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Abstract

Advances in single-cell transcriptomics enable measuring the gene expression of individual
cells, allowing cells to be ordered by their state in a dynamic biological process. Many
algorithms assign ‘pseudotimes’ to each cell, representing the progress along the biologi-
cal process. Ordering the expression data according to such pseudotimes can be valuable
for understanding the underlying regulator-gene interactions in a biological process, such
as differentiation. However, the distribution of cells sampled along a transitional process,
and hence that of the pseudotimes assigned to them, is not uniform. This prevents using
many standard mathematical methods for analyzing the ordered gene expression states. We
present Single-cell Inference of Networks using Granger Ensembles (SINGE), an algorithm
for gene regulatory network inference from single-cell gene expression data. Given ordered
single-cell data, SINGE uses kernel-based Granger Causality regression, which smooths the
irregular pseudotimes and missing expression values. It then aggregates the predictions
from an ensemble of regression analyses with a modified Borda count to compile a ranked
list of candidate interactions between transcriptional regulators and their target genes. In
two mouse embryonic stem cell differentiation case studies, SINGE outperforms other con-
temporary algorithms for gene network reconstruction. However, a more detailed examina-
tion reveals caveats about transcriptional network reconstruction with single-cell RNA-seq
data. Network inference methods, including SINGE, may have near random performance
for predicting the targets of many individual regulators even if the overall performance is
good. In addition, including uninformative pseudotime values can hurt the performance
of network reconstruction methods. A MATLAB implementation of SINGE is available at
https://github.com/gitter-lab/SINGE.
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1. Introduction

Identifying the underlying gene regulatory networks (GRNs) that dictate cell-fate deci-
sions is important for understanding biological systems. Although RNA-seq experiments on
populations of cells have been used to study cellular decision making, averaging transcrip-
tional information from a heterogeneous population of cells can obscure biological signals.
Advances in single-cell transcriptomics, such as single-cell RNA-seq, have enabled observing
the gene expression states of individual cells [1–3]. While these solve the averaging prob-
lem faced by bulk transcriptomics, they are beset with new technical challenges, including
measurement dropouts and a lower signal-to-noise ratio. Despite the technical problems,
snapshots of the gene expression states of individual cells provide larger sample sizes and
a finer understanding of the gene expression and regulatory dynamics during a biological
process.

Many algorithms use single-cell RNA-seq data to infer GRNs [4–6], taking advantage of
the large sample sizes. In the strictest sense, GRNs only include regulation of genes by tran-
scription factors (TF). However, we use the term GRN to mean a network of directed causal
relationships between any regulators (not necessarily TFs) and their target genes. GRN
inference requires identifying relationships between transcriptional regulators and their tar-
get genes or gene modules [7–9]. One strategy is to search gene expression datasets for
dependencies among mRNA expression levels, making the simplifying assumption that a
regulator’s mRNA level approximates its regulatory activity. Single-cell datasets offer more
data from which to learn these gene-gene relationships using multivariate information the-
ory [10], linear regression [11], or other approaches. Methods like GENIE3 [12], which were
originally designed to infer GRNs from bulk transcriptomic data using tree-based ensembles,
can be easily adapted for single-cell datasets. When single-cell expression data are collected
at multiple times points, it provides more information that can be used for GRN inference.
GRN reconstruction methods originally designed for bulk time-series transcriptomic data
[13] can be repurposed to analyze time-stamped single-cell data. For example, Jump3 [14],
a hybrid machine learning and model-based approach, has been adapted in this manner [15].
Time-stamped single-cell data also enables analyzing the evolution of gene expression dis-
tributions over time [16], which is not possible with bulk time series data or single-cell data
collected at one time point.

When single-cell RNA-seq samples are not collected at multiple time points, compu-
tationally ordering cells along a biological process based on their expression states can
approximate each cell’s position along the process. These inferred times, called ‘pseudo-
times’, can potentially lead to greater understanding of the causal regulatory relationships
between genes. The dozens of algorithms for ordering cells and assigning pseudotimes [17],
also referred to as trajectory inference, can be distinguished by their use of prior knowledge,
treatment of pseudotime uncertainty, and the supported trajectory types [18]. Pseudotime
algorithms can target cyclic [19, 20], linear [21, 22], bifurcating [23], multifurcating [24],
or tree-structured [25, 26] trajectories. In most of these methods, a numeric pseudotime is
assigned to each cell, which represents the cell’s progress along the trajectory.

Similar to time series data, the pseudotemporal ordering provides an understanding of
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the gene expression trends along the biological process, which can support more accurate
GRN reconstruction. Strategies for GRN inference with pseudotemporal data are related
to those for time-stamped data with additional specializations to account for the techni-
cal differences. For example, SINCERITIES [27], originally designed to infer GRNs using
Granger Causality-inspired ridge regression on time-stamped expression data, also admits
pseudotime-labelled cells. SCODE [15], GRISLI [28], and Ocone et al. [29] infer GRNs
by modelling the cell dynamics as ordinary differential equations with pseudotime as the
temporal reference. Other strategies involve Gaussian processes regression for smoothing
pseudotemporal data [30], time-lagged correlation [31], variational Bayesian inference on a
first-order autoregressive moving average model [32], modified Restricted Directed Informa-
tion [33], unsupervised classification using Gaussian Mixture Models [34], empirical Bayes-
based thresholding [35], modeling information propagation through genes as a cascade [36],
and transfer entropy [37]. These strategies require estimating the cell trajectories before
GRN inference. An alternative approach is to perform joint trajectory and co-expression
network inference, for example, using Ornstein-Uhlenbeck models [24] or Gaussian mixtures
with continuous parameters [38]. Despite these algorithmic advances, in case studies on real
data the GRN reconstruction performance has often been disappointing and sometimes not
substantially better than random networks.

In this study, we adapt Granger Causality for pseudotemporally-ordered single-cell ex-
pression data to assess whether this causal framework can overcome the difficulties faced
by prior pseudotime-based GRN inference methods. We introduce our Single-cell Inference
of Networks using Granger Ensembles (SINGE) algorithm, an ensemble-based GRN recon-
struction technique that uses modified Granger Causality on single-cell data annotated with
pseudotimes. Granger Causality [39, 40] is a powerful approach for detecting specific types
of causal relationships in long time series data. It has been used with bulk times series
gene expression data [41–46], but these time series are typically short due to experimen-
tal limitations, making it more difficult to detect reliable gene-gene dependencies. The
longer (pseudo) time series obtained from ordered single-cell datasets make them appeal-
ing for Granger Causality-based GRN reconstruction. However, single-cell challenges such
as dropouts and irregular sampling along the biological trajectory counteract the benefits
of the longer pseudotime series. SINGE addresses these concerns by using a kernel-based
Granger Causality method that smooths the expression data and ensembling to improve
GRN prediction robustness.

We apply SINGE to reconstruct GRNs of two mouse embryonic stem cell differentiation
processes characterized with single-cell RNA-seq. SINGE compares favorably with exist-
ing GRN inference methods when evaluated using ChIP-seq, ChIP-chip, loss-of-function,
and gain-of-function data. However, our evaluation reveals important caveats about GRN
evaluation and the value of pseudotime for GRN inference that are broadly applicable for
pseudotime-based GRN reconstruction.
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2. Results

2.1. SINGE and Granger Causality Overview

SINGE takes ordered single-cell gene expression data as input and provides a ranked list
of regulator-gene relationships as its primary output. It requires the single-cell dataset to be
annotated with pseudotimes. This assigns a numeric pseudotime to each cell in the dataset
that represents how much that cell has progressed through a dynamic biological process such
as differentiation. For each target gene, SINGE assesses which past expression values are
most predictive of its expression, that is, the candidate regulators of each gene. The lagged
dependencies are detected using a specialized form of Granger Causality, which is framed
as a regularized regression problem. The past expression values are determined using the
pseudotimes.

The Granger Causality [39, 40] test at SINGE’s core is a hypothesis test to ascertain
predictive causality between a ‘source’ and ‘target’ time series. A series x is said to Granger-
cause y if past values of x contain information that helps predict future values of y. The
primary complication of applying Granger Causality to single-cell expression data with in-
ferred pseudotimes is that the distribution of cells along the trajectory, and the pseudotimes
assigned to them, is not uniform. Standard Granger Causality is not an effective analytical
tool with irregularly-spaced pseudotimes [33]. One potential workaround is to resample the
irregularly-spaced pseudotime series to obtain a regular time series. However, resampling
introduces interpolation errors in the form of a low-pass filtering, which could be detrimental
to analysis of highly non-linear biological processes. SINGE instead uses an alternative so-
lution proposed by Bahadori and Liu, the Generalized Lasso Granger (GLG) test [47]. GLG
modifies the Lasso Granger test [48] to support irregular time series. Within SINGE, GLG
uses a kernel function to smooth the past expression values of candidate regulators, miti-
gating the irregularly-spaced pseudotimes and zero values that are prevalent in single-cell
expression data. Our Granger Causality formulation models a strict delay between the reg-
ulator and target gene expression in pseudotime. The time-lagged expression relationships
between regulators and target genes are motivated by simulations of transcription kinetics
that naturally induce such lags [49, 50]. Therefore, SINGE is not intended to identify any
‘instantaneous’ regulatory relationships.

SINGE depends on hyperparameters that control the kernel smoothing, sparsity, and
which window of previous expression is considered. We do not search for a single optimal
set of hyperparameters but rather consider many regulator-gene predictions obtained under
different hyperparameters. In addition, we subsample the expression data many times to
further improve robustness. The final SINGE network is obtained from an ensemble of all
of the individual predicted networks using different hyperparameters and cell subsamples
(Figure 1).

2.2. Network Inference Case Studies

2.2.1. Mouse Embryonic Stem Cell to Endoderm Differentiation

Our first application tracks the differentiation of mouse embryonic stem cells (ESC) to
primitive endoderm cells over 72 hours [51]. Matsumoto et al. [15] previously pre-processed
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Figure 1: (top) Before running SINGE, trajectory inference methods order single-cell data along the biologi-
cal process and assign pseudotime values to each cell. SINGE takes the pseudotemporally ordered single-cell
gene expression data as input and predicts a ranked list of regulator-target gene interactions. (bottom)
SINGE performs multiple GLG tests, each for a different hyperparameter combination and a unique sub-
sample of the ordered data. Optional zero handling removes some of the zero-valued samples for each gene
to treat them as missing data. The hyperparameters control sparsity, kernel smoothing, pseudotemporal
resolution, and history for the GLG tests. Each GLG test predicts a partial regulatory network, which is
converted to a ranked gene interaction list. These preliminary rankings may not include all regulator-target
pairs due to the sparsity settings. The individual ranked lists are aggregated into a final ensemble GRN
prediction with a modified version of Borda aggregation. Created with BioRender.com.
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this dataset to benchmark their SCODE GRN algorithm. We reuse their processed version
of the data, which included expression data for only 100 TFs, 356 cells, and pseudotimes
assigned with Monocle. We use this ESC to endoderm differentiation dataset to optimize and
tune aspects of the SINGE algorithm, such as the modified Borda aggregation (Section 3.2.5),
assessing how well it recovers known regulator-gene interactions that are relevant in mouse
embryonic stem cell differentiation from the ESCAPE database [52]. The ESCAPE gold
standard is incomplete due to lack of experimental data for many of the relevant TFs (see
Section 3.4.1). Therefore, the gold standard only contains an 11× 99 subset of the 100× 99
regulator-gene interactions that SINGE scores. SINGE does not score self-edges.

The SINGE regulatory network is a ranked list of scored regulator-gene interactions
(Supplementary File 1). SINGE ranks Foxd3, Gli2, and Nanog as the three most influential
regulators in the 100-gene subnetwork. To illustrate a GLG-inferred regulatory edge, we
consider Pou5f1 as an example target gene. Figure 2 shows that using additional past infor-
mation from GLG-identified regulators improves the predicted expression trend of Pou5f1
along pseudotime. As more genes are added in decreasing order of the ‘edge weight,’ the
predicted expression trends become more accurate.
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Figure 2: Generalized Lasso Granger example. We show results from individual GLG tests for
predicting the regulatory influence on target gene Pou5f1 in the ESC to endoderm differentiation
dataset with two values of the sparsity hyperparameter λ. λ = 0.1 selects one regulator, Pou5f1,
and λ = 0.02 selects 12 regulators including Pou5f1. We predict expression trends of Pou5f1 using
the expression measurements that were included in the GLG model trained using the insample
cells. As λ is reduced, we observe a decrease in both the insample mean-squared error (MSE) and
outsample MSE of the Pou5f1 expression. Outsample MSE is calculated over the Pou5f1 expression
values removed during the subsampling. We also observed a consistent phenomenon for λ = 0.05
(insample MSE = 0.045, outsample MSE = 0.053) and for λ = 0.01 (insample MSE = 0.027,
outsample MSE = 0.035), which are not shown in the figure. All reported MSE values are the
mean of 10 GLG runs with independent insample/outsample splits.

To assess whether SINGE can match or exceed the state-of-the-art performance after
dataset-specific tuning, we compare its predicted GRN with four existing network inference
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methods: SINCERITIES [27], which uses ridge regression motivated by Granger Causality;
SCODE [15], which is based on ordinary differential equations; Jump3 [14], based on decision
trees on temporal transcriptomic data; and its predecessor GENIE3 [12], the best performing
method in the DREAM4 In Silico Multifactorial challenge [53], which does not use tempo-
ral information. We emphasize this particular evaluation is not indicative of which method
would perform best on new data because of SINGE’s tuning. Nevertheless, SINGE performs
similar to the other methods with respect to the average precision (A) and much better with
average early precision (E), which both summarize a precision-recall curve (Figure 3). Av-
erage early precision emphasizes the most-confident, top-ranked interactions (Section 3.4.2).
Even though SCODE was previously evaluated using this gene expression data [15], it per-
forms worse than random when assessed using the condition-specific ESCAPE gold standard
(Section 4.2).
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Figure 3: Precision-recall performance of SINGE compared to SINCERITIES, Jump3, SCODE, and GENIE3
when predicting the GRNs involved in primitive endoderm differentiation. The Baseline Prediction is the
expected precision obtained by randomly ordering all regulator-gene interactions. SINGE is tied for best
place with Jump3 and SINCERITIES in average precision but shows much better average early precision
than all other methods. Key: A - Average Precision, E - Average Early Precision (≤ 0.1 recall).

2.2.2. Mouse Retinoic Acid-driven Differentiation

We further test SINGE on a second dataset that tracks retinoic acid-driven differentiation
from mouse embryonic stem cells to extraembryonic endoderm and neuroectoderm cells
over 96 hours [54]. SINGE is not tuned for this dataset or the subsequent applications
(Sections 2.2.4 and 2.2.5). It uses the same version of the algorithm and hyperparameters
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from the ESC to endoderm differentiation analysis (Section 2.2.1). We infer a trajectory for
the differentiation process using Monocle 2 [25] and select 1886 cells from cell states 1 and 2
(Figure S1 and Section 3.3.2). Monocle 2 also identifies 626 genes whose expression changes
substantially as a function of pseudotime, which we use for GRN reconstruction. These
genes are not filtered to include only TFs or other known expression regulators. SINGE
returns a ranked list of all 626 × 625 possible regulatory relationships, excluding self-edges
(Supplementary File 2).

SINGE identifies key regulators reflecting the differentiation trajectory required for mouse
embryonic stem cells exiting the pluripotent state, transitioning through the epiblast where
lineage segregations take place [54] (Table 1 and Figure 4). We use g:Profiler [55] to iden-
tify Gene Ontology (GO) biological process terms that are significantly enriched among the
ranked SINGE regulators (Supplementary File 3). This searches for GO terms that are
enriched at the top of the ranked list, assessing all possible rank thresholds. The g:Profiler
analysis identifies relevant significantly enriched biological processes in the sorted regulator
list including cellular response to growth factor stimulus (GO:0071363), cell morphogenesis
involved in differentiation (GO:0000904), neuron differentiation (GO:0030182), and addi-
tional terms depicted in Table 1.

There are two ways to explore the SINGE predictions in greater detail: the top reg-
ulators ranked by SINGE influence (Table 1), which aggregates influence over all target
genes, and the top-ranked edges (Figure 4). Table 1 shows the top 20 regulators ranked
by SINGE influence. Ten of the top predicted regulators are associated with regulation of
gene expression (GO:0010468), as are other regulators with high SINGE influence that are
beyond the top 20 (Supplementary File 3). The top 20 regulators also include essential
genes that cause embryonic lethality in mouse embryos harboring homozygous null alleles.
Others show phenotypes ranging from postnatal lethality to growth retardation (Table 1).
Three of the predicted regulators (Alg13, Gpx3, and Lactb2) are known for their roles in
metabolic processes but are not known to participate in regulation of early embryonic lin-
eage specification. In addition, KinderMiner [75] text mining reveals significant associations
between the top 20 regulators and terms related to this developmental process: ‘embryonic
stem cells,’ ‘neural development,’ and ‘endoderm development’ (Supplementary File 4).

Figure 4 illustrates the most-confident 100 regulator-gene edges from the SINGE network,
directed from the regulators (hexagons) to the target genes (ellipses). This representative
subnetwork comprises 18 unique regulators and 65 unique targets. Fourteen of these regula-
tors are also found among the top 20 regulators by SINGE influence (Table 1), including all
10 known to be associated with regulation of gene expression. The other four regulators par-
ticipate in one or more high-confidence edges but do not have high aggregate influence. Dab2
and Fgf4 are the most influential regulators overall (Table 1) and hub regulators among the
top 100 edges (Figure 4). Fgf4 governs the exit from the pluripotent state. Fgf4-null mouse
embryonic stem cells resist neural and mesodermal lineage induction [76]. The Fgf/Map
kinase signaling pathway plays multiple roles during mouse blastocyst development, and
mutations of the signaling components (e.g., Fgf4, Fgfr2, and Grb2) all cause implantation
lethality and lack of primitive endoderm development [77]. Moreover, Fgf4 also governs
neural induction in embryonic stem cell differentiation at a later stage of development [78].
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Rank
Gene
name

Regulation
of gene

expression

Neuro-
genesis

Regulation
of cellular
response
to growth

factor
stimulus

Regulation
of

canonical
Wnt

signaling
pathway

Loss-of-
function
pheno-
types

KinderMiner
associations

1 Dab2 X X X EL [56]
ESC

EndoDev

2 Fgf4 X X EL [57]
ESC

EndoDev
NeurDev

3 Sfrp5 X X X
Normal

[58]
EndoDev

4 Lefty2 X EL [59]
ESC

EndoDev
5 Zfp703 X X X N/A

6 Hoxb2 X NL [60]
ESC

NeurDev

7 Gata6 X X EL [61]
ESC

EndoDev

8 Cdh2 X X EL [62]
ESC

NeurDev
9 Alg13 EL [63]
10 Mdm4 X EL [64]

11 Gpx3
Others

[65]

12 Igf2 X
Others

[66]

ESC
EndoDev
NeurDev

13 Ccnd2 S [67] ESC
14 Wdr1 X EL [68]
15 Ilk X X X EL [69] ESC
16 Flrt3 X EL [70] EndoDev

17 Lactb2
Others

[71]
18 Wls X EL [72]

19 Fzd3 X NL [73]
ESC

NeurDev

20 Crabp1
Normal

[74]
ESC

NeurDev

Table 1: GO biological process terms, loss-of-function phenotypes, and KinderMiner associations related
to the top 20 SINGE regulators. Phenotype key — EL: Embryonic lethality, NL: Neonatal lethality,
S: Sterile, Normal: Homozygous mutant mice are phenotypically normal and fertile, Others: Homozygous
mutant mice display other physiological phenotypes, N/A: No knockout mice reported in peer-reviewed
studies. KinderMiner key — ESC: Embryonic Stem Cells, NeurDev: Neural development, EndoDev:
Endoderm development
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Figure 4: The network obtained from the top 100 edges ranked according to SINGE scores shows 18
unique regulators (hexagonal nodes, the ten with solid boundaries corresponding to known regulators of
gene expression listed in Table 1) and 65 unique targets (elliptical nodes). The higher ranked edges are
represented by thicker arrows.

Rn45s is predicted to be a frequently-regulated target gene. However, these are likely false
positive predictions. Rn45s is 45S pre-ribosomal RNA, and its expression levels and variance
are much higher than any of the other 625 genes in this dataset.

The predicted GRN in Figure 4 also provides hypotheses for future experimental tests.
For example, Meis1 and Meis2 are homeobox proteins that directly regulate Pax6 expres-
sion during eye development [79]. SINGE predicts that Fgf4 regulates Meis2. Thus, Fgf4
could potentially act upstream of Meis1 and Meis2 to regulate Pax6 expression, contribut-
ing to neuroectoderm differentiation [80]. Other key primitive endoderm regulators are also
highlighted in SINGE predictions, such as Gata6, a transcription factor necessary and suf-
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ficient for primitive endoderm lineage differentiation and establishment of extraembryonic
endoderm cell lines [81]. Dab2, Sfrp5, Lefty2, and Igf2 are all expressed in the primi-
tive endodermal lineages, including visceral endoderm and extraembryonic endoderm cell
lines [82–86].

Inspecting the regulator and target expression trends can build confidence in the pre-
dicted interactions. For example, in the predictions Dab2→Yes1 and Fgf4→Meis2, we ob-
serve that the target gene expression is negatively correlated with the past values of the
regulator’s expression (Figure S2), which may indicate these predictions are worth further
investigation. In other cases like Dab2→Rn45s, there is no obvious relationship between the
regulator and target expression. As noted above, this is likely a false positive prediction due
to Rn45s’s outlier expression levels and role as a pre-ribosomal gene.

Many expected GO terms and regulators are represented in Table 1 and Figure 4. How-
ever, classic neuroectoderm regulators like Sox1, Nes, and Pax6 [54] are missing because
they are excluded from the limited shortlist of genes in the SINGE input. We only run
SINGE on the top 626 significantly differentially expressed genes along the differentiation
trajectory detected by Monocle 2.

2.2.3. Retinoic Acid-driven Differentiation ESCAPE Evaluation

The retinoic acid-driven differentiation study can be used to benchmark the relative
performance of SINGE and other network inference methods because none of the methods,
including SINGE, were optimized or tuned based on the ESCAPE evaluation results. Fig-
ure 5 shows the precision-recall performance of SINGE, SINCERITIES, Jump3, SCODE,
and GENIE3 when ranking edges in the 626-gene network. Due to Jump3’s runtime, we
run it on a reduced dataset (Section 3.4.3), which may impact its performance. As with
the ESC to endoderm differentiation dataset, the ESCAPE database had only partial infor-
mation (12 regulators), thus limiting the gold standard to a submatrix of 12× 625 possible
edges. SINGE is the best method overall in terms of average precision and average early
precision (tied with Jump3) (Figure 5). Jump3 is effectively tied with SINGE for average
early precision but has near-random precision for recall > 0.2. SINCERITIES prioritizes
ESCAPE gold standard interactions well at the top of its ranked list, but the performance
degrades quickly. GENIE3 and SCODE are worse than random. The performance depends
on the type of regulator-gene interaction in the ESCAPE database. SINGE can recover loss-
of-function or gain-of-function (lof/gof) relationships but struggles to identify ChIP-based
protein-DNA binding interactions (Figure S3). In contrast, Jump3 and GENIE3 recover
ChIP-based protein-DNA binding interactions quite well but struggle to identify lof/gof
relationships.

Visualizing the expression trends over pseudotime can illustrate the types of errors
SINGE makes with respect to the ESCAPE gold standard. For example, the interaction
Esrrb→Actb was detected with ChIP but is not part of the ESCAPE’s lof/gof dataset.
There is no apparent lag between the expression trends of the regulator and target (Fig-
ure S4). This edge was ranked highly by SCODE but not by SINGE, which searches for
lagged expression dependencies by design.

A regulator-specific evaluation partially explains the overall precision-recall performance
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Figure 5: Precision-recall performance of SINGE, SINCERITIES, Jump3 (which uses a reduced
data set), SCODE, and GENIE3 when predicting a 626-gene retinoic acid-driven differentiation
regulatory network [54]. SINGE is tied for best with Jump3 in average early precision but is better
in average precision. Key: A - Average Precision, E - Average Early Precision (≤ 0.1 recall).
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of the GRN methods and demonstrates that it can be somewhat misleading. Figure 6
shows the average precision and average early precision with respect to each regulator in the
ESCAPE database. These metrics are obtained from the regulator-specific precision-recall
curves in a similar manner to the average precision and average early precision obtained in
Figure 5. Recall that the average early precision is the average precision in the early part
(recall ≤ 0.1) of the precision-recall curve. The regulator-specific average precision of all
five methods is at or below random for most regulators, with a few exceptions.
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Figure 6: Average precision and average early precision evaluated for individual regulators in the ESCAPE
database. The dashed line (−−) indicates the expected performance of a random ranking, given by the ratio
(total number of true outgoing edges)/(total number of genes - 1). Regulator-specific performance of all five
methods is at or below random for most regulators.

Because some regulators are more prevalent in the ESCAPE gold standard than others,
the overall precision-recall curve is influenced by both the regulator-specific precision and
the relative ordering of the regulators in the ranked edge list. We can sort these 12 regulators
in decreasing order by their number of outgoing edges in the ESCAPE gold standard, which
is a proxy for the regulator’s influence on the evaluation, and generate boxplots of the
regulator-specific edge ranks in the GRNs (Figure 7). SINGE ranks outgoing edges from
ESCAPE’s most prevalent regulators (Klf4 and especially Tcf3) higher on average than the
regulators with fewer target genes (Dppa5a and Tuba1a). The distributions of rankings from
SINCERITIES and Jump3 are widely dispersed for each regulator. Meanwhile, SCODE and
GENIE3 rank edges from the regulators with fewer outgoing edges higher than those with
many target genes, contributing to their poor overall performances.

These regulator-specific results provide insights into Figure 5. SINGE’s relatively high
average early precision is influenced by how it ranks regulators in accordance with their
prevalence in the ESCAPE database. On the other hand, Jump3 ranks all regulators uni-
formly but has better than random average precision on multiple individual regulators, such
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as Sox2 and Esrrb. When evaluated from the perspective of the individual regulator-specific
precision-recall performance, all five methods perform at near random for most regulators
(Figure 6), but this does not necessarily translate into near-random precision-recall perfor-
mance for the entire GRN (Figure 5). This is because some of the methods rank certain
regulator-specific interactions above others (Figure 7) either to their benefit (SINGE) or to
their detriment (SCODE and GENIE3).
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Figure 7: The ranking of regulator-specific interactions has a strong effect on the overall precision-recall
curve (Figure 5). The boxplots show the outgoing edge ranks for each regulator in each predicted GRN,
in decreasing order of regulator prevalence in the ESCAPE database. Ranking regulator-gene interactions
involving the predominant ESCAPE regulators (e.g., Klf4) above those involving the less frequent ESCAPE
regulators (e.g., Tuba1a) improves the precision-recall performance, and the converse is also true.

2.2.4. Mouse Bone Marrow Mesenchyme to Erythrocyte Differentiation

As an additional SINGE case study, we choose an scRNA-seq dataset from the Mouse
Cell Atlas profiling the heterogeneity of adult mouse bone marrow [87]. This dataset helps
assess SINGE’s scalability to more genes (3025 genes) and cells (3105 cells). We also gen-
erate the pseudotimes from an alternative trajectory inference algorithm, Embeddr [88].
We hypothesize that the bone marrow scRNA-seq data should shed light on regulators for
hematopoiesis or its associated diseases. Indeed, SINGE identifies relevant regulators in this
context. For example, Asxl2 and Rtel1 are among the top 20 regulators. Asxl2 knockout
mice displayed a phenotype that skewed the differentiation potential of hematopoietic stem
cells and cause myeloid-lineage cancer [89]. In humans, Asxl2 mutation is known to asso-
ciate with acute myeloid leukemia [90]. Rtel1 is a DNA helicase important for protecting
telomeres. Its mutations are associated with a number of clinical phenotypes related to
bone marrow failure [91, 92]. Although other top regulators do not have direct experimental
data to show their role involved in hematopoiesis, the SINGE GRN (Supplementary File 5)
provides a base for future investigations.

2.2.5. Dyngen Simulation Evaluation

We use dyngen [93] to evaluate GRN inference on simulated single-cell datasets. We sim-
ulate single-cell gene expression data from a biological process with a linear trajectory. This
simulated dataset has 1000 cells generated from a regulatory network with 140 genes — 25
TFs, 15 housekeeping genes, and 100 target genes. We use SINGE and the four other GRN
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algorithms to infer networks from this dataset. We first evaluate the precision-recall perfor-
mance of each inferred network using the known direct regulatory interactions (precision-
recall curves available at https://github.com/gitter-lab/SINGE-supplemental). Most
methods, including SINGE (Average precision = 0.0082, Average early precision = 0.0048),
perform as poorly as the random baseline precision of 0.0084, with Jump3 performing
best (Average precision = 0.015, Average early precision = 0.032). If we include indi-
rect regulator-gene interactions in the gold standard, the precision-recall performance of
SINGE improves, surpassing the random baseline and other GRN methods, which remain
near or worse than random. Thus, in the dyngen simulation, SINGE performs poorly at
distinguishing direct gene interactions from indirect ones. This is in part because the simu-
lated gene expression trends of a regulator’s direct and indirect targets can be quite similar,
as exemplified by the cascade from B1 TF1 to Target1 to Target48 (https://github.com/
gitter-lab/SINGE-supplemental).

2.3. Analyzing Features of the SINGE Workflow

We use the retinoic acid-driven differentiation dataset to perform in-depth analyses of
various SINGE features. This is the largest available real dataset from our case studies that
has a gold standard available.

2.3.1. Effects of Subsampling and Zero Handling

SINGE’s ensembling can improve performance by supporting subsampling and zero han-
dling. Because the core GLG test is compatible with irregular time series, we can create
randomly subsampled time series from each gene’s expression data to generate multiple in-
stances of the original dataset. In these experiments, subsampled replicates are created by
removing individual expression data samples with probability of removal 0.2. The default
SINGE setting uses 10 subsampled replicates per hyperparameter combination. Figure 8
shows the effects of increasing or decreasing the number of replicates. For both average
precision and average early precision, there are only modest performance improvements
when running SINGE with more than 10 replicates. The average precision decreases when
fewer replicates are used, but the changes are not substantial. On the other hand, running
SINGE with only two replicates improves the runtime considerably but leads to a more
notable decrease in average early precision. Reducing the number of replicates from 10 to
five maintains similar average early precision and still reduces the runtime.

The support for irregular time series also allows us to remove zero-valued data points
corresponding to technical dropouts. The true dropout probability is gene dependent and
can be estimated by methods like SCONE [94]. As a proof of concept of SINGE’s support
for zero handling, we incorporate a simpler strategy that uses a constant dropout probability
hyperparameter prob-zero-removal for all genes. For each GLG instance, we remove zero-
valued expression samples (and their corresponding timestamp) from each gene’s expression
series with a user-specified constant probability for each zero value.

Figure 9 shows SINGE’s precision-recall summaries as the value of prob-zero-removal
increases. As more zeros are dropped from the dataset, the average precision and especially
the average early precision are only marginally affected. Because dropping samples reduces
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Figure 8: Effect of number of subsampled replicates for each hyperparameter combination in the
SINGE ensemble on the retinoic acid-driven differentiation dataset. Each subsampled replicate
is generated by arbitrarily dropping samples corresponding to individual genes in each cell with
probability 0.2.

the size of the regression problem, zero-dropping potentially could be used to effectively
reduce the size of the regression problem for large but extremely sparse datasets without
negatively impacting GRN inference. Filtering too many zeros in such an arbitrary manner
could remove genuine zero expression values along with the dropouts. We currently rec-
ommend using SINGE without dropping zeros unless it is required to speed up analysis of
large datasets. We will explore directly supporting gene-dependent dropout for improving
the precision-recall performance (Section 4.3).

2.3.2. Benefits of Ensembling

The optimal GLG parameters that best identify causal relationships between two genes
can vary from gene to gene and for different biological processes. In the absence of prior
information about the regulatory network, it is difficult to set optimal hyperparameters for
the GLG test. Furthermore, it is also plausible that different transcriptional regulators have
different kinetics and consequently different optimal hyperparameters.

SINGE attempts to overcome this with an ensemble of hyperparameters, aggregating the
results to obtain the final SINGE score of each GRN edge (Section 3.2.5). Figure S5 compares
the performance of individual GLG hyperparameter combinations to the complete ensembled
SINGE GRN for the retinoic acid-driven differentiation dataset. Although the ensembled
SINGE network does not have the best average precision or average early precision, it
performs better than the majority of the individual hyperparameters. Ensembling reduces
the risk of choosing a single set of hyperparameters that would perform poorly for a particular
dataset. Inspecting the performance of the GRNs for individual hyperparameters (Figures S6
and S7) shows that the sparsity hyperparameter λ has the strongest impact.
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Figure 9: Effect of zero removal on SINGE performance for multiple values of prob-zero-removal, the
probability of removing a zero value. SINGE ensembles the results from 10 zero-filtered replicates
on the retinoic acid-driven differentiation dataset.

2.3.3. Assessing whether Pseudotimes Improve GRN Reconstruction

We assess the impact of using assigned cell order and pseudotime values on the perfor-
mance of the three methods designed to reconstruct GRNs from pseudotemporal single-cell
gene expression — SINGE, SINCERITIES, and SCODE. We exclude GENIE3 and Jump3
because the former does not use any sort of cell ordering information, and the latter uses
only the cell ordering but not pseudotime values. For this assessment, we create variants of
both the ESC to endoderm differentiation and retinoic acid-driven differentiation datasets
as described below:

• Pseudotime: The default mode using ordered cells with Monocle or Monocle 2 as-
signed pseudotimes.

• Order Only: Obtained from the Pseudotime dataset by removing the assigned pseudo-
time values but maintaining the cell order. The cells are assumed to be regularly-spaced
along the trajectory.

• Rand. Order (3): Three replicates obtained from random permutation of the regularly-
spaced cells from the Order Only variant. The randomized data have neither pseudo-
time annotations nor ordering information from the original dataset.

If estimated pseudotimes contribute high-quality information for GRN reconstruction, the
three GRN methods should have highest performance on the Pseudotime dataset, with less
accurate predictions from the Order Only and Rand. Order datasets.
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Figure 10 shows the average precision and average early precision of SINGE, SINCERI-
TIES, and SCODE when run on the three variants of each dataset above. For variants of the
ESC to endoderm differentiation dataset, only SINGE’s performance decreases substantially
for the Rand. Order dataset as expected. Its performance on the Order Only dataset is only
slightly worse than the original Pseudotime dataset. SINCERITIES is less consistent on
the Rand. Order datasets, with some randomized cell orders providing better GRNs than
the real Order Only or Pseudotime datasets. SCODE performs poorly even on the original
Pseudotime dataset (Figure 3) so we cannot draw strong conclusions from its performance
trend across the dataset variants.

Figure 10: Effects of pseudotimes and cell ordering on the performance of SINGE, SINCERITIES,
and SCODE. (a) and (b) show the performance of the three methods when analyzing variants of the
ESC to endoderm differentiation dataset. Average precision metrics using Monocle pseudotimes
are comparable to those using Order Only. (c) and (d) show the performance of the three methods
on variants of the retinoic acid-driven differentiation dataset. SINGE’s average precision metrics
degrade substantially when using Monocle 2 pseudotime values when compared to Order Only.

On the other hand, for variants of the retinoic acid-driven differentiation dataset SINGE
still outperforms SINCERITIES and SCODE in all cases, but the performance trend does
not follow the expected pattern. SINGE shows higher performance on the Order Only
dataset in which the pseudotime values are removed. Its performance for the Rand. Order
variants is worse than the Order Only dataset but comparable to the Pseudotime dataset.
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SINCERITIES has similar performance on the Pseudotime and Order Only datasets, with a
slight improvement for Order Only. SCODE again performs poorly in all cases. Because the
performance improves for both SINGE and to a lesser extent SINCERITIES when only the
cell ordering is used, one possible explanation is that the Monocle 2 pseudotime values are
low fidelity, counteracting any potential benefits from the additional information. Indeed,
further analysis of the regulator-specific performance of these three methods using the Order
Only dataset (Figure S8) shows that the regulator-specific average precision and average
early precision metrics of SINGE and SINCERITIES improve compared to the Pseudotime
dataset (Figure 6). Like Jump3, which does not use the pseudotime values, these two
methods now have substantially better than random average early precision for several
regulators. Similarly, the SINGE and SCODE average rankings of the outgoing interactions
from the regulators using the Order Only dataset better match the regulators’ prevalence in
the ESCAPE database (Figure S9). Regulators with more interactions in ESCAPE tend to
have higher rankings in these predicted GRNs. These two phenomena combine to improve
SINGE’s overall precision-recall curve with respect to its Pseudotime dataset performance
and those of other GRN methods for either form of the dataset (Figure S10).

We further investigate the relationship between the quality of the SINGE-inferred GRN
and the trajectory inference method used to generated pseudotimes. We infer another tra-
jectory from the retinoic acid-driven differentiation dataset using PAGA Tree [95] in the
dynverse environment (Section 3.3.2). We limit our study to the longest branch of the tra-
jectory, which has 2631 cells, of which 737 cells are common with the Monocle 2 branch
(Figure S11). Thus, the cell populations in the two test cases have some overlap yet contain
cells exclusive to each dataset.

Figure 11 evaluates the precision-recall performance of the network inferred using SINGE
version 0.3.0 and the PAGA Tree trajectory with Pseudotimes and Order Only. For reference,
we add the original SINGE (version 0.1.0) precision-recall curve using the Monocle 2 inferred
trajectory from Figure 5 as well as the precision-recall curve for the Monocle 2 Order Only
dataset from Figure S10. To capture any effects due to the software changes between versions
0.1.0 and 0.3.0, we rerun SINGE 0.3.0 on the Monocle 2 trajectory.

The quality of the inferred GRN depends upon the type and quality of the pseudo-
times. Importantly, the networks inferred with the original Pseudotimes are not always
better than the Order Only version. The SINGE GRN obtained with Monocle 2 Order
Only is substantially better than all others. For PAGA Tree, the performance differences
between Pseudotimes and Order Only are negligible. The two SINGE results on Monocle
2 Pseudotimes are also comparable. The minor differences in the precision-recall curves for
SINGE versions 0.1.0 and 0.3.0 can be attributed to randomization in the algorithm and
efficiency-improving optimizations.

2.4. Computational Runtime

We designed SINGE to take advantage of the high-throughput computing resources that
are readily available to computational researchers, such as the Open Science Grid [96].
We compare the GRN methods’ runtimes on the retinoic acid-driven differentiation dataset.
SCODE and SINCERITIES require the least computational resources. It was possible to run
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Figure 11: Precision-recall comparison of SINGE using Order Only and Pseudotimes datasets from
Monocle 2 and PAGA Tree trajectories. The comparison of SINGE versions 0.1.0 and 0.3.0 on
the Monocle 2 Pseudotimes dataset is used to confirm performance consistency across software
updates.

them on a single workstation with a 64-bit Intel i5-4590 CPU and 8 GB RAM. Specifically,
on this workstation, the SCODE algorithm with 100 repetitions requires approximately 6
hours to complete, whereas the SINCERITIES algorithm takes approximately 111 hours.

In contrast, both SINGE and Jump3 require more varied and extensive computing re-
sources. In the case of Jump3, inferring the GRN from 626 regulators to one target gene
takes between 11 minutes to 74 hours to run, with an average runtime of 21.7 hours. This
is repeated for each target gene. In a typical application, SINGE uses 100 different hy-
perparameter settings on 10 subsampled expression datasets. Running SINGE for five λ
hyperparameter values on one subsampled replicate takes 6.09 hours (Table 2). The entire
SINGE workflow for all hyperparameters and replicates requires 1219.4 hours. However,
both Jump3 and SINGE are highly parallelizable. We deployed them on our local high-
throughput computing cluster using HTCondor [97], which connects to the Open Science
Grid [96]. In this high-throughput setting we can run the entire SINGE algorithm in 36
hours and the Jump3 algorithm in 72 hours.

SINGE can also be configured to run on a single workstation with appropriate changes
to the hyperparameters. For example, a complete SINGE run on the bone marrow dataset
takes 18 hours 42 minutes using a dedicated 16-core server with Intel Xeon Silver 4110
processors. For this run, we limit the number of regulator genes to only 149 transcription
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factors (identified using the AnimalTFDB 3.0 database [98]) and reduce the subsampled
replicates per hyperparameter combination from 10 to two to reduce the runtime.

Table 2: Computational runtime of SINGE for datasets of various sizes. SINGE versions 0.3.0 and 0.5.0 have
performance improvements not present in version 0.1.0. ‘Average runtime for all λ values’ is calculated as
the average compute time taken to run the GLG test for all λ values. SINGE version 0.1.0 runs independent
GLG tests for each λ, but starting with version 0.3.0 it obtains the GLG test results for all λ values in one
batch by using glmnet’s warm-start functionality. ‘Parallel runtime’ is calculated using the longest individual
runtime for a GLG test. This is the approximate SINGE runtime in the hypothetical scenario where all
GLG tests are run in parallel simultaneously. ‘Serial runtime’ is calculated as the aggregate compute time of
all GLG tests. This is the approximate SINGE runtime in the hypothetical scenario where it is run serially
on a single machine corresponding to the average node in the high-throughput computing pool.

Dataset Replicates Genes Cells SINGE
version

Average
runtime for
all λ values
(hours)

Parallel
runtime
(hours)

Serial
run-
time
(hours)

Retinoic Acid-driven
Differentiation with
Monocle

10 (default) 626 1886
0.1.0
0.3.0

19
6.09

—
3813
1219.4

dyngen dataset 10 140 1000 0.3.0 0.083 0.36 16.77
Large dyngen dataset 10 140 20000 0.3.0 9.52 32.07 19038
Retinoic Acid-driven
Differentiation with
PAGA Tree

10 626 2540 0.3.0 7.83 22.36 1566.3

Bone marrow dataset
(all genes as regula-
tors)

10 3025 3105 0.3.0 23.79 62.68 4759.2

Bone marrow dataset
fast mode (149 TFs as
regulators)

2 3025 3105 0.5.0 5.19 9.12 207.8

3. Methods

SINGE infers the GRN that underlies a biological process by aggregating ranked edge
lists obtained from an ensemble of Generalized Lasso Granger tests conducted on ordered
single-cell transcriptomic data (Figure 1). The GLG test is a kernel-based generalization [47]
of the Lasso Granger Causality test to facilitate the analysis of causal relationships between
irregular time series obtained from a linear stationary vector autoregressive (VAR) model.
We first describe the GLG test and then the complete SINGE algorithm.

3.1. Generalized Lasso Granger Test

The GLG test is used to discover temporal causal networks from irregularly-spaced time
series data based on concepts of Granger Causality. In GRN inference, the time series
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correspond to temporal gene expression measurements. Assume P regularly-spaced time
series x1, x2, . . . , xP are obtained at timestamps {t} .= 1, 2, . . . , T . These time series are
assumed to be governed by a linear and stationary VAR process such that

xi(t) =
P∑
j=1

L∑
l=1

ai,j(l)xj(t− l) + εi(t), (1)

for i = 1, 2, . . . , P , where ai,j(l) corresponds to the l-th lagged coefficient from source time
series xj to target time series xi and εi(t) is measurement error, represented by independently
distributed Gaussian random variables. More generally speaking, the unknown P × P × L
matrix a comprising L lagged coefficient matrices a(1), a(2), . . . , a(L) represents the evolu-
tionary mechanism of x1, x2, . . . , xP .

The Lasso Granger Causality test [48] for an individual regularly-spaced target series xi
is characterized by the optimization problem

min
{ai}

T∑
t=L+1

∣∣∣∣∣xi(t)−
P∑
j=1

L∑
l=1

ai,j(l) · xj(t− l)

∣∣∣∣∣
2

+ λ
P∑
j=1

||ai,j||1, (2)

and provides a sparse estimation of the P × L coefficient matrix ai representing the VAR
process that relates each source series xj 6=i to the target series xi. Specifically, if elements
of the j-th column ai,j of the matrix are statistically significant, then we claim that xj
Granger-causes xi (represented by j → i). The Lagrange multiplier λ dictates the sparsity
of the learned matrix ai.

The GLG test proposed by Bahadori and Liu [47] is a kernel-based modification of
Equation 2 to facilitate the analysis of irregular time series. Irregular means that the time
between consecutive time points can vary. Given two timestamps t1 and t2, Bahadori and
Liu define a Gaussian kernel function

w(t1, t2) = exp

(
−(t1 − t2)2

σ2

)
,

where σ represents the effective kernel width. Based on this kernel function, the operator �
defined below generalizes the inner product for two ‘irregular’ time series — x, sampled at
times tx(1), tx(2), . . . , tx(Nx), and y, sampled at times ty(1), ty(2), . . . , ty(Ny) — as

x(tx)� y(ty)
.
=

Nx∑
n=1

∑Ny

m=1 x(n)y(m)w(tx(n), ty(m))∑Ny

m=1 w(tx(n), ty(m))
.

Nx and Ny can differ, which SINGE exploits for its dropout handling and subsampling
(Section 3.2).

We now have P irregular time series x1, x2, . . . , xP obtained from a linear and stationary
VAR process. Each series xi of length Ni is sampled at irregularly-spaced timestamps ti such
that ti(n + 1) ≥ ti(n) for n = 1, 2, . . . , Ni − 1. As with the Lasso Granger Causality test,
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the objective of the GLG test is to obtain the sparse coefficient matrix ai, which represents
the underlying VAR model for the target series xi. To overcome the irregularity of the time
series, we follow Bahadori and Liu by visualizing each vector ai,j of the coefficient matrix as
a time series a′i,j(t) with respect to a given timestamp t. This is accomplished by assigning
a new timestamp ta(l) = t− l∆(t) to each lagged coefficient ai,j(l), where ∆t represents the
time-lag between successive lagged coefficients in ai,j. Thus, this time series can be viewed
as the sequence of (lagged time, coefficient value) pairs.

a′i,j(t) = {(ta(l), ai,j(l))|l = 1, 2, . . . , L, ta(l) = t− l∆t}.

Note that for t1 6= t2, the two time series a′i,j(t1) and a′i,j(t2) would have the same coeffi-
cient values ai,j(l) but different lagged timestamps. For example, if we select hyperparameter
values ∆(t) = 5, and L = 3, then, for t1 = 50 and t2 = 75, we have

a′i,j(50) = {(35, ai,j(3)), (40, ai,j(2)), (45, ai,j(1))}
a′i,j(75) = {(60, ai,j(3)), (65, ai,j(2)), (70, ai,j(1))}

respectively.
Next, for a given timestamp ti(n) corresponding to a sample in xi, we generalize the

inner product in Equation 2 by using

L∑
l=1

a′i,j(l)� xj(t− l)

defined on a′i,j(ti(n)) and xj(tj) using their respective timestamps to calculate the kernel
weights. Substituting this generalized inner product in Equation 2, we obtain the optimiza-
tion problem for GLG, given by

min
{ai}

∑
ti(n)≥L∆t

∣∣∣xi(ti(n))−
P∑
j=1

a′i,j(ti(n))� xj(tj)
∣∣∣2 +

P∑
j=1

λj||ai,j||1. (3)

The first term represents the mean-squared error between the sample values xi(ti(n)) of
the i-th series at each timestamp ti(n) ≥ L∆t and its corresponding prediction from the
generalized inner product a′i,j(ti(n))� xj(tj), which uses the kernel defined above to ‘smooth
over’ the mismatched irregular timestamps. The second term is a sparsity constraint on the
coefficient matrix ai. The minimizer ai of the objective function in Equation 3 provides the
coefficient matrix that represents the VAR model of the target series xi from all available
source time series xj, with λ determining the sparsity of the coefficient matrix. If the
time series represent irregularly-spaced gene expression data, ai can be interpreted as an
estimate of the regulatory effect of other genes on the i-th gene. The presence of edges in
the regulatory network for the i-th gene is indicated by significant non-zero values in the
matrix ai. The ‘edge weight’ of j → i can be quantified by ||ai,j||2, ||ai,j||∞, or |

∑
l ai,j(l)|,

the latter aiming to capture the net impact of gene j on gene i. In the default GLG setup,
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the individual weights in the l1-constraint of the above equation are assigned the same value,
with λj = λ. However, because we are not interested in the auto-regulation of xi, we remove
the sparsity constraint on the autoregressive edge (λi = 0) in order to reduce the number of
false positives in the cross-regulatory relationships, where sparsity is typically enforced with
a positive λj 6=i = λ.

The optimization problem in Equation 3 can be solved P separate times to infer the
regulators of all P genes in the network. The GLG-identified regulators are obtained as the
smallest group of genes whose past expression values are most predictive of gene i’s time
series expression values. Because the core algorithm of the GLG test is implemented using
the glmnet package [99], it supports count-based expression data (e.g. from unique molecular
identifiers) by assuming a Poisson distribution for the expression levels.

3.2. Single-cell Inference of Networks using Granger Ensembles

In this section, we describe how the SINGE algorithm, which has the GLG test at its
core, infers GRNs from single-cell expression data. The SINGE algorithm takes ordered
single-cell RNA-seq data as input, with an optional zero-handling pre-processing step to
mitigate the effect of dropouts. The data are analyzed using multiple GLG instances with
different hyperparameters, each inferring possibly differently ranked regulator-gene inter-
actions. These ranked inferences are aggregated using a modified Borda count, with an
optional subsampling stage increasing the effective ensemble size.

3.2.1. SINGE Input

Ordered Single-Cell Gene Expression Data. The input to SINGE is ordered single-cell gene
expression data, with a pseudotime assigned to each cell that represents its position along
the biological process. Given ordered single-cell data, the pseudotimes are first normalized
to a scale of 0–100. Thus, the first cell represents 0% progress, and the last cell represents
100% progress through the biological process. The distribution of cells’ pseudotimes is not
uniform. As a result, each gene’s expression data is an irregularly-spaced time series in the
pseudotemporal reference. We represent each gene’s expression trend along the pseudotem-
poral reference as an augmented series with both the pseudotimes and the gene expression
values. That is, for the i-th gene, we create the series (ti, xi), where xi is the time-series
representing the gene’s expression and ti represents the pseudotime of the corresponding
cell. As of version 0.5.0, SINGE is applicable to all acyclic trajectories.

Ordering Cells via Trajectory Inference. If the single-cell dataset is not already ordered,
any cell ordering method that assigns continuous pseudotimes (Section 1) can be used to
annotate the cells before running SINGE. For the retinoic acid-driven differentiation dataset,
we apply Monocle 2 [25], which uses reverse graph embedding to identify branching processes.
For other trajectory inference methods, we use the dynverse package [18], which provides a
streamlined approach to benchmark and use trajectory inference algorithms and can shortlist
algorithms based on trajectory type, dataset size, and other criteria.
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Regulator Indices (Optional). By default, SINGE assumes that all genes are potential reg-
ulators. It can optionally limit the possible regulators using regulator indices regix ⊆
{1, 2, . . . , P} provided by the user. SINGE will infer a GRN with potential regulator genes
limited to only those corresponding to the regix indices. Using regulator indices can sub-
stantially improve SINGE’s runtime.

Branching Information (Optional). By default, SINGE assumes that the ordered single-
cell data correspond to a linear biological process. However, if the inferred trajectory has
a branching topology, this information can be passed to SINGE by creating an optional
binary matrix called branches with Ncells rows and Nbranches columns. If branches[i, b] = 1,
it represents the membership of the i-th cell in the b-th branch of the trajectory. This allows
SINGE to handle any type of acyclic trajectory.

3.2.2. Zero (Dropout) Handling

One of the most prominent technical artifacts in single-cell RNA-seq is dropout. This
is manifested as a large number of zero readings due to inefficiencies in mRNA capture in
the measurement process. Dropout causes the measured expression data to contain a higher
number of zeros than the true biological zeros [100]. There have been efforts to overcome
this problem by imputing the missing values [100, 101]. However, inappropriate imputation
can negatively impact differential expression testing [102] and can have a positive, neutral,
or negative effect on Monocle’s pseudotimes depending on the choice of algorithm [103].

If we remove the zero-valued measurements altogether from the dataset, GLG effectively
imputes the missing values without an external imputation algorithm by virtue of its kernel-
based approach for analyzing irregular time series. Thus, depending on the severity of the
dropout, SINGE contains an optional step of removing some of the zeros and the corre-
sponding pseudotime values. This can be achieved through an additional hyperparameter
prob-zero-removal. For each gene, each zero-valued sample and its corresponding pseudotime
are removed with probability prob-zero-removal.

3.2.3. Hyperparameter Diversity

The primary hyperparameters in the GLG tests include the sparsity constraint λ, the
time resolution ∆t between the elements of the vector ai,j, the length L of the vector ai,j
(which determines the extent of the lagged time series for the GLG analysis), and the kernel
width σ. The zero-handling stage introduces another optional hyperparameter prob-zero-
removal.

If the process being studied is a stationary process containing simplistic regulatory net-
works, the above hyperparameters could potentially be tuned to optimize cross-validation
performance. However, transcriptional regulation is non-linear and non-stationary in na-
ture. A single GLG test, however optimal its settings, can produce false positives due to the
assumption of linear and stationary causal relationships. In addition, there may not be a
single set of hyperparameters that are optimal for all regulatory interactions. To overcome
this, we analyze the data using multiple GLG tests with diverse hyperparameters and aggre-
gate the rankings obtained from the individual GLG tests (Section 3.2.5). Our assumption
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is that the top-ranked regulatory edges that consistently appear for many hyperparameter
combinations are enriched for true positive interactions.

3.2.4. Subsampling Stage

SINGE includes an optional stage that increases the effective ensemble size by subsam-
pling versions of the original single-cell data. The subsampling can make the inferred GRN
more robust to outliers in the gene expression data. Specifically, for each hyperparameter
combination, we generate Nsubsample (default 10) data replicates. Because GLG can handle
irregular time series, we have the option to use two different strategies for subsampling. The
simplest strategy would be to randomly remove a small subset of cells from the dataset.
This ensures that all genes’ pseudotime series have the same pseudo-timestamps. However,
removing entire cells could ignore important cells in rare transient states.

We instead use an alternate strategy that randomly removes samples independently from
each gene’s pseudotime series. Using this strategy, the probability of removing an entire
pseudo-timestamp (cell) is greatly diminished. However, no two genes have the same series
of pseudo-timestamps, each has a unique irregular time series with high probability. In our
experiments, we independently remove samples for each gene using a probability of sample
removal of 0.2, the SINGE default. The SINGE subsampling is similar to bagging [104]
except that the sampling is without replacement and it uses a different aggregation approach.

3.2.5. GLG Runs and Modified Borda Aggregation

After enumerating all hyperparameter combinations and subsampled replicates, SINGE
runs GLG on each subsampled replicate using the different hyperparameter combinations.
At the end of each GLG test, we obtain an adjacency matrix A using

Aij =
∣∣∣∑

l

ai,j(l)
∣∣∣,

where a is the P × P × L coefficient matrix output from the GLG test. The matrix A
represents one candidate GRN, with the magnitude of each element representing the edge
weight assigned to the corresponding regulator-gene interaction. These edge weights are
used to rank the possible regulator-gene interactions. A rank is assigned to only those
interactions that correspond to a nonzero element of A.

Once the rankings from the GLG tests on all hyperparameter combinations and subsam-
pled replicates are obtained, we aggregate them using a modification of the Borda count [105].
The Borda count aggregates ranked lists by defining a scoring rule that assigns weights to
the items in each ranked list and summing the weights to obtain a final consensus ranking.
The goal is to favor items, in our case regulator-gene interactions, that are consistently
ranked high over those that are ranked high only occasionally or not at all. The traditional
Borda count scoring rule assigns a weight of N for the first ranked item in a list, N − 1 to
the second, and so on [105]. Alternative scoring rules, such as the Dowdall rule [106], assign
weights that decay more quickly, placing more relative importance on the top-ranked items.

We use a scoring rule that assigns weights of 1/i2 for the i-th ranked interaction within
each individual ranked list from a single GLG test. The weight is zero for an unranked
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regulator-gene interaction. This scoring rule was selected based on empirical tests with
the ESC to endoderm differentiation dataset. The final SINGE score of each interaction
is obtained by summing the weights assigned to that interaction across all ranked lists.
This score is subsequently used for the final GRN edge ranking. We also obtain the top
regulators of the biological process by summing the SINGE scores of all outgoing edges
for each regulator and sorting the regulators in order of decreasing magnitude. In the
case of branching processes, SINGE’s default behavior is to perform the modified Borda
aggregation on all branches together to obtain one output for the overall branching process.
Alternatively, a user can obtain branch-specific SINGE outputs by storing the individual
GLG test results in separate branch-specific directory and performing the modified Borda
aggregation on each set of results separately.

Similar ensembling and aggregation strategies are widely used in GRN inference in order
to improve the robustness of the predicted networks, reduce sensitivity to noise, and avoid
false positives. SINGE’s modified Borda count aggregation is one specific strategy among
many related ideas. It emphasizes the interaction ranking instead of the magnitude of the Aij

coefficients, which are difficult to compare directly when combining results from GLG runs
that use different degrees of regularization λ. SINGE’s aggregation is closely related to the
stability selection [107] in TIGRESS [108] except SINGE aggregates predictions over many
hyperparameter combinations and its randomization comes from the randomly removed
observations during the subsampling stage instead of randomly rescaling TF expression.
Unlike other unsupervised aggregation approaches [109], SINGE’s modified Borda counts do
not assume that the ranked interaction lists are conditionally independent. Furthermore,
SINGE’s aggregation does not require generating a null distribution of Aij coefficients from
permuted data [46], which is computationally more expensive but has the benefit of providing
interaction false discovery rates.

3.2.6. Case Study Hyperparameters

Table 3 lists the hyperparameter values used to generate the GLG ensembles for all case
studies. The subsampling stage creates 10 replicates for each hyperparameter setting by
removing samples from individual gene expression values with probability of sample removal
0.2. Thus, not only is each time series irregular, but it has partially different time references
compared to the other time series in the data set. For most of the main case studies, we
use the default mode with prob-zero-removal = 0, only changing it when we analyze its
effect on GRN performance (Figure 9) or to reduce runtime on the bone marrow dataset
(Section 3.3.3). The total number of GLG tests, accounting for hyperparameter diversity
and subsampling, is

N = Nλ(5)×N(∆t,L)(5)×Nσ(4)×Nsubsample(10) = 1000.

The subsampling approach and the consensus-rewarding nature of the modified Borda ag-
gregation stage reduces the need to optimize the hyperparameter combinations for each
dataset. The outputs from GLG tests on each subsampled replicate will better agree with
each other for hyperparameters that are suitable for the dataset.
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Table 3: Hyperparameter combinations considered. λ is the sparsity parameter, ∆t determines the time
resolution, L represents the number of time lags under consideration, and σ represents the kernel width used
for GLG. Only specific pairs of ∆t and L are considered instead of all possible combinations.

Hyperparameter(s) Values
λ 0, 0.01, 0.02, 0.05, 0.1
(∆t, L) (3, 5); (5, 9); (9, 5); (5, 15); (15, 5)
σ 0.5, 1, 2, 4

3.3. Datasets

3.3.1. ESC to Endoderm Differentiation

The first dataset is from Hayashi et al. [51], who collected single-cell RNA-seq data from
456 cells at five time points over a 72 hour duration in which primitive endoderm cells were
differentiated from mouse embryonic stem cells. Matsumoto et al. [15] used Monocle [25]
to order these cells along the differentiating process, assigning a pseudotime to each cell.
We use their Monocle results in our analyses. The expression dataset is limited to 100 TFs
exhibiting the highest variance in expression value and 356 cells.

3.3.2. Retinoic Acid-driven Differentiation

The second dataset was obtained from Semrau et al. [54], where SCRB-seq data was
collected at nine times during a 96 hour period from mouse embryonic stem cells differ-
entiating into neuroectoderm and extraembryonic endoderm-like cells. We order the cells
using Monocle 2 [25], with the ordering genes chosen by Monocle 2 in an unsupervised man-
ner by identifying genes that are differentially expressed in response to the introduction of
the growth medium. Although Matsumoto et al. [15] applied the original Monocle to the
first dataset and we retain their pseudotimes, we prefer Monocle 2 for this case study, the
most recent version available at the time of the analysis. After ordering, we limit the scope
of the analysis to the 1886 cells along the longest trajectory of the differentiation process
(Figure S1) exhibiting non-trivial expression levels. Once Monocle 2 orders the cells along
a pseudotemporal reference, it can find genes that change in expression as cells progress
along pseudotime. We retain the top 626 differentially expressed genes (q < 10−5) along the
pseudotime ranked by Monocle 2 for testing the GRN algorithms.

To obtain another version of the retinoic acid-driven differentiation dataset, we use dyn-
verse to select an appropriate alternative trajectory inference method. Based on the expected
branching topology of the trajectory, we use the graphical user interface dynguidelines to nar-
row our search to the top four recommended methods: Slingshot [110], SCORPIUS [111],
PAGA, and PAGA Tree [95]. Running trajectory inference on the entire dataset does not
yield any meaningful branching trajectories for any these methods. When we instead limit
the genes to the same 626 differentially expressed genes from our Monocle 2 analysis, we ob-
tain a reasonable branching trajectory with PAGA Tree (Figure S11). The dynverse wrapper
for the PAGA Tree algorithm is version 0.9.9.06. We choose the longest branch (backbone)
of this inferred trajectory as an alternate input for SINGE network inference.
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3.3.3. Mouse Bone Marrow Mesenchyme to Erythrocyte Differentiation

Starting with the dataset available from the Mouse Cell Atlas [87] at https://figshare.
com/s/865e694ad06d5857db4b, we use the dynverse utility to select an appropriate trajec-
tory inference method. Based on the expected topology of the trajectory, we use the graph-
ical user interface dynguidelines to prioritize four appropriate trajectory inference methods:
Slingshot [110], Embeddr [88], SCORPIUS [111], and PAGA [95]. Of these, the Embeddr in-
ferred trajectory was most consistent with the reference trajectory provided in the dynverse
database. The dynverse wrapper version used for Embeddr is 0.9.9.01, and the resulting
trajectory is shown in Figure S12. The ordered single-cell dataset has 3025 genes and 3105
cells in a linear trajectory. We normalize the count-based expression data using a log(x+1)
transformation [112].1 Finally, because the dataset is large but sparse, we use prob-zero-
removal = 0.75, which makes the regression problem smaller by dropping many zero-valued
samples and speeds up SINGE.

3.3.4. dyngen Synthetic Data

We generate two simulated datasets using the dyngen package [93] available at https://
github.com/dynverse/dyngen (git commit 73192c82f39e1b4318aea56d4c87ed02c1bf145e).
Both datasets come from the same GRN that has 140 genes — 25 TFs, 15 housekeeping
genes, and 100 target genes — and 164 edges, most of them originating from TFs. The
first dataset contains 1000 cells, and the second contains 20000 cells. The script used for
generating the datasets, the datasets in SINGE input format, and the gold standard GRN
are provided at https://github.com/gitter-lab/SINGE-supplemental and archived on
Zenodo (https://doi.org/10.5281/zenodo.3627325). The 20000 cell version was used
solely to evaluate the computational runtime for larger datasets.

3.4. Evaluation

To evaluate the GRNs from the ESC to endoderm differentiation and retinoic acid-driven
differentiation datasets, we use the ESCAPE database [52] as a gold standard, namely the
cataloged ChIP-chip, ChIP-seq, loss-of-function (lof), and gain-of-function (gof) experiments.
Each GRN method ranks the possible edges in the network in order of confidence. We plot
the respective precision-recall curves and compute the average precision (A) and average
early precision (E) for comparison.

We evaluate the GRNs from the simulated dyngen dataset using the dyngen model as a
gold standard. This simulated GRN only contains direct edges from regulators to targets.
We also evaluate the predicted networks with respect to extended gold standards that include
indirect interactions, which considers transitive interactions. That is, if gene interaction
A → B and B → C exist, whether direct or indirect, then A → C also exists in the
modified gold standard. Starting with the original direct dyngen GRN with 164 interactions,

1The default recommendation for using SINGE with count-based data would be to use the hyperparameter
‘--family poisson.’ However, we discovered that the glmnet package for MATLAB suffers a high rate of memory
segmentation violations when invoked for larger datasets with the Poisson distribution. Log-transforming
the count-based data and using the hyperparameter ‘--family gaussian’ mitigates this issue.
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we iteratively apply this transitive property to obtain gold standards with different levels
of indirect gene interactions. These indirect networks contain 352 edges after the first
iteration, 744 edges after the second iteration, and 921 edges after the third iteration. Further
iterations do not expand the gold standard GRN.

3.4.1. ESCAPE Database

The ESCAPE database [52] is a repository cataloging numerous experiments conducted
on human and mouse ESCs. We use the ChIP-chip, ChIP-seq, lof, and gof experiments as
a gold standard to evaluate the inferred GRNs. Despite ESCAPE being one of the most
comprehensive repositories of such experimental results, it does not have reference data for
all predicted regulators. Therefore, we evaluate the inferred networks using the sub-matrix
for which the gold standard is available.

To generate the gold standard, we combine all gene interactions in the ChIP-chip/ChIP-
seq and lof/gof databases related to the genes from the single-cell data being analyzed. Gene
interactions not documented in the ESCAPE databases are assumed to not exist. However,
this approach can lead to a high number of false zeros in the gold standard if a particular
regulator was not studied genome-wide. For example, whereas ESCAPE documents thou-
sands of ChIP-chip/ChIP-seq interactions for most TFs, two of the TFs report less than
200 interactions. To avoid false zeros in the gold standard, we generate our gold standard
using only regulators with at least 1000 target genes in the ChIP-chip/ChIP-seq data and
500 target genes in the lof/gof data.

3.4.2. Average Early Precision

Because a majority of SINGE’s hyperparameter sets predict a sparse regulatory network,
it is better suited to ranking the top GRN interactions instead of ranking all of them.
Average precision, which considers the entire precision-recall curve, may not be the ideal
performance metric for evaluating such methods. In addition, the top-ranked regulator-gene
interactions are the most relevant for prioritizing experimental studies. Therefore, we also
consider the average early precision, which evaluates the inferred network by calculating
the average precision up to a partial recall threshold. We use a partial recall threshold of
0.1. That is, average early precision evaluates the ranking performance of GRN inference
methods up to the point where they identify 10% of known gene interactions according to
the gold standard. For consistency across the evaluations, we generally assess whether there
is a 10% improvement in average precision or average early precision when comparing two
GRNs. If the performance of one GRN is not at least 10% better than the other, we consider
them to be approximately similar.

3.4.3. Existing GRN Methods

In addition to SINGE, we use GENIE3, SCODE, SINCERITIES, and Jump3 to infer
GRNs. Originally intended for use with bulk transcriptomics, the GENIE3 algorithm [12]
can also be applied to single-cell data [113] and acts as a reference method that does not
use pseudotemporal ordering information. We installed GENIE3 version 1.6.0 from Bio-
Conductor https://bioconductor.org/packages/release/bioc/html/GENIE3.html and
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used its default operating mode. We downloaded SCODE from the GitHub repository
https://github.com/hmatsu1226/SCODE (git commit 28acad67893c0fba7eeee670c339809d
45ae6377) and used the same settings as in Matsumoto et al. [15] for the ESC to endoderm
differentiation dataset with D = 4 degrees of freedom in the expression dynamics. We used
D = 20 for the retinoic acid-driven differentiation dataset to account for the much larger
network of 626 genes. We obtained the SINCERITIES toolbox dated 16 December 2016 from
http://www.cabsel.ethz.ch/tools/sincerities.html and used the default settings. An
equivalent version of the Jump3 code we used can be obtained from https://github.com/

vahuynh/Jump3 (git commit 03a7e86d82f2383c56fd11c658dfce574fbf1a1a). In contrast to the
other methods, Jump3 uses only ordering information. We used noiseV ar.obsnoise = 0.1,
but all other settings were the defaults. Because Jump3 did not terminate in a reasonable
amount of time on the full retinoic acid-driven differentiation dataset, we reduced the dataset
by arbitrarily dropping cells with probability 0.5. Despite this reduction in the data size,
the Jump3 algorithm did not converge for two target genes, Tdh and Vdac1. As a result,
we rank the corresponding edges at the bottom of the ranked list, which could affect the
quality of the Jump3 results for the retinoic acid-driven differentiation dataset.

3.4.4. KinderMiner and Gene Ontology Enrichment

We performed KinderMiner (v1.5.4) [75] analysis on the SINGE top 20 regulators to
search for known associations of these genes with the three keyphrases ‘embryonic stem
cells,’ ‘neural development,’ and ‘endoderm development’ in a local collection of 26877474
PubMed abstracts downloaded from NCBI in December 2018. We report the statistically
significant associations (p < 10−4) in Table 1 using the labels ‘ESC,’ ‘NeurDev,’ and ‘En-
doDev,’ respectively. The significance threshold corresponds to a family-wise error rate of
FWER < 6 × 10−3, accounting for a family size of 60 gene-keyphrase pairs. In Supple-
mentary File 4, we provide the raw KinderMiner results obtained using the search setting
anySpeciesSEP. This corresponds to a species agnostic search in which words of keyphrase
can be anywhere in the PubMed abstract.

We also performed functional profiling of the ordered 626-gene list from SINGE using the
g:GOSt tool in g:Profiler [55] version r1760 e93 eg40. We consider only Gene Ontology [114]
biological process terms and specify ‘mus musculus’ as the organism. The candidate regula-
tor list from SINGE is ordered, so we use the ‘ordered query’ option, which allows g:Profiler
to perform incremental enrichment analysis over the gene list. The significance threshold
used was Fisher’s one-tailed test, the default test for g:GOSt, with multiple testing correc-
tion using the default g:SCS method. Supplementary File 3 provides the complete output
of the g:GOSt test. The significance test considers the entire ranked regulator list, but we
highlight only the top 20 regulators in Table 1. In addition, we derived the loss-of-function
phenotypes in Table 1 from the Mouse Genome Databases Mammalian Phenotype Ontology
Annotations [115].

3.4.5. SINGE Software Availability and Versions

A MATLAB implementation of SINGE is available at https://github.com/gitter-lab/
SINGE under the MIT license and archived on Zenodo (https://doi.org/10.5281/zenodo.
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2549817). The GitHub repository contains the datasets and default hyperparameter set-
tings used in the manuscript, scripts to generate custom hyperparameter files, and compiled
code so that SINGE can be run without a MATLAB license. We also include a Docker
image (https://hub.docker.com/r/agitter/singe). Supplemental scripts and analysis
are available at https://github.com/gitter-lab/SINGE-supplemental and archived on
Zenodo (https://doi.org/10.5281/zenodo.3627325).

We used SINGE version 0.1.0 for nearly all analyses, except Figure 11 and Table 2, which
also include results from newer versions of SINGE as indicated. In addition, the analyses
in Sections 2.2.4 and 2.2.5 were performed using only version 0.3.0, which included code
optimizations for improving stability and compute time for large datasets such as those
encountered in the aforementioned sections. See https://github.com/gitter-lab/SINGE

for the latest release notes and usage recommendations.

4. Discussion

SINGE is a GRN reconstruction algorithm that adapts Granger Causality to detect de-
pendencies in single-cell gene expression data annotated with pseudotimes. Although it was
designed for single-cell data, the kernel-based smoothing could also be valuable for bulk
time series gene expression data when the time points are irregularly spaced or individual
expression samples are noisy. SINGE has the potential to prioritize regulators for future
DNA-binding or functional studies. For example, in the retinoic acid-driven differentiation
study, many of the top-ranked SINGE regulators (Table 1) are enriched for relevant dif-
ferentiation process and regulatory annotations but have not yet been characterized in the
ESCAPE database.

When assessed in the retinoic acid-driven differentiation case study, in which none of
the GRN methods’ settings were tuned to optimize performance on this dataset, SINGE
has better precision-recall performance than four existing methods. However, we caution
that single metrics like average precision can be misleading. Closer inspection reveals that
SINGE’s better-than-random precision-recall performance in Figure 5 is driven by its ability
to identify important regulators and assign them a higher rank, as seen in Figure 7. In
contrast, Jump3’s better-than-random precision-recall performance in Figure 5 is driven by
its better-than-random performance for many individual regulators, as seen in Figure 6.
Because the precision-recall curve for the entire GRN can mask near-random performance
for many individual regulators, we recommend regulator-specific visualizations (Figures 6
and 7) to provide more context.

We designed SINGE for a high-throughput computing environment, ensembling many
GLG tests under different hyperparameters and using data subsampling to improve ro-
bustness and performance. This approach makes SINGE more resilient to dropout in the
single-cell gene expression data and less sensitive to the hyperparameter ranges tested. En-
sembling strategies have proven effective in a variety of GRN inference settings, such as
DREAM challenges [8]. Our use of modified Borda aggregation for ensembling emphasizes
the top-ranked, most-confident predictions.
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4.1. Caveats and Limitations

Granger Causality has a precise statistical meaning built upon the idea that causes must
come before their effects [40]. It is useful in practice but does not necessarily satisfy more
general definitions of causality [40]. The main assumption we make by using GLG is that the
expression data are obtained from a linear and stationary VAR model. However, complex
biological systems have dynamic, non-linear gene interactions and are expected to generate
non-stationary expression trends. Violating the assumptions of linearity and stationarity
can have a significant impact on the performance of individual GLG tests. Furthermore,
Granger Causality tests result in false positives in scenarios with hidden variables [116].
However, these discrepancies between theory and practice are commonly accepted in bio-
logical applications of Granger Causality [43, 117]. In addition, SINGE’s Borda aggregation
helps to push the most robust edges in the network to the top of the final ranked list.

Some of the Granger Causality-related drawbacks potentially could be addressed by inte-
grating SINGE with complementary data types. The relationship between TF concentration
and transcriptional activity represents only one type of transcriptional dynamics, neglecting
epigenomic modifications, TF post-translational modifications, TF localization, and tran-
scriptional co-factors [118]. GRN inference can be more accurate when using ChIP-chip,
ChIP-seq, protein-protein interactions, regulator lof/gof experiments, or DNA binding mo-
tifs as prior knowledge on the network structure [119, 120] (reviewed in Chasman et al. [9]).
Other single-cell GRN inference algorithms have incorporated priors. SOMatic [121] and
Symphony [122] use single-cell ATAC-seq and scdiff [123] integrates TF-gene interactions.
To model prior information in SINGE, we could assign different penalty factors λj for the
j-th regulator of target gene i based on the prior probability of the edge pij. An alternative
would be to use SINGE output in conjunction with the supplementary sources of informa-
tion and aggregate all the information after-the-fact [124, 125]. However, the current version
of SINGE intentionally uses only gene expression data because integrative approaches can
benefit from understanding the best ways to infer GRNs from expression data alone. This
also makes SINGE widely applicable in conditions and species where suitable priors are not
available.

Another assumption of SINGE, SINCERITIES, and SCODE is that the pseudotime
values assigned to individual cells have a high fidelity. However, in the retinoic acid-driven
differentiation dataset, SINGE performs better when the Monocle 2 pseudotime values are
disregarded and only the cell ordering is used (Figure 10). On the other hand, using PAGA
Tree pseudotimes improves the precision-recall performance when compared to the Monocle
2 pseudotimes. GRN performance in SINGE and related methods depends on the quality of
the pseudotime values. Assigning uninformative pseudotime values to ordered cells can be
more detrimental to the network inference performance than simply using the order without
pseudotimes.

We propose that pseudotimes’ impact on GRN accuracy could be used to evaluate
pseudotime inference algorithms, complementing other benchmarking metrics for pseudo-
times [18]. Integrating GRN benchmarking [126] and dynverse’s pseudotime benchmark-
ing [18] would enable us to systematically evaluate which types of pseudotimes best support
network inference and empirically assess the types of GRN motifs that cannot be unambigu-
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ously recovered from single-cell expression data [127]. In addition, Qiu et al. [33] proposed
that RNA velocity [128] may help overcome limitations of pseudotime for GRN reconstruc-
tion.

4.2. Benchmarking and Evaluation

Inferring gene regulatory networks only from single-cell gene expression data is a diffi-
cult task. One evaluation of network inference algorithms on simulated single-cell datasets
reported that their performances were only slightly better than a random edge order-
ing [129]. New single-cell gene expression simulators designed specifically for simulating
GRNs [126, 130] can help inform which GRN inference methods are best for different types of
biological trajectories. Both of these studies evaluated SINGE performance with their GRN
simulators but with different ensembling strategies. BEELINE [126] optimized SINGE’s
hyperparameters and constructed much smaller ensembles than we do in this study. SER-
GIO’s ensembling [130] was much closer to ours except for differences in the treatment of
the λ hyperparameter. In the SERGIO evaluation, SINGE was the best GRN method when
inferring networks from simulated datasets with added technical noise.

An important aspect when evaluating network inference on experimental data is the
relevance of the gold standard. In the SCODE evaluation [15], the gold standard was TF
binding interactions estimated from DNaseI footprints and sequence motifs. However, it
was merged across all human and mouse cell types instead of only those relevant to the
mouse ESC to endoderm differentiation process. In the Chen and Mar benchmarking of
stem cell datasets [129], the gold standard consisted of all interactions from the STRING
database [131]. These included interaction types that are not directly informative about
transcriptional regulation and were not limited to the specific cell types of interest. For our
evaluation, we limit the gold standard to data from mouse embryonic stem cells obtained
from ChIP-chip/ChIP-seq and lof/gof studies cataloged by ESCAPE [52], which are more
relevant to the biological processes we study and more directly indicative of transcriptional
relationships. BEELINE showed that the choice of a cell type-specific versus non-specific
gold standard has a substantial impact on GRN inference performance metrics [126].

There remain open questions regarding appropriate evaluation methodologies. For ex-
ample, we combine ChIP-chip/ChIP-seq and lof/gof information, but the precision-recall
performance of the GRN methods is quite different when examining ChIP-chip/ChIP-seq
or lof/gof data alone (Figure S3). These two types of data are known to have low overlap
[132]. Our evaluation suggests the SINGE’s search for lagged gene expression dependencies
may detect more indirect regulatory relationships than direct TF binding, which is consis-
tent with our dyngen evaluation. We observe SINGE’s precision-recall performance improves
relative to the the baseline precision when adding indirect gene interactions to the dyngen
gold standard.

Although the GRN methods we evaluate have better than random average precision when
assessing the entire network, they are only marginally better than random when ranking out-
going edges from individual regulators. For the regulator-specific average early precision,
each GRN method is better than random for only some regulators. Precision-recall is prefer-
able to the receiver operating characteristic for evaluating biological network inference due
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to the sparsity of the gold standard [133], but the average precision for the entire network
may overestimate the utility of GRN inference methods for studying individual regulators
(Figures 5 and 6).

4.3. Future Work and Extensions
The current version of SINGE can handle all biological processes with acyclic trajectories.

However, SINGE provides just one regulatory network for the entire trajectory. In the
future, we could add functionality to identify branch-specific networks and interactions. An
alternative approach would be to adapt SINGE to treat each branch as a task in a multi-
task GRN inference problem [134]. In addition, the kernel could be modified so that certain
pseudotime intervals can be considered more informative, for example, the interval around
a major bifurcation point.

Because each pseudotime estimation method orders the cells based on different assump-
tions and algorithms, no two methods will result in the same cell ordering. Some trajec-
tories are better suited for a particular biological process, but we cannot objectively verify
the correctness of the trajectory and cell ordering. To mitigate the effect of the pseudo-
time estimation method on network inference, we could integrate SINGE with the dynverse
framework and expand the ensemble to include GLG test results from multiple pseudotime
estimation methods.

SINGE uses a common prob-zero-removal for all genes, but the algorithm can be modi-
fied to incorporate gene-specific zero removal probabilities. Future work may involve a more
sophisticated zero-handling approach, which would remove only those zeros that are incon-
sistent with other non-zero measurements from similar cells. Methods like SCONE [94]
can provide additional information for removing zeros more selectively than the current
approach.

Other elements of the GLG regression framework can be adapted as well. Nguyen and
Braun [135] place a monotonicity constraint on the coefficients ai,j such that the more recent
coefficients have higher magnitude than the more distant ones. Similarly, we could adapt
the kernel to give higher weight to more recent samples in the pseudotime than more distant
ones. Another possible direction involves exploration of the kernel-based generalizations to
the Group Lasso [136, 137]. This would enable SINGE to regularize all coefficients from a
regulator as a group instead of treating different lagged coefficients as separate variables. In
general, the kernel-based approach at the core of SINGE provides great flexibility to adapt
our GRN reconstruction algorithm to emphasize different aspects of dynamic biological
processes.
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Supplementary Information

Figure S1: Monocle 2 trajectory of the retinoic acid-driven differentiation process. We analyzed the trajec-
tory constituting states 2 (early part comprising mostly data collected at 0h) and 1 (later part including
cells collected at 96h).
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Figure S2: Expression trends of genes from three of the top-ranked SINGE interactions (Dab2→Yes1,
Fgf4→Meis2, and Dab2→Rn45s) in the retinoic acid-driven differentiation dataset. From the expression
trends, we see a negative correlation between Dab2 and Yes1, as well as between Fgf4 and Meis2. The
relationship between Dab2 and Rn45s is not obvious from the expression trends alone and is likely a false
positive.
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Figure S3: Precision-recall performance of network inference methods on the retinoic acid-driven
differentiation dataset for ESCAPE gold standard interactions from (a) ChIP-chip/ChIP-seq and
(b) lof/gof studies.

Figure S4: Expression trends of Esrrb and Actb show no apparent lag between regulator (Esrrb) and target
expression (Actb). The interaction Esrrb→Actb is ranked highly by SCODE but not by SINGE.
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Figure S5: Histograms of average precision and average early precision for individual hyperparameters for
the retinoic acid-driven differentiation dataset. The vertical lines depict the performance of the final SINGE
GRN that ensembles all hyperparameter values.
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Figure S6: Scatter plot showing the effect of λ on the average precision and average early precision for the
retinoic acid-driven differentiation dataset.
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Figure S7: Scatter plot showing the effect of number of time resolution ∆T , the total length of the analysis
window, the number of lagged coefficients, and the kernel width used in GLG on the average precision and
average early precision for the retinoic acid-driven differentiation dataset.
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Figure S8: Average precision and average early precision evaluated for individual regulators for rankings
obtained using the Order Only dataset obtained from Monocle 2. The dashed line (−−) indicates random
performance. The Jump3 results are the same as in Figure 6 because it does not use pseudotime values.
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Figure S9: Boxplots of outgoing edge ranks for each regulator in each predicted GRN obtained using the
Order Only dataset obtained from Monocle 2. The Jump3 results are the same as in Figure 7 because it
does not use pseudotime values.

52

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 27, 2021. ; https://doi.org/10.1101/534834doi: bioRxiv preprint 

https://doi.org/10.1101/534834
http://creativecommons.org/licenses/by/4.0/


0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re

c
is

io
n

SINGE (A = 0.39, E = 0.5)

SINCERITIES (A = 0.26, E = 0.37)

Jump3 (A = 0.27, E = 0.36)

SCODE (A = 0.2, E = 0.14)

Baseline Precision = 0.25

Partial Recall Threshold

Figure S10: Precision-recall performance comparison of the four methods when using Order Only
dataset obtained from Monocle 2. Key: A - Average Precision, E - Average Early Precision (≤ 0.1
recall). The Jump3 results are the same as in Figure 5 because it does not use pseudotime values.

Figure S11: Trajectory inference using 626 genes from the retinoic acid-driven differentiation dataset
using PAGA Tree. We select the longest branch, with 2631 cells (737 of which are common with
the Monocle 2 branch studied) for our analysis.
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Figure S12: Trajectory inference from the mouse bone marrow dataset using Embeddr. The dataset
has 3025 genes, 3105 cells, and a linear trajectory.
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