/by/4.0/


settings on 10 subsampled expression datasets, which translates to approx-
imately 3813 hours of computation. However, both Jump3 and SCINGE
are highly parallelizable. We deployed them on our local high-throughput
computing cluster using HTCondor [78], which connects to the Open Science
Grid [77]. In this high-throughput setting we can run the entire SCINGE
algorithm in 36 hours and the Jump3 algorithm in 72 hours.

3. Methods

As illustrated in Figure 1, SCINGE infers underlying gene regulatory net-
works of a biological process by aggregating ranked edge lists obtained from
an ensemble of Generalized Lasso Granger tests conducted on ordered single-
cell transcriptomic data. The GLG test is a kernel-based generalization [40]
of the Lasso Granger Causality test to facilitate the analysis of causal re-
lationships between irregular time series obtained from a linear stationary
vector autoregressive (VAR) model. We first describe the GLG test and
then the structure of the SCINGE algorithm.

3.1. Generalized Lasso Granger Test

The Generalized Lasso Granger test is used to discover temporal causal
networks from irregularly-spaced time series data based on concepts of Granger
Causality. In the GRN inference domain, the time series correspond to tem-
poral gene expression measurements.

Assume P regularly-spaced time series x1, x2, . . . , xP are obtained at times-
tamps {t} .= 1, 2, . . . , T . These time series are assumed to be governed by a
linear and stationary vector autoregressive process such that

xi(t) =
P∑
j=0

L∑
l=1

ai,j(l)xj(t− l) + εi(t), (1)

for i = 1, 2, . . . , P , where ai,j(l) corresponds to the l-th lagged coefficient
from source time series xj to target time series xi and εi(t) is measurement
error, represented by independently distributed Gaussian random variables.
More generally speaking, the unknown P × P × L matrix a comprising of
L lagged coefficient matrices a(1), a(2), . . . , a(L) represents the evolutionary
mechanism of x1, x2, . . . , xP .
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The Lasso Granger Causality test [41] for an individual regularly-spaced
target series xi is characterized by the optimization problem

min
{ai}

T∑
t=L+1

∣∣∣∣∣xi(t)−
P∑
j=1

L∑
l=1

ai,j(l) · xj(t− l)

∣∣∣∣∣
2

+ λ
P∑
j=1

||ai,j||1, (2)

and provides a sparse estimation of the P ×L coefficient matrix ai represent-
ing the VAR process that relates each source series xj 6=i to the target series
xi. Specifically, if elements of j-th column ai,j of the matrix are statistically
significant, then we claim that xj Granger-causes xi (represented by j → i).
The Lagrange multiplier λ dictates the sparsity of the learned matrix ai.

The Generalized Lasso Granger (GLG) test proposed by Bahadori and
Liu [40] is a kernel-based modification of Equation 2 to facilitate the analysis
of irregular time series. Irregular means that the time between consecutive
time points can vary. Given two timestamps t1 and t2, Bahadori and Liu
define a Gaussian kernel function, instrumental to the generalization process,
as

w(t1, t2) = exp

(
−(t1 − t2)2

σ2

)
,

where σ represents the effective kernel width. Based on this kernel function,
the operator � defined below generalizes the inner product for two ‘irregular’
time series — x, sampled at times tx(1), tx(2), . . . , tx(Nx), and y, sampled at
times ty(1), ty(2), . . . , ty(Ny) — as

x(tx)� y(ty)
.
=

Nx∑
n=1

∑Ny

m=1 x(n)y(m)w(tx(n), ty(m))∑Ny

m=1 w(tx(n), ty(m))
.

Nx and Ny can differ, which SCINGE exploits for its dropout handling and
subsampling (Section 3.2).

We now have P irregular time series x1, x2, . . . , xP obtained from a lin-
ear and stationary VAR process. Each series xi of length Ni is sampled
at irregularly-spaced timestamps ti such that ti(n + 1) ≥ ti(n) for n =
1, 2, . . . , Ni. As with the Lasso Granger Causality test, the objective of the
GLG test is to obtain the sparse coefficient matrix ai, which represents the
underlying VAR model for the target series xi. To overcome the irregularity
of the time series, we follow Bahadori and Liu by visualizing each vector
ai,j of the coefficient matrix as a quasi-time series a′i,j(t) with respect to
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timestamp t as

a′i,j(t) = {(ta(l), ai,j(l))|l = 1, 2, . . . , L, ta(l) = t− l∆t},

where ∆t represents the time resolution of the quasi-time series a′i,j(t). Note
that for t1 6= t2, a′i,j(t1) and a′i,j(t2) would have the same observation variables
ai,j(l) but different timestamps.

Next, for a given timestamp ti(n) corresponding to a sample in xi, we
generalize the inner product in Equation 2 by using

L∑
l=1

a′i,j(l)� xj(t− l)

defined on a′i,j(ti(n)) and xj(tj) using their respective timestamps to calculate
the kernel weights. Substituting this generalized inner product in Equation 2,
we obtain the optimization problem for GLG, given by

min
{ai}

∑
ti(n)≥L∆t

∣∣∣xi(ti(n))−
P∑
j=1

a′i,j(ti(n))� xj(tj)
∣∣∣2 +

P∑
j=1

λj||ai,j||1. (3)

The first term represents the mean-squared error between the sample values
xi(ti(n)) of the i-th series at each timestamp ti(n) ≥ L∆t and its corre-
sponding prediction from the generalized inner product a′i,j(ti(n))� xj(tj),
which uses the kernel defined above to ‘smooth over’ the mismatched irreg-
ular timestamps. The second term is a sparsity constraint on the coefficient
matrix ai. The minimizer ai of the objective function in Equation 3 provides
the coefficient matrix that represents the VAR model of the target series xi
from all available source time series xj, with λ determining the sparsity of
the coefficient matrix. If the time series represent irregularly-spaced gene
expression data, ai can be interpreted as an estimate of the regulatory effect
of other genes on the i-th gene. The presence of edges in the regulatory
network for the i-th gene is indicated by significant non-zero values in the
matrix ai. The ‘edge weight’ of j → i can be quantified by ||ai,j||2, ||ai,j||∞,
or |
∑

l ai,j(l)|, the latter aiming to capture the net impact of gene j on gene i.
In the default GLG setup, the individual weights in the l1-constraint of the
above equation are assigned the same value, with λj = λ. However, because
we are not interested in the auto-regulation of xi, we remove the sparsity
constraint on the autoregressive edge (λi = 0) in order to reduce the num-
ber of false positives in the cross-regulatory relationships, where sparsity is
typically enforced with a positive λj 6=i = λ.
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The optimization problem in Equation 3 can be solved P separate times
to infer the regulators of all P genes in the network. The GLG-identified
regulators are obtained as the smallest group of genes whose past expression
values are most predictive of gene i’s time series expression values. Because
the core algorithm of the GLG test is implemented using the glmnet package
[79], it supports count-based expression data (e.g. from unique molecular
identifiers) by assuming a Poisson distribution for the expression levels.

3.2. Single-Cell Inference of Networks using Granger Ensembles

In this section, we describe how the SCINGE algorithm, which has the
GLG test at its core, infers gene regulatory networks from single-cell expres-
sion data. The SCINGE algorithm takes ordered single-cell data as input,
with an optional zero-handling pre-processing step to mitigate the effect of
dropouts. The data are analyzed using multiple GLG instances with different
hyperparameters, each inferring possibly differently ranked regulator-gene in-
teractions. These ranked inferences are aggregated using a modified Borda
method, with an optional subsampling stage increasing the effective ensemble
size for the aggregation step.

3.2.1. Ordered Single-Cell Data

The input to SCINGE is ordered single-cell data, with a pseudotime as-
signed to each cell that represents its position along the biological process. If
the single-cell dataset is not already ordered, any cell-ordering method that
assigns continuous pseudotimes (Section 1) can be used to order the data
before providing it as input to SCINGE. We apply Monocle 2 [22], which
uses reverse graph embedding to identify branching processes.

Given ordered single-cell data, the pseudotimes are first normalized to a
scale of 0–100. Thus, the first cell represents 0% progress, and the last cell
represents 100% progress through the biological process represented by the
single-cell data. The distribution of cells’ pseudotimes is not uniform. As a
result, each gene’s expression data is an irregularly-spaced time series in the
pseudotemporal reference. We represent each gene’s expression trend along
the pseudotemporal reference as an augmented series with both the pseudo-
times and the gene expression values. That is, for the i-th gene, we create
the series (ti, xi), where xi is the time-series representing the gene’s expres-
sion and ti represents the pseudotime of the corresponding cell. Currently,
SCINGE only handles trajectories without major branches. See Section 4.3
for strategies to analyze branching processes.
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3.2.2. Zero (Dropout) Handling

One of the most prominent technical artifacts in single-cell RNA-seq is
dropout. This is manifested as a large number of zero readings due to ineffi-
ciencies in mRNA capture in the measurement process. Dropout causes the
measured expression data to contain a higher number of zeros than the true
biological zeros [80]. There have been efforts to overcome this problem by
imputing the missing values [80, 81]. However, inappropriate imputation can
negatively impact differential expression testing [82] and can have a positive,
neutral, or negative effect on Monocle’s pseudotimes depending on the choice
of algorithm [83]. If we remove the zero-valued measurements altogether from
the dataset, GLG effectively imputes the missing values without an external
imputation algorithm by virtue of its kernel-based approach for analyzing ir-
regular time series. Thus, depending on the severity of the dropout, SCINGE
contains an optional step of removing some of the zeros and the correspond-
ing pseudotime values. This can be achieved through an additional hyperpa-
rameter prob zero removal. For each gene, each zero-valued sample and its
corresponding pseudotime are removed with probability prob zero removal.

3.2.3. Hyperparameter Diversity

The primary hyperparameters in the GLG tests include the sparsity con-
straint λ, the time resolution ∆t between the elements of the vector ai,j, the
length L of the vector ai,j (which determines the extent of the lagged time
series for the GLG analysis), and kernel width σ. The zero-handling stage
introduces another optional hyperparameter prob zero removal.

If the process being studied is a stationary process containing simplistic
regulatory networks, the above hyperparameters could potentially be tuned
to optimize cross-validation performance. However, transcriptional regula-
tion is non-linear and non-stationary in nature. A single GLG test, however
optimal its settings, can produce false positives due to the assumption of
linear and stationary causal relationships. In addition, there may not be a
single set of hyperparameters that are optimal for all regulatory interactions.
To overcome this, we analyze the data using multiple GLG tests with diverse
hyperparameters and aggregate the rankings obtained from the individual
GLG tests. Our assumption is that the top-ranked regulatory edges that
consistently appear for many hyperparameter combinations are enriched for
true positive interactions.
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3.2.4. Subsampling Stage

This optional stage increases the effective ensemble size in SCINGE by
obtaining subsampled versions of the original single-cell data. Specifically,
for each hyperparameter combination above, we generate Nsubsample (de-
fault 10) data replicates by arbitrarily removing pseudotime-gene expression
pairs (ti, xi) with probability of removal 0.2. Because each gene series is in-
dependently subsampled, we obtain uniquely irregular time series for each
gene with a high probability. This also means that for any given cell, the
probability of all genes’ expression values from that cell being disregarded is
extremely low. The SCINGE subsampling is similar to bagging [84] except
that the sampling is without replacement and it uses a different aggregation
approach.

3.2.5. GLG Runs and Modified Borda Aggregation

After enumerating all hyperparameter combinations and subsampled repli-
cates, SCINGE runs GLG on each subsampled replicate using the different
hyperparameter combinations. At the end of each GLG test, we obtain an
adjacency matrix A using

Aij =
∣∣∣∑

l

ai,j(l)
∣∣∣,

where a is the P × P × L coefficient matrix output from the GLG test.
The matrix A represents one inference of the GRN, with the magnitude
of each element representing the edge weight assigned to the corresponding
regulator-gene interaction. These edge weights are used in forming a ranked
list of the regulator-gene interactions. The ranking is assigned to only those
interactions that correspond to a nonzero element of A.

Once the rankings from the GLG tests on all hyperparameter combina-
tions and subsampled replicates are obtained, we aggregate them using a
modification of the Borda count aggregation method [85], which favors those
edges that are consistently ranked high by multiple GLG tests over those
that are ranked high only occasionally or not at all. The aggregation process
involves assigning weights of 1/n2 for the n-th ranked interaction within each
individual ranked list, with a weight of zero for an unranked regulator-gene
interaction. The final SCINGE score of each interaction is obtained by sum-
ming the weights assigned to that interaction across all individual ranked
lists. This score is subsequently used for the final GRN edge ranking. After
the final ranking of regulator-gene interactions, we can also obtain the ‘top
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N regulators’ of the biological process by summing the SCINGE scores of
all outgoing edges for each regulator and sorting the regulators in order of
decreasing magnitude.

3.2.6. Case Study Hyperparameters

Table 2 lists the hyperparameter values used to generate the GLG en-
sembles for both case studies. The subsampling stage creates 10 replicates
for each hyperparameter setting by removing samples from individual gene
expression values with probability of sample removal 0.2. Thus, not only is
each time series irregular, but it has partially different time references com-
pared to the other time series in the data set. For the main case studies, we
use the default mode with prob zero removal = 0. All figures in Section 2
use this default setting, with the exception of Figure 9. The total number of
GLG tests, accounting for hyperparameter diversity and subsampling, is

N = Nλ(5)×N(∆t,L)(5)×Nσ(4)×Nsubsample(10) = 1000.

The subsampling approach and the consensus-rewarding nature of the mod-
ified Borda aggregation stage reduces the need to optimize the hyperparam-
eter combinations for each dataset. The outputs from GLG tests on each
subsampled replicate will have stronger consensus for a meaningful hyperpa-
rameter for the dataset.

Table 2: Hyperparameter combinations considered. λ is the sparsity parameter, ∆t deter-
mines the time resolution, L represents the number of time lags under consideration, and
σ represents the kernel width used for GLG. Only specific pairs of ∆t and L are considered
instead of all possible combinations.

Hyperparameter(s) Values
λ 0, 0.01, 0.02, 0.05, 0.1
(∆t, L) (3, 5); (5, 9); (9, 5); (5, 15); (15, 5)
σ 0.5, 1, 2, 4

3.3. Datasets

In this subsection, we describe the two single-cell datasets with which
we evaluate the performance of SCINGE and compare it to existing GRN
methods.
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3.3.1. ESC to Endoderm Differentiation

The first dataset is obtained from Hayashi et al. [42], where single-cell
RNA-seq data was collected from 456 cells at five time points over a 72 hour
duration in which primitive endoderm cells were differentiated from mouse
embryonic stem cells. Matsumoto et al. [12] used Monocle [22] to order these
cells along the differentiating process, assigning a pseudotemporal reference
to each cell in the process. We used their Monocle results in our analyses.
The expression dataset is limited to 100 transcription factors exhibiting the
highest variance in expression value and 356 cells.

3.3.2. Retinoic Acid-driven Differentiation

The second dataset was obtained from Semrau et al. [44], where SCRB-
seq data was obtained at nine collection times during 96 hours from mouse
embryonic stem cells differentiating into neuroectoderm and extraembryonic
endoderm-like cells. We order the cells using Monocle 2 [22], with the or-
dering genes chosen by Monocle 2 in an unsupervised manner by identifying
genes that are differentially expressed in response to the introduction of the
growth medium. Although Matsumoto et al. [12] applied the original Mon-
ocle to the first dataset and we retain their pseudotimes, we prefer Monocle
2 for this case study, the most recent version available at the time of the
analysis. Post ordering, we limit the scope of the analysis to the 1886 cells
along the longest trajectory of the differentiation process (Figure S1) ex-
hibiting non-trivial expression levels. Once Monocle 2 orders the cells along
a pseudotemporal reference, it allows the analysis of cells to find genes that
change in expression as cells progress along pseudotime. We shortlist the top
626 differentially expressed genes (q < 10−5) along the pseudotime ranked
by Monocle 2 for testing the GRN algorithms.

3.4. Evaluation

To test the regulatory network inferred by SCINGE and the other GRN
methods, we use information from the ESCAPE database [43] as a gold stan-
dard, namely the cataloged ChIP-chip, ChIP-seq, loss-of-function (lof) and
gain-of-function (gof) experiments. Each method ranks the possible edges in
the network in order of confidence. We plot the respective precision-recall
curves and compute the average precision (A) and early average precision
(E) for comparison.
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3.4.1. Existing GRN Methods

In addition to SCINGE, we use SCODE, SINCERITIES, and Jump3 to
infer networks using the same data and evaluate their performance using ES-
CAPE. The SINCERITIES toolbox dated 16 December 2016 was obtained
from http://www.cabsel.ethz.ch/tools/sincerities.html and the de-
fault settings were used for both the ESC to endoderm differentiation and
retinoic acid-driven differentiation datasets. We downloaded SCODE from
the GitHub repository https://github.com/hmatsu1226/SCODE (git com-
mit 28acad67893c0fba7eeee670c339809d45ae6377) and used the same set-
tings as in Matsumoto et al. [12] for the ESC to endoderm differentiation
dataset with D = 4 degrees of freedom in the expression dynamics. We
used D = 20 for the retinoic acid-driven differentiation dataset to account
for the much larger network of 626 genes. An equivalent version of the
Jump3 code we used can be obtained from https://github.com/vahuynh/

Jump3 (git commit 03a7e86d82f2383c56fd11c658dfce574fbf1a1a). In contrast
to the other methods, Jump3 uses only ordering information. We used
noiseV ar.obsnoise = 0.1, but all other settings were the defaults. Be-
cause Jump3 did not terminate in a reasonable amount of time on the full
retinoic acid-driven differentiation dataset, we reduced the dataset by arbi-
trarily dropping cells with probability 0.5. Despite this reduction in the data
size, the Jump3 algorithm did not converge for two target genes, namely Tdh
and Vdac1. As a result, we rank the corresponding edges at the bottom of
the ranked list, which could affect the quality of the Jump3 results for the
retinoic acid-driven differentiation dataset.

3.4.2. ESCAPE Database

The ESCAPE database [43] is a repository of data from numerous exper-
iments conducted on human and mouse embryonic stem cell lines. Of partic-
ular interest to us are the gene interactions obtained from ChIP-chip/ChIP-
seq experiments and loss-of-function/gain-of-function (lof/gof) experiments,
which we use as a gold standard to evaluate the inferred GRNs. Despite ES-
CAPE being one of the most comprehensive repositories of such experimental
results, it may not have reference data for all regulators under consideration.
Therefore, we evaluate the inferred networks using the sub-matrix for which
the gold standard is available.

To generate the gold standard, we combine all gene interactions in the
ChIP-chip/ChIP-seq and lof/gof databases related to the genes from the
single-cell data being analyzed. Gene interactions not documented in the
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ESCAPE databases are assumed to not exist. However, this approach can
lead to a high number of false zeros in the gold standard if a particular regu-
lator was studied genome-wide. For example, whereas ESCAPE documents
thousands of ChIP-chip/ChIP-seq interactions for most TFs, two of the TFs
report less than 200 interactions. To avoid false zeros in the gold standard,
we generate our gold standard using only regulators with at least 1000 gene
interactions in the ChIP-chip/ChIP-seq database and 500 gene interactions
in the lof/gof database.

3.4.3. Average Early Precision

Because a majority of SCINGE’s hyperparameter sets predict a sparse
regulatory network, it is better suited to rank the top gene interactions in-
stead of ranking all of them. Average precision may not be the ideal per-
formance metric for evaluating such methods. In addition, the top-ranked
regulator-gene interactions are the most relevant for prioritizing experimen-
tal studies. Therefore, we also consider the average early precision, which
evaluates the inferred network by calculating the average precision up to a
partial recall threshold. We use a partial recall threshold of 0.1. That is,
average early precision evaluates the ranking performance of GRN inference
methods up to the point where they identify 10% of known gene interactions
according to the gold standard.

3.4.4. KinderMiner and Gene Ontology Enrichment

We performed KinderMiner (v1.5.4) [64] analysis on the SCINGE top
20 regulators to search for known associations of these genes with the three
keyphrases ‘embryonic stem cells,’ ‘neural development,’ and ‘endoderm de-
velopment’ in a local collection of 26877474 PubMed abstracts downloaded
from NCBI in December 2018. We report the statistically significant associ-
ations (p < 10−4) in Table 1 using the labels ‘ESC,’ ‘NeurDev,’ and ‘Endo-
Dev,’ respectively. The significance threshold corresponds to a family-wise
error rate of FWER < 6 × 10−3, accounting for a family size of 60 gene-
keyphrase pairs. In Supplemental File 4, we provide the raw KinderMiner
results obtained using the search setting anySpeciesSEP. This corresponds
to a species agnostic search in which words of keyphrase can be anywhere in
the PubMed abstract.

We also performed functional profiling of the ordered 626-gene list from
SCINGE using the g:GOSt tool in g:Profiler [45] version r1760 e93 eg40. We
consider only Gene Ontology [86] biological process terms and specify ‘mus
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musculus’ as the organism. The candidate regulator list from SCINGE is
ordered, so we use the ‘ordered query’ option, which allows g:Profiler to per-
form incremental enrichment analysis over the gene list. The significance
threshold used was Fisher’s one-tailed test, the default test for g:GOSt, with
multiple testing correction using the default g:SCS method. Supplemental
File 3 provides the complete output of the g:GOSt test. The significance
test considers the entire ranked regulator list, but we highlight only the top
20 regulators in Table 1. In addition, we derived the loss-of-function pheno-
types in Table 1 from the Mouse Genome Databases Mammalian Phenotype
Ontology Annotations [87].

3.4.5. SCINGE Software Availability

A MATLAB implementation of SCINGE is available at https://github.
com/gitter-lab/SCINGE under the MIT license and archived on Zenodo
(https://doi.org/10.5281/zenodo.2549817). We used SCINGE version
0.1.0 for these analyses.

4. Discussion

SCINGE is a GRN reconstruction algorithm that adapts the Granger
Causality test to detect dependencies in temporal data for single-cell gene
expression dataset. It has the potential to prioritize regulators for future
DNA-binding or functional studies. For example, in the retinoic acid-driven
differentiation study, many of the top-ranked SCINGE regulators (Table 1)
are enriched for relevant differentiation process and regulatory annotations
but have not yet been characterized in the ESCAPE database.

When assessed in the retinoic acid-driven differentiation case study, in
which none of the GRN methods’ settings were tuned to optimize perfor-
mance on this dataset, SCINGE has better precision-recall performance than
three existing methods. However, we caution that single metrics like aver-
age precision can be misleading. Closer inspection reveals SCINGE’s better
performance is in part because it successfully prioritizes the regulators that
are more dominant in the ESCAPE database. Because the precision-recall
curve can mask near-random performance for many individual regulators,
we recommend regulator-specific visualizations (Figures 6 and 7) to provide
more context.

We designed SCINGE for a high-throughput computing environment, en-
sembling many GLG tests under different hyperparameters and using data
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subsampling to improve robustness and performance. This approach makes
SCINGE more resilient to dropout in the single-cell gene expression data
and less sensitive to the hyperparameter ranges tested. Ensembling strategies
have proven effective in a variety of GRN inference settings, such as DREAM
challenges [6]. Our use of modified Borda aggregation for ensembling empha-
sizes the top-ranked, most-confident predictions. Borda aggregation is also
capable of ensembling the related networks we obtain from subsampling the
same dataset. Unlike other unsupervised aggregation approaches [88], it does
not assume they are conditionally independent.

4.1. Caveats and Limitations

The main assumption we make by using GLG is that the expression data
are obtained from a linear and stationary VAR model. However, complex bi-
ological systems have dynamic, non-linear gene interactions and are expected
to generate non-stationary expression trends. Violating the assumptions of
linearity and stationarity can have a significant impact on the performance
of individual GLG tests. Furthermore, Granger Causality tests result in
false positives in scenarios with hidden variables [89]. However, these dis-
crepancies between theory and practice are commonly accepted in biological
applications of Granger Causality [38, 90]. In addition, SCINGE’s Borda
aggregation helps to push the most robust edges in the network to the top
of the final ranked list of edges.

Some of the Granger Causality-related drawbacks potentially could be
addressed by integrating SCINGE with complementary data types. GRN
inference can be more accurate when using ChIP-chip, ChIP-seq, protein-
protein interactions, regulator lof/gof experiments, or DNA binding motifs
as prior knowledge on the network structure [91, 92] (reviewed in Chasman
et al. [7]). Priors for single-cell GRN inference have been incorporated by
scdiff [93], which uses TF-gene interactions, and SOMatic [94], which uses
single-cell ATAC-seq. To model prior information in SCINGE, we could
assign different penalty factors λj for the j-th regulator of target gene i
based on the prior probability of the edge pij. An alternative would be
to use SCINGE output in conjunction with the supplementary sources of
information and aggregate all the information after-the-fact [95, 96]. In this
version of SCINGE, we intentionally model only gene expression data. This
makes SCINGE widely applicable in conditions and species where suitable
priors are not available.
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Another assumption of SCINGE, SINCERITIES, and SCODE is that
the pseudotime values assigned to individual cells have a high fidelity. Our
results show that in the ESC to endoderm differentiation dataset, incorporat-
ing pseudotime values improves the precision-recall performance for all three
methods. However, in the retinoic acid-driven differentiation dataset, these
methods perform as well or better in the absence of the pseudotime values
(Figure 10). For this dataset, assigning uninformative pseudotime values to
ordered cells is more detrimental to the network inference performance than
simply using the order without pseudotimes (Figures S8–S10). The relatively
poor quality of the pseudotimes, in the context of GRN reconstruction, could
be attributed to the type of single-cell data in the retinoic acid-driven dif-
ferentiation dataset or aspects of this biological process. We propose that
pseudotimes’ impact on GRN accuracy could be used to evaluate pseudotime
inference algorithms, complementing other benchmarking metrics for pseu-
dotimes [15]. Integrating GRN methods like SCINGE into the dynverse [15]
benchmarking framework would enable us to systematically evaluate which
types of pseudotimes best support network inference and empirically assess
the types of GRN motifs that cannot be unambiguously recovered from single-
cell expression data [97]. Qiu et al. [30] proposed that RNA velocity [98] may
help overcome limitations of pseudotime for GRN reconstruction.

4.2. Benchmarking and Evaluation

Inferring gene regulatory networks only from single-cell gene expression
data is a difficult task. An evaluation of network inference algorithms on
simulated single-cell datasets reported that their performances were only
slightly better than a random edge ordering [99]. Network inference accu-
racy on experimental datasets cannot be calculated perfectly because there
is no comprehensive gold standard. However, it may be even worse than
simulated performance due to the additional biological and technical noise
and confounding encountered in real expression data.

An important aspect when evaluating network inference on experimental
data is the relevance of the gold standard. In the SCODE evaluation [12],
the gold standard was TF binding interactions estimated from DNaseI foot-
prints and sequence motifs. However, it was merged across all human and
mouse cell types instead of only those relevant to the mouse ESC to endo-
derm differentiation process. In the Chen and Mar benchmarking of stem cell
datasets [99], the gold standard consisted of all interactions from the STRING
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database [100]. These included interaction types that are not directly infor-
mative about transcriptional regulation and were not limited to the specific
cell types of interest. For our evaluation, we limit the gold standard to data
from mouse embryonic stem cells obtained from ChIP-chip/ChIP-seq and
lof/gof studies cataloged by ESCAPE [43], which are more relevant to the
biological processes we study and more directly indicative of transcriptional
relationships.

There remain open questions regarding appropriate evaluation method-
ologies. For example, we combine ChIP-chip/ChIP-seq and lof/gof infor-
mation, but the precision-recall performance of the four GRN methods is
quite different when examining ChIP-chip/ChIP-seq or lof/gof data alone
(Figure S2). These two types of data are known to have low overlap [101],
and our evaluation suggests the SCINGE’s search for lagged gene expression
dependencies may detect more indirect regulatory relationships than direct
TF binding.

Although the GRN methods we evaluate have better than random average
precision when assessing the entire network, they are only marginally better
than random when ranking outgoing edges from individual regulators. For
the regulator-specific early average precision, each GRN method is better
than random for only some regulators. Precision-recall is preferable to the
receiver operating characteristic for evaluating biological network inference
due to the sparsity of the gold standard [102], but the average precision for
the entire network may overestimate the utility of GRN inference methods
for studying individual regulators.

4.3. Future Work and Extensions

The current version of SCINGE is limited to biological processes that have
a single path in the trajectory, without any major branches. One way to infer
the GRN from a branching process is to select the cells from each branched
path and apply SCINGE to these datasets independently. A better approach
would be to adapt SCINGE to treat each branch as a task in a multi-task
GRN inference problem [103]. In addition, the kernel could be modified so
that certain pseudotime intervals can be considered more informative, for
example, the interval around a major bifurcation point.

SCINGE accommodates a common prob zero removal for all genes, but
the algorithm can easily be modified to incorporate gene-specific zero removal
probabilities. Future work may involve a more sophisticated zero-handling
approach, which would remove only those zeros that are inconsistent with
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other non-zero measurements from similar cells. Methods like SCONE [76]
can provide additional information for removing zeros more selectively than
the current approach.

Other elements of the GLG regression framework can be adapted as well.
Nguyen and Braun [104] place a monotonicity constraint on the coefficients
ai,j such that the more recent coefficients have higher magnitude than the
more distant ones. Similarly, we could adapt the kernel to give higher weight
to more recent samples in the pseudotime than more distant ones. Another
possible direction involves exploration of the kernel-based generalizations to
the Group Lasso [105, 106]. This would enable SCINGE to regularize all
coefficients from a regulator as a group instead of treating different lagged
coefficients as separate variables. In general, the kernel-based approach at the
core of SCINGE provides great flexibility to adapt our GRN reconstruction
algorithm to emphasize different aspects of dynamic biological processes.
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Supplementary Information

Figure S1: Monocle 2 trajectory of the retinoic acid-driven differentiation process. The
trajectory constituting states 2 (early part comprising mostly data collected at 0h) and 1
(later part including cells collected at 96h) was analyzed using SCINGE and other network
inference methods.
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Figure S2: Precision-recall performance of network inference methods on the
retinoic acid-driven differentiation dataset for ESCAPE gold standard interactions
from (a) ChIP-chip/ChIP-seq and (b) lof/gof studies.

Figure S3: Expression trends of Esrrb and Actb show no apparent lag between regulator
(Esrrb) and target expression (Actb). The interaction Esrrb→Actb is ranked highly by
SCODE but not by SCINGE.
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Figure S4: Histogram of average precision for individual hyperparameters for the ESC to
endoderm differentiation dataset.

Figure S5: Histogram of average early precision for individual hyperparameters for the
ESC to endoderm differentiation dataset.
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Figure S6: Histogram of average precision for individual hyperparameters for the retinoic
acid-driven differentiation dataset.

Figure S7: Histogram of average early precision for individual hyperparameters for the
retinoic acid-driven differentiation dataset.
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Figure S8: Average precision and average early precision evaluated for individual regula-
tors for rankings obtained using the Order Only dataset. The dashed line (−−) indicates
random performance. This shows that the performance of SCINGE and SINCERITIES
in Figure 6 is hampered due to the use of unreliable pseudotimes. The Jump3 results are
the same as in Figure 6 because it does not use pseudotime values.
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Figure S9: Boxplots of outgoing edge ranks for each regulator in each predicted GRN
obtained using the Order Only dataset. The Jump3 results are the same as in Figure 7
because it does not use pseudotime values.

54

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 30, 2019. ; https://doi.org/10.1101/534834doi: bioRxiv preprint 

https://doi.org/10.1101/534834
http://creativecommons.org/licenses/by/4.0/


Figure S10: Precision-recall performance comparison of the four methods when
using Order Only dataset. Key: A - Average Precision, E - Average Early Precision
(≤ 0.1 recall). The Jump3 results are the same as in Figure 5 because it does not
use pseudotime values.
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